t0901317 and Non-alcoholic-Fatty-Liver-Disease

t0901317 has been researched along with Non-alcoholic-Fatty-Liver-Disease* in 10 studies

Other Studies

10 other study(ies) available for t0901317 and Non-alcoholic-Fatty-Liver-Disease

ArticleYear
Discovery and Optimization of Non-bile Acid FXR Agonists as Preclinical Candidates for the Treatment of Nonalcoholic Steatohepatitis.
    Journal of medicinal chemistry, 2020, 11-12, Volume: 63, Issue:21

    Farnesoid X receptor (FXR) plays a key role in bile acid homeostasis, inflammation, fibrosis, and metabolism of lipid and glucose and becomes a promising therapeutic target for nonalcoholic steatohepatitis (NASH) or other FXR-dependent diseases. The phase III trial results of obeticholic acid demonstrate that the FXR agonists emerge as a promising intervention in patients with NASH and fibrosis, but this bile acid-derived FXR agonist brings severe pruritus and an elevated risk of cardiovascular disease for patients. Herein, we reported our efforts in the discovery of a series of non-bile acid FXR agonists, and 36 compounds were designed and synthesized based on the structure-based drug design and structural optimization strategies. Particularly, compound

    Topics: Animals; Binding Sites; Chemical and Drug Induced Liver Injury; Chenodeoxycholic Acid; Drug Design; Drug Evaluation, Preclinical; Half-Life; Humans; Liver; Male; Mice; Mice, Inbred C57BL; Molecular Docking Simulation; Non-alcoholic Fatty Liver Disease; Rats; Rats, Sprague-Dawley; Receptors, Cytoplasmic and Nuclear; Structure-Activity Relationship

2020
Cynandione A from Cynanchum wilfordii inhibits hepatic de novo lipogenesis by activating the LKB1/AMPK pathway in HepG2 cells.
    Journal of natural medicines, 2020, Volume: 74, Issue:1

    Cynandione A (CA), isolated from ethyl acetate extract of Cynanchum wilfordii (CW), is a bioactive phytochemical that has been found to be beneficial for the treatment of several diseases. Hepatic de novo lipogenesis is one of the main causes of non-alcoholic fatty liver disease (NAFLD), which is thought to be a hepatic manifestation of certain metabolic syndromes. However, it has not yet been reported if CA has any therapeutic value in these diseases. Here, we investigated whether CA can inhibit hepatic lipogenesis induced by liver X receptor α (LXRα) using an in vitro model. We found that the extract and ethyl acetated layer of CW decreased the mRNA levels of sterol regulatory element-binding protein-1c (SREBP-1c), which plays a crucial role in hepatic lipogenesis. Additionally, we observed that CA could suppress the level of SREBP-1c, which was increased using two commercial LXRα agonists, GW3954 and T0901317. Moreover, the enzymes that act downstream of SREBP-1c were also inhibited by CA treatment. To understand the mechanism underlying this effect, the levels of phosphorylated AMP kinase (pAMPK) were measured after CA treatment. Therefore, CA might increase the pAMPK level by inducing phosphorylation of liver kinase B1 (LKB1), which can then convert AMPK to pAMPK. Taken together, we conclude that CA has an alleviative effect on hepatic lipogenesis through the stimulation of the LKB1/AMPK pathway.

    Topics: AMP-Activated Protein Kinase Kinases; AMP-Activated Protein Kinases; Animals; Biphenyl Compounds; Cynanchum; Hep G2 Cells; Humans; Hydrocarbons, Fluorinated; Lipogenesis; Liver; Liver X Receptors; Non-alcoholic Fatty Liver Disease; Phosphorylation; Phytochemicals; Plant Extracts; Protein Serine-Threonine Kinases; Sterol Regulatory Element Binding Protein 1; Sulfonamides

2020
Inhibition of LXR signaling by SULT2B1b promotes liver regeneration after partial hepatectomy in mouse models of nonalcoholic fatty liver disease.
    American journal of physiology. Gastrointestinal and liver physiology, 2020, 07-01, Volume: 319, Issue:1

