t0901317 has been researched along with Ovarian-Neoplasms* in 2 studies
2 other study(ies) available for t0901317 and Ovarian-Neoplasms
Article | Year |
---|---|
T0901317 inhibits cisplatin-induced apoptosis in ovarian cancer cells [corrected].
To determine the function of T0901317 in combination treatment with cisplatin in ovarian cancer cells.. We screened the effects of 3 nuclear hormone receptor ligands on cell viability in a panel of ovarian cancer cell lines. T0901317 regulation of apoptosis and cell cycle regulators was determined when applied as a single agent or in combination with cisplatin.. Surprisingly, the liver X receptor agonist T0901317 had no significant effects on a panel of 7 ovarian cancer cell lines as a single agent. T0901317 does, however, significantly decrease cisplatin efficacy in at least 3 ovarian cancer cell lines. T0901317 reduces cisplatin-induced apoptosis and reverses cisplatin-induced expression of cell cycle regulators. T0901317 seems to work in a liver X receptor-, pregnane X receptor-, and farnesoid X receptor-independent manner, as agonists of these nuclear hormone receptors did not show similar effects. Interestingly, in the A2780-cp drug-resistant cell line, the effect of T0901317 is lost, suggesting that the pathways stimulated by T0901317 to reduce cisplatin efficacy could be inherently active features of the selected resistance.. Together, these data suggest that T0901317 inhibits cisplatin in some ovarian cancer cells. These data provide an avenue to investigate when T0901317 may be acting to promote tumor survival and drug resistance through control of apoptosis and when it may be acting as an antitumor agent as has been previously reported. Topics: Antineoplastic Agents; Apoptosis; Cell Cycle; Cell Line, Tumor; Cisplatin; Drug Antagonism; Drug Screening Assays, Antitumor; Female; Humans; Hydrocarbons, Fluorinated; Liver X Receptors; Orphan Nuclear Receptors; Ovarian Neoplasms; Sulfonamides | 2011 |
Liver X receptor agonist inhibits proliferation of ovarian carcinoma cells stimulated by oxidized low density lipoprotein.
We previously observed an association between ovarian cancer outcome and statin use and hypothesized lipoproteins have direct effects on ovarian cancer proliferation. Here we investigate the direct effects of low density lipoprotein (LDL) and oxidized LDL (oxLDL) on proliferation and the inhibitory effects of fluvastatin and a liver X receptor (LXR) agonist.. The effects of LDL, oxLDL, the LXR agonist TO901317, fluvastatin and cisplatin on cellular proliferation were determined using MTT assays. LXR pathway proteins were assayed by immunoblotting. Cytokine expression was determined by antibody array.. Concentrations of oxLDL as small as 0.1 microg/ml stimulated CAOV3 and SKOV3 proliferation, while LDL had no effect. TO901317 inhibited the proliferation of CAOV3, OVCAR3 and SKOV3 cells stimulated by oxLDL. Fluvastatin inhibited oxLDL mediated proliferation of CAOV3 and SKOV3. Cardiotrophin 1 (CT-1) was mitogenic to CAOV3 and SKOV3, was induced by oxLDL, and was reversed by TO901317. OxLDL increased cisplatin IC50s by 3.8 microM and > 60 microM for CAOV3 and SKOV3 cells, respectively. The LXR pathway proteins CD36, LXR, and ABCA1 were expressed in eight ovarian carcinoma cell lines (A2780, CAOV3, CP70, CSOC882, ES2, OVCAR3, SKOV3).. OxLDL reduced ovarian carcinoma cell chemosensitivity and stimulated proliferation. These effects were reversed by LXR agonist or fluvastatin. The LXR agonist also inhibited expression of the ovarian cancer mitogen CT-1. These observations suggest a biologic mechanism for our clinical finding that ovarian cancer survival is associated with statin use. Targeting LXR and statin use may have a therapeutic role in ovarian cancer. Topics: Cell Growth Processes; Cell Line, Tumor; Drug Interactions; Fatty Acids, Monounsaturated; Female; Fluvastatin; Humans; Hydrocarbons, Fluorinated; Indoles; Ligands; Lipoproteins, LDL; Liver X Receptors; Orphan Nuclear Receptors; Ovarian Neoplasms; Sulfonamides | 2010 |