tacrolimus and Astrocytoma

tacrolimus has been researched along with Astrocytoma* in 2 studies

Other Studies

2 other study(ies) available for tacrolimus and Astrocytoma

ArticleYear
The participation of insulin-like growth factor-binding protein 3 released by astrocytes in the pathology of Alzheimer's disease.
    Molecular brain, 2015, Dec-04, Volume: 8, Issue:1

    Alzheimer's disease (AD) is characterized by senile plaques, extracellular deposits composed primarily of amyloid-beta (Aβ), and neurofibrillary tangles, which are abnormal intracellular inclusions containing hyperphosphorylated tau. The amyloid cascade hypothesis posits that the deposition of Aβ in the brain parenchyma initiates a sequence of events that leads to dementia. However, the molecular process by which the extracellular accumulation of Aβ peptides promotes intracellular pathologic changes in tau filaments remains unclear. To elucidate this process, we presumed that astrocytes might trigger neuronal reactions, leading to tau phosphorylation. In this study, we examined AD pathology from the perspective of the astrocyte-neuron interaction.. A cytokine-array analysis revealed that Aβ stimulates astrocytes to release several chemical mediators that are primarily related to inflammation and cell adhesion. Among those mediators, insulin-like growth factor (IGF)-binding protein 3 (IGFBP-3) was highly upregulated. In AD brains, the expression of IGFBP-3 was found to be increased by western blot analysis, and increased expression of IGFBP-3 was observed in astrocytes via fluorescence microscopy. In addition, we reproduced the increase in IGFBP-3 after treatment with Aβ using human astrocytoma cell lines and found that IGFBP-3 was expressed via calcineurin. In AD brains, the activated forms of calcineurin were found to be increased by western blot analysis, and increased expression of calcineurin was observed in astrocytes via fluorescence microscopy. When Ser9 of glycogen synthase kinase-3β (GSK-3β) is phosphorylated, GSK-3β is controlled and tau phosphorylation is suppressed. Aβ suppresses the phosphorylation of GSK-3β, leading to tau phosphorylation. In this study, we found that IGF-Ι suppressed tau phosphorylation induced by Aβ, although IGFBP-3 inhibited this property of IGF-Ι. As a result, IGFBP-3 contributed to tau phosphorylation and cell death induced by Aβ.. Our study suggested that calcineurin in astrocytes was activated by Aβ, leading to IGFBP-3 release. We further demonstrated that IGFBP-3 produced by astrocytes induced tau phosphorylation in neurons. Our study provides novel insights into the role of astrocytes in the induction of tau phosphorylation and suggests that IGFBP-3 could be an important link between Aβ and tau pathology and an important therapeutic target.

    Topics: Alzheimer Disease; Amyloid beta-Peptides; Animals; Astrocytes; Astrocytoma; Blotting, Western; Brain; Calcineurin; Cell Line, Tumor; Cell Survival; Cells, Cultured; Culture Media; Gene Expression Regulation, Neoplastic; Glycogen Synthase Kinase 3; Glycogen Synthase Kinase 3 beta; Humans; Insulin-Like Growth Factor Binding Protein 3; Insulin-Like Growth Factor I; Mice; Microscopy, Fluorescence; Models, Biological; Neurons; Phosphorylation; RNA, Messenger; Tacrolimus; tau Proteins; Up-Regulation

2015
Ca(2+)/calmodulin-mediated regulation of the desensitizing process in G(q) protein-coupled histamine H(1) receptor-mediated Ca(2+) responses in human U373 MG astrocytoma cells.
    Journal of neurochemistry, 2000, Volume: 75, Issue:2

    We investigated Ca(2+)/calmodulin (CaM)-mediated regulation of the desensitizing process of the histamine H(1) receptor-mediated increase in intracellular Ca(2+) concentration in human U373 MG astrocytoma cells. The desensitizing process was evaluated by measuring the histamine-induced Ca(2+) responses in cells pretreated with histamine for 15 s-30 min under various conditions. Under normal physiological conditions, desensitization developed with three successive phases : a fast desensitization within 15 s, a transient resensitization at 45 s, and a prompt and sustained redesensitization from 1 to 30 min. Similar processes of desensitization/resensitization occurred even under hypertonic conditions, where histamine-mediated internalization of the histamine H(1) receptor is inhibited. The transient resensitization phase was selectively prevented by deprivation of extracellular Ca(2+) and, even more strikingly, by the presence of W-7 (a CaM antagonist). FK506 and cyclosporin A, Ca(2+)/CaM-dependent protein phosphatase (PP2B) inhibitors, mimicked such effects. In the presence of KN-62, a Ca(2+)/CaM-dependent protein kinase II (CaM kinase II) inhibitor, the early development of desensitization disappeared, allowing a slow and simple development of desensitization. The early processes of desensitization and resensitization were unaffected by W-5, okadaic acid, and KN-04 (less potent inhibitors against CaM, PP2B, and CaM kinase II, respectively) or by GF109203X and chelerythrine (protein kinase C inhibitors). The high-affinity site for histamine was converted to a lower-affinity site by histamine treatment, which also showed a transient restoration phase at 45 s in a manner sensitive to KN-62 and FK506. These results provide the first evidence that Ca(2+)/CaM plays a crucial role in determining the early phase of the desensitizing process via activation of CaM kinase II and PP2B, by regulating agonist affinity for histamine H(1) receptors.

    Topics: 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine; Astrocytoma; Calcineurin Inhibitors; Calcium; Calcium-Calmodulin-Dependent Protein Kinase Type 2; Calcium-Calmodulin-Dependent Protein Kinases; Calmodulin; Cyclosporine; Enzyme Inhibitors; GTP-Binding Protein alpha Subunits, Gq-G11; GTP-Binding Proteins; Histamine; Histamine H1 Antagonists; Humans; Kinetics; Okadaic Acid; Piperidines; Pyrilamine; Ranitidine; Receptors, Histamine H1; Sulfonamides; Tacrolimus; Tumor Cells, Cultured

2000