    Hydroxysteroid sulfotransferase 2B1b (SULT2B1b) plays a critical role in hepatic energy homeostasis. Liver X receptors (LXRs) are implicated in multiple physiological functions, including the inhibition of hepatocyte proliferation and regulation of fatty acid and cholesterol metabolism. We have previously reported that SULT2B1b promotes hepatocyte proliferation by inactivating LXR signaling in vivo and in vitro, leading to our hypothesis that SULT2B1b promotes fatty liver regeneration. In the present study, female C57BL/6 and S129 mice were fed a high-fat diet for 8 wk to establish a nonalcoholic fatty liver disease (NAFLD) mouse model. 70% partial hepatectomy (PH) was performed to induce liver regeneration. Our experiments revealed that the SULT2B1b overexpression significantly promotes the regeneration of hepatocytes in NAFLD C57BL/6 mice after PH, increasing liver regrowth by 11% within 1 day, and then by 21%, 33%, and 24% by 2, 3, and 5 days post-PH, respectively. Compared with the wild-type NAFLD S129 mice, SULT2B1 deletion NAFLD S129 mice presented reduced hepatocyte regeneration at postoperative

    Topics: Animals; Cell Proliferation; Diet, High-Fat; Disease Models, Animal; Hepatectomy; Hydrocarbons, Fluorinated; Lipid Metabolism; Liver Regeneration; Liver X Receptors; Mice; Mice, Inbred C57BL; Non-alcoholic Fatty Liver Disease; Signal Transduction; Sulfonamides

2020
Histone H3K9 Demethylase JMJD2B Plays a Role in LXRα-Dependent Lipogenesis.
    International journal of molecular sciences, 2020, Nov-05, Volume: 21, Issue:21

    Ligand-activated liver X receptor α (LXRα) upregulates the expression of hepatic lipogenic genes, which leads to triglyceride (TG) accumulation, resulting in nonalcoholic fatty liver disease (NAFLD). Thus, LXRα regulation may provide a novel therapeutic target against NAFLD. However, histone methylation-mediated epigenetic regulation involved in LXRα-dependent lipogenesis is poorly understood. In this study, we investigated the functional role of the histone demethylase Jumonji domain-containing protein 2B (JMJD2B) in LXRα-dependent lipogenesis. JMJD2B expression level was upregulated in HepG2 cells treated with LXRα agonist T0901317 or palmitate and the liver of mice administered with T0901317 or fed a high-fat diet. Knockdown of JMJD2B using siRNA abrogated T0901317-induced LXRα-dependent lipogenic gene expression and lowered intracellular TG accumulation. Conversely, overexpression of JMJD2B in HepG2 cells upregulated the expression of LXRα-dependent lipogenic genes, in line with increased intracellular TG levels. JMJD2B overexpression or T0901317 treatment induced the recruitment of JMJD2B and LXRα to LXR response elements (LXRE) in the promoter region of LXRα-target gene and reduced the enrichment of H3K9me2 and H3K9me3 in the vicinity of the LXRE. Furthermore, JMJD2B enhanced T0901317 or LXRα-induced transcriptional activities of reporters containing LXRE. A co-immunoprecipitation assay revealed that JMJD2B interacted with activated LXRα. Moreover, overexpression of JMJD2B in mice resulted in upregulation of hepatic LXRα-dependent lipogenic genes, consistent with development of hepatic steatosis. Taken together, these results indicate that JMJD2B plays a role in LXRα-mediated lipogenesis via removing the repressive histone marks, H3K9me2 and H3K9me3, at LXRE, which might contribute to hepatic steatosis.

    Topics: Animals; Diet, High-Fat; Epigenesis, Genetic; Female; Hep G2 Cells; Hepatocytes; Histone Demethylases; Histones; Humans; Hydrocarbons, Fluorinated; Jumonji Domain-Containing Histone Demethylases; Lipogenesis; Liver; Liver X Receptors; Male; Mice; Mice, Inbred C57BL; Non-alcoholic Fatty Liver Disease; Palmitates; Sterol Regulatory Element Binding Protein 1; Sulfonamides; Transcriptional Activation

2020
Diosgenin prevents high-fat diet-induced rat non-alcoholic fatty liver disease through the AMPK and LXR signaling pathways.
    International journal of molecular medicine, 2018, Volume: 41, Issue:2

    Non-alcoholic fatty liver disease (NAFLD) is a major public health concern worldwide. The aim of the present study was to observe the effect of diosgenin on NAFLD and investigate the underlying mechanisms. Diosgenin treatment increased the phosphorylation of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) in HepG2 cells. Diosgenin significantly inhibited high glucose (HG)-induced triglyceride (TG) accumulation and sterol regulatory element‑binding protein-1c (SREBP-1c) mRNA increase in HepG2 cells, which were partially abolished by the AMPK inhibitor compound C. Diosgenin also significantly inhibited the increase of liver X receptor (LXR) α mRNA induced by HG or T0901317. However, T0901317‑induced upregulation of LXRα and SREBP-1c mRNA was not blocked by compound C. Following a high-fat diet for 16 weeks, the body and liver weights of the experimental rats were significantly increased, but this effect was significantly suppressed by diosgenin. Diosgenin and fenofibrate ameliorated lipid deposition in the liver and reduced the increase of hepatic TG content. Diosgenin significantly decreased the alanine aminotransferase (ALT) level, whereas fenofibrate significantly increased the ALT and aspartate aminotransferase levels. Diosgenin also increased AMPK and ACC phosphorylation and suppressed LXRα in the liver. In conclusion, the results of the present study suggested that diosgenin is a potential agent for preventing the development of NAFLD through the AMPK and LXR signaling pathways.

