t-1105 has been researched along with Foot-and-Mouth-Disease* in 2 studies
2 other study(ies) available for t-1105 and Foot-and-Mouth-Disease
Article | Year |
---|---|
Administration of the antiviral agent T-1105 fully protects pigs from foot-and-mouth disease infection.
Foot-and-mouth disease (FMD) is a contagious disease affecting cloven-hoofed animals. Its transmissibility and antigenic variety make this disease difficult to control. Antiviral agents are expected to have an immediate effect that is independent of viral antigenicity; thus, they can serve as effective tools for inhibiting the spread of the causative agent, the FMD virus (FMDV), from infected animals. In this study, we investigated the antiviral activity of a pyrazinecarboxamide derivative, T-1105, against FMDV. Cytopathic effect inhibition assays revealed that T-1105 strongly inhibited the replication of 28 reference strains of all seven FMDV serotypes at non-cytotoxic concentrations. The antiviral effect of T-1105 against FMDV was also evaluated by experimental infection of domestic pigs. T-1105 was administered orally to pigs starting 1 h before or 6 h after the inoculation of a porcinophilic FMDV serotype O, topotype CATHAY. None of the pigs administered with T-1105 showed clinical signs of FMD. Moreover, no infectious FMDVs or FMDV-specific genes were detected in their sera, oral and nasal discharges, or tissues collected 48 h after virus inoculation. These findings strongly suggest that administration of T-1105 is effective in controlling the spread of FMDV in pigs. Topics: Animals; Antiviral Agents; Foot-and-Mouth Disease; Foot-and-Mouth Disease Virus; Pyrazines; Swine | 2022 |
A Refined Guinea Pig Model of Foot-and-Mouth Disease Virus Infection for Assessing the Efficacy of Antiviral Compounds.
An antiviral containment strategy for foot-and-mouth disease (FMD) outbreaks could support or replace current contingency plans in case of an outbreak in Europe and could spare many healthy animals from being pre-emptively culled. Recently, substantial progress has been made towards the development of small molecule drugs that inhibit FMD virus (FMDV) replication in vitro. For the initial in vivo evaluation of antiviral lead molecules, a refined FMDV-infection model in guinea pigs (GP) is herewith described. This GP model was validated by demonstrating the antiviral effect of T-1105 (an influenza virus inhibitor with reported activity against FMDV). Sixteen animals were orally administered with T-1105 twice daily (400 mg/kg/day) for five consecutive days and inoculated intraplantarly with 100 GPID50 of the GP-adapted FMDV strain O1 Manisa 1 h after the first administration. The efficacy of T-1105 was compared with that of prophylactic vaccination with a highly potent double-oil emulsion-inactivated O1 Manisa vaccine. Ten animals received a single, full (2 ml) cattle vaccine dose and were inoculated 3 weeks later. Fourteen T-1105-treated and all vaccinated GP were completely protected from generalization of vesicular lesions. At 2 dpi, viral RNA was detected in serum of 9/16 T-1105-treated and of 6/10 vaccinated animals. At 4 dpi, viral RNA was detected in serum, organs and oral swabs of half of the T-1105-treated animals and only in the serum of 1/10 of the vaccinated animals. Mean viral RNA levels in serum and organs of T-1105-treated and vaccinated animals were reduced compared to untreated controls (P < 0.01). T-1105 conferred a substantial clinical and virological protection against infection with O1 Manisa, similar to the protection afforded by vaccination. These results validate the suitability of the enhanced GP model for the purpose of initial evaluation of inhibitors of FMDV replication and illustrate the potential of selective inhibitors of viral replication to control FMD outbreaks. Topics: Animals; Antibodies, Viral; Antiviral Agents; Disease Models, Animal; Europe; Foot-and-Mouth Disease; Foot-and-Mouth Disease Virus; Guinea Pigs; Pyrazines; RNA, Viral; Vaccination; Viral Vaccines | 2016 |