tacrine-hydrochloride has been researched along with Inflammation* in 2 studies
2 other study(ies) available for tacrine-hydrochloride and Inflammation
Article | Year |
---|---|
Tackling neuroinflammation and cholinergic deficit in Alzheimer's disease: Multi-target inhibitors of cholinesterases, cyclooxygenase-2 and 15-lipoxygenase.
Neuroinflammation and cholinergic deficit are key detrimental processes involved in Alzheimer's disease. Hence, in the search for novel and effective treatment strategies, the multi-target-directed ligand paradigm was applied to the rational design of two series of new hybrids endowed with anti-inflammatory and anticholinesterase activity via triple targeting properties, namely able to simultaneously hit cholinesterases, cyclooxygenase-2 (COX-2) and 15-lipoxygenase (15-LOX) enzymes. Among the synthesized compounds, triazoles 5b and 5d, and thiosemicarbazide hybrid 6e emerged as promising new hits, being able to effectively inhibit human butyrylcholinesterase (hBChE), COX-2 and 15-LOX enzymes with a higher inhibitory potency than the reference inhibitors tacrine (for hBChE inhibition), celecoxib (for COX-2 inhibition) and both NDGA and Zileuton (for 15-LOX inhibition). In addition, compound 6e proved to be a submicromolar mixed-type inhibitor of human acetylcholinesterase (hAChE). The anti-neuroinflammatory activity of the three most promising hybrids was confirmed in a cell-based assay using PC12 neuron cells, showing decreased expression levels of inflammatory cytokines IL-1β and TNF-α. Importantly, despite the structural resemblance to tacrine, they showed ideal safety profiles on hepatic and murine brain cell lines and were safe up to 100 μM when assayed in PC12 cells. All three hybrids were also predicted to have superior BBB permeability than tacrine in the PAMPA assay, and good physicochemical properties, drug-likeness and ligand efficiency indices. Finally, molecular docking studies highlighted key structural elements impacting selectivity and activity toward the selected target enzymes. To the best of our knowledge, compounds 5b, 5d and 6e are the first balanced, safe and multi-target compounds hitting the disease at the three mentioned hubs. Topics: Acetylcholine; Alzheimer Disease; Animals; Cell Line; Cholinesterase Inhibitors; Cyclooxygenase 2 Inhibitors; Drug Design; Humans; Inflammation; Lipoxygenase Inhibitors; Mice; Molecular Docking Simulation; Neurons; PC12 Cells; Rats; Semicarbazides; Triazoles | 2019 |
Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
This protocol describes microsphere-based protease assays for use in flow cytometry and high-throughput screening. This platform measures a loss of fluorescence from the surface of a microsphere due to the cleavage of an attached fluorescent protease substrate by a suitable protease enzyme. The assay format can be adapted to any site or protein-specific protease of interest and results can be measured in both real time and as endpoint fluorescence assays on a flow cytometer. Endpoint assays are easily adapted to microplate format for flow cytometry high-throughput analysis and inhibitor screening. Topics: Animals; Biotinylation; Flow Cytometry; Fluorescence Resonance Energy Transfer; Green Fluorescent Proteins; High-Throughput Screening Assays; Humans; Inflammation; Kinetics; Microspheres; Peptide Hydrolases; Peptides; Reproducibility of Results; Temperature | 2010 |