    Topics: Acetyl-CoA Carboxylase; AMP-Activated Protein Kinases; Animals; Diet, High-Fat; Diosgenin; Hep G2 Cells; Humans; Hydrocarbons, Fluorinated; Liver; Liver X Receptors; Non-alcoholic Fatty Liver Disease; Phosphorylation; Rats; Signal Transduction; Sulfonamides; Transcriptional Activation

2018
Oxyresveratrol ameliorates nonalcoholic fatty liver disease by regulating hepatic lipogenesis and fatty acid oxidation through liver kinase B1 and AMP-activated protein kinase.
    Chemico-biological interactions, 2018, Jun-01, Volume: 289

    Oxyresveratrol (OXY) is a naturally occurring polyhydroxylated stilbene that is abundant in mulberry wood (Morus alba L.), which has frequently been supplied as a herbal medicine. It has been shown that OXY has regulatory effects on inflammation and oxidative stress, and may have potential in preventing or curing nonalcoholic fatty liver disease (NAFLD). This study examined the effects of OXY on in vitro model of NAFLD in hepatocyte by the liver X receptor α (LXRα)-mediated induction of lipogenic genes and in vivo model in mice along with its molecular mechanism. OXY inhibited the LXRα agonists-mediated sterol regulatory element binding protein-1c (SREBP-1c) induction and expression of the lipogenic genes and upregulated the mRNA of fatty acid β-oxidation-related genes in hepatocytes, which is more potent than genistein and daidzein. OXY also induced AMP-activated protein kinase (AMPK) activation in a time-dependent manner. Moreover, AMPK activation by the OXY treatment helped inhibit SREBP-1c using compound C as an AMPK antagonist. Oral administration of OXY decreased the Oil Red O stained-positive areas significantly, indicating lipid droplets and hepatic steatosis regions, as well as the serum parameters, such as fasting glucose, total cholesterol, and low density lipoprotein-cholesterol in high fat diet fed-mice, as similar with orally treatment of atorvastatin. Overall, this result suggests that OXY has the potency to inhibit hepatic lipogenesis through the AMPK/SREBP-1c pathway and can be used in the development of pharmaceuticals to prevent a fatty liver.

    Topics: AMP-Activated Protein Kinase Kinases; AMP-Activated Protein Kinases; Animals; Cell Line, Tumor; Enzyme Activation; Fatty Acids; Fatty Liver; Gene Expression Regulation; Humans; Hydrocarbons, Fluorinated; Lipogenesis; Liver; Liver X Receptors; Male; Mice, Inbred C57BL; Non-alcoholic Fatty Liver Disease; Oxidation-Reduction; Plant Extracts; Protein Serine-Threonine Kinases; Sterol Regulatory Element Binding Protein 1; Stilbenes; Sulfonamides

2018
Ursolic Acid, a Novel Liver X Receptor α (LXRα) Antagonist Inhibiting Ligand-Induced Nonalcoholic Fatty Liver and Drug-Induced Lipogenesis.
    Journal of agricultural and food chemistry, 2018, Nov-07, Volume: 66, Issue:44

    Nonalcoholic fatty liver disease (NAFLD) is a very common liver disease, and its incidence has significantly increased worldwide. The liver X receptor α (LXRα) is a multifunctional nuclear receptor that controls lipid homeostasis. Inhibition of LXRα transactivation may be beneficial for NAFLD and hyperlipidemia treatment. Ursolic acid (UA) is a plant triterpenoid with many beneficial effects; however, the mechanism of its action on LXRα remains elusive. We evaluated the effects of UA on T0901317 (T090)-induced LXRα activation and steatosis. UA significantly decreased the LXR response element and sterol regulatory element-binding protein-1c ( SREBP-1c) gene promoter activities, mRNA, protein expression of LXRα target genes, and hepatic cellular lipid content in a T090-induced mouse model. A molecular docking study indicated that UA bound competitively with T090 at the LXRα ligand binding domain. UA stimulated AMP-activated protein kinase (AMPK) phosphorylation in hepatic cells and increased corepressor, small heterodimer partner-interacting leucine zipper protein (SMILE) but decreased coactivator, steroid receptor coactivator-1 (SRC-1) recruitment to the SREBP-1c promoter region. In contrast, UA induced SRC-1 binding but decreased SMILE binding to reverse cholesterol transport-related gene promoters in intestinal cells, increasing lipid excretion from intestinal cells. Additionally, UA reduced valproate-induced LXRα mediated and rifampin-induced pregnane X receptor mediated lipogenesis, offering potential treatments for drug-induced hepatic steatosis. Thus, UA displays liver specificity and can be selectively repressed while RCT stimulation by LXRα is preserved and enhanced. This is a novel therapeutic option to treat NAFLD and may be helpful in developing LXR agonists to prevent atherosclerosis.

    Topics: Animals; Basic-Leucine Zipper Transcription Factors; Humans; Hydrocarbons, Fluorinated; Ligands; Lipogenesis; Liver; Liver X Receptors; Male; Mice; Mice, Inbred C57BL; Molecular Docking Simulation; Non-alcoholic Fatty Liver Disease; Sterol Regulatory Element Binding Protein 1; Sulfonamides; Triterpenes; Ursolic Acid

2018
Hepatic chemerin mRNA expression is reduced in human nonalcoholic steatohepatitis.
    European journal of clinical investigation, 2017, Volume: 47, Issue:1

    Chemerin is associated with insulin resistance and is expressed in the liver. Nonalcoholic fatty liver disease (NAFLD) is related to impaired insulin sensitivity, but studies evaluating hepatic and serum chemerin in NAFLD resulted in discordant data.. Chemerin mRNA was determined in the liver tissue obtained from 33 controls and 76 NAFLD patients. Chemerin serum levels were measured in a different cohort of patients with ultrasound-diagnosed NAFLD and the respective controls. Hepatic stellate cells and hepatocytes were exposed to selected metabolites and nuclear receptor agonists to study the regulation of chemerin. Effect of recombinant chemerin on hepatocyte released proteins was analysed.. Hepatic chemerin expression was not related to BMI, gender, type 2 diabetes and hypertension. Chemerin mRNA did not correlate with steatosis and was negatively associated with inflammation, fibrosis and nonalcoholic steatohepatitis (NASH) score. Patients with NASH had lower chemerin mRNA compared to those with borderline NASH and controls. Factors with a role in NASH mostly did not regulate chemerin in the liver cells. Of note, liver X receptor agonist reduced chemerin protein. Serum chemerin was not changed in NAFLD. Levels positively correlated with age, waist-to-hip ratio, systolic blood pressure, serum FGF21 and lipocalin 2, and negatively with transferrin saturation. Chemerin induced FGF21 in supernatants of primary human hepatocytes. Hepcidin, a major regulator of iron homoeostasis and lipocalin 2, were not regulated by chemerin.. Chemerin mRNA is reduced in the liver of NASH patients, and liver X receptor seems to have a role herein.

    Topics: Adult; Aged; Aged, 80 and over; Body Mass Index; Case-Control Studies; Cell Line; Cells, Cultured; Chemokines; Comorbidity; Cytokines; Diabetes Mellitus, Type 2; Female; Fibroblast Growth Factors; Hep G2 Cells; Hepatic Stellate Cells; Hepatocytes; Hepcidins; Humans; Hydrocarbons, Fluorinated; Hypertension; Hypoglycemic Agents; In Vitro Techniques; Insulin Resistance; Intercellular Signaling Peptides and Proteins; Leptin; Lipocalin-2; Liver; Liver X Receptors; Male; Middle Aged; Non-alcoholic Fatty Liver Disease; Real-Time Polymerase Chain Reaction; Receptors, Cytoplasmic and Nuclear; Recombinant Proteins; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Rosiglitazone; Severity of Illness Index; Sulfonamides; Thiazolidinediones; Waist-Hip Ratio; Young Adult

2017
Thyroid hormone-responsive SPOT 14 homolog promotes hepatic lipogenesis, and its expression is regulated by liver X receptor α through a sterol regulatory element-binding protein 1c-dependent mechanism in mice.
    Hepatology (Baltimore, Md.), 2013, Volume: 58, Issue:2

    The protein, thyroid hormone-responsive SPOT 14 homolog (Thrsp), has been reported to be a lipogenic gene in cultured hepatocytes, implicating an important role of Thrsp in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). Thrsp expression is known to be regulated by a variety of transcription factors, including thyroid hormone receptor, pregnane X receptor, and constitutive androstane receptor. Emerging in vitro evidence also points to a critical role of liver X receptor (LXR) in regulating Thrsp transcription in hepatocytes. In the present study, we showed that Thrsp was up-regulated in livers of db/db mice and high-fat-diet-fed mice, two models of murine NAFLD. Hepatic overexpression of Thrsp increased triglyceride accumulation with enhanced lipogenesis in livers of C57Bl/6 mice, whereas hepatic Thrsp gene silencing attenuated the fatty liver phenotype in db/db mice. LXR activator TO901317 induced Thrsp expression in livers of wild-type (WT) and LXR-β gene-deficient mice, but not in LXR-α or LXR-α/β double-knockout mice. TO901317 treatment significantly enhanced hepatic sterol regulatory element-binding protein 1c (SREBP-1c) expression and activity in WT mice, but failed to induce Thrsp expression in SREBP-1c gene-deficient mice. Sequence analysis revealed four LXR response-element-like elements and one sterol regulatory element (SRE)-binding site within a -2,468 ∼+1-base-pair region of the Thrsp promoter. TO901317 treatment and LXR-α overexpression failed to induce, whereas overexpression of SREBP-1c significantly increased Thrsp promoter activity. Moreover, deletion of the SRE site completely abolished SREBP-1c-induced Thrsp transcription.. Thrsp is a lipogenic gene in the liver that is induced by the LXR agonist through an LXR-α-mediated, SREBP-1c-dependent mechanism. Therefore, Thrsp may represent a potential therapeutic target for the treatment of NAFLD.

    Topics: Animals; Anticholesteremic Agents; Cells, Cultured; Diet, High-Fat; Disease Models, Animal; Fatty Liver; Hydrocarbons, Fluorinated; Lipogenesis; Liver; Liver X Receptors; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Mice, Mutant Strains; Non-alcoholic Fatty Liver Disease; Nuclear Proteins; Orphan Nuclear Receptors; Signal Transduction; Sterol Regulatory Element Binding Protein 1; Sulfonamides; Transcription Factors; Transcription, Genetic

2013
Activation of liver X receptors attenuates endotoxin-induced liver injury in mice with nonalcoholic fatty liver disease.
    Digestive diseases and sciences, 2012, Volume: 57, Issue:2

    Nonalcoholic fatty liver disease (NAFLD) is classically associated with insulin resistance and the inflammatory response, especially in the nonalcoholic steatohepatitis phase. The liver X receptors (LXRs) play a critical role in the regulation of cholesterol metabolism and inflammatory processes.. Wild-type C57BL/6 mice were fed a normal diet (ND) or a high-fat (HF) diet for 8 weeks. Some ND- and HF-fed mice were treated (i.p.) with the LXR agonist T0901317 (30 mg/kg/day) for 7 days. Lipopolysaccharide (LPS, 50 μg/mouse) was then injected intraperitoneally to induce liver injury. The activation of MAPKs, NF-κB and the PI3K pathway was evaluated using Western blot. Bone marrow-derived macrophages (MDMs) were isolated from the femurs of C57BL/6 mice and cultured with or without T0901317 (20 μmol/l). The expression of tumor necrosis factor-alpha (TNF-α) and inducible nitric oxide synthase (iNOS) was evaluated in vitro or in vivo using real-time PCR, immunohistochemistry, or Western blot.. The LXR agonist T0901317 attenuated LPS-induced liver injury in a murine model of NAFLD, reflected by reduced serum alanine aminotransferase and aspartate aminotransferase levels, and reduced liver histology changes. Activation of LXRs reduced TNF-α and iNOS expression through inhibiting JNK and the PI3K signaling pathway. An in vitro study demonstrated that the activation of LXR inhibited the expression of TNF-α and iNOS in the MDMs of mice.. Activation of LXRs attenuates LPS-induced liver injury in murine NAFLD through inhibiting the pro-inflammatory activity of macrophages.

    Topics: Alanine Transaminase; Animals; Aspartate Aminotransferases; Blotting, Western; Fatty Liver; Hydrocarbons, Fluorinated; Immunohistochemistry; Lipogenesis; Lipopolysaccharides; Liver; Liver X Receptors; Male; Mice; Mice, Inbred C57BL; Mitogen-Activated Protein Kinases; NF-kappa B; Nitric Oxide Synthase Type II; Non-alcoholic Fatty Liver Disease; Orphan Nuclear Receptors; Sulfonamides; Tumor Necrosis Factor-alpha

2012