t-1032 and Hypertension--Pulmonary

t-1032 has been researched along with Hypertension--Pulmonary* in 2 studies

Other Studies

2 other study(ies) available for t-1032 and Hypertension--Pulmonary

ArticleYear
Long-term treatment with a phosphodiesterase type 5 inhibitor improves pulmonary hypertension secondary to heart failure through enhancing the natriuretic peptides-cGMP pathway.
    Journal of cardiovascular pharmacology, 2004, Volume: 44, Issue:5

    In advanced heart failure (HF), the compensatory pulmonary vasodilation is attenuated due to the relative insufficiency of cGMP despite increased secretion of natriuretic peptides (NPs). Phosphodiesterase type 5 (PDE5) inhibitors prevent cGMP degradation, and thus may potentiate the effect of the NPs-cGMP pathway. We orally administered a specific PDE5 inhibitor, T-1032 (1 mg/kg; twice a day, n = 7) or placebo (n = 7) for 2 weeks in dogs with HF induced by rapid pacing (270 bpm, 3 weeks) and examined the plasma levels of atrial natriuretic peptide (ANP), cGMP, and hemodynamic parameters. We also examined the hemodynamic changes after injection of a specific NPs receptor antagonist, HS-142-1 (3 mg/kg), under treatment with T-1032. T-1032 significantly increased plasma cGMP levels compared with the vehicle group despite low plasma ANP levels associated with improvement in cardiopulmonary hemodynamics. HS-142-1 significantly decreased plasma cGMP levels in both groups, whereas it did not change all hemodynamic parameters in the vehicle group. In contrast, in the T-1032 group, HS-142-1 significantly increased pulmonary arterial pressure and pulmonary vascular resistance. These results indicated that long-term treatment with a PDE5 inhibitor improved pulmonary hypertension secondary to HF and the NPs-cGMP pathway contributed to this therapeutic effect.

    Topics: 3',5'-Cyclic-GMP Phosphodiesterases; Administration, Oral; Animals; Atrial Natriuretic Factor; Blood Pressure; Cardiac Output; Cardiac Pacing, Artificial; Cyclic GMP; Cyclic Nucleotide Phosphodiesterases, Type 5; Disease Models, Animal; Dogs; Drug Administration Schedule; Drug Evaluation, Preclinical; Heart Failure; Heart Rate; Heart Ventricles; Hypertension, Pulmonary; Injections, Intravenous; Isoquinolines; Japan; Lung; Myocardial Contraction; Natriuretic Peptides; Norepinephrine; Phosphodiesterase Inhibitors; Phosphoric Diester Hydrolases; Polysaccharides; Pyridines; Receptors, Atrial Natriuretic Factor; Time Factors; Vascular Resistance

2004
Acute and chronic effects of T-1032, a novel selective phosphodiesterase type 5 inhibitor, on monocrotaline-induced pulmonary hypertension in rats.
    Biological & pharmaceutical bulletin, 2002, Volume: 25, Issue:11

    We examined the hemodynamic property of T-1032 (methyl 2-(4-aminophenyl)-1,2-dihydro-1-oxo-7-(2-pyridylmethoxy)-4-(3,4,5-trimethoxy-phenyl)-3-isoquinoline carboxylate sulfate), a novel selective phosphodiesterase type 5 (PDE5) inhibitor, and evaluated the chronic effect of T-1032 on cardiac remodeling and its related death in monocrotaline (MCT)-induced pulmonary hypertensive rats. T-1032 (1, 10, 100 micro g/kg, i.v.) significantly reduced mean arterial pressure (MAP) and right ventricular systolic pressure (RVSP) without a change in heart rate. The change in RVSP was more potent than that in MAP with 1 micro g/kg T-1032 treatment (RVSP: -8.2+/-1.2%, mean arterial pressure: -5.7+/-1.2%), and reductions in RVSP and MAP reached a peak at doses of 1 and 10 micro g/kg, respectively. In contrast, nitroglycerin (0.1, 1, 10 micro g/kg, i.v.) and beraprost (0.1, 1 micro g/kg, i.v.) did not cause a selective reduction in RVSP at any dose. When T-1032 (300 ppm in diet) was chronically administered, it delayed the death, and significantly suppressed right ventricular remodeling (T-1032-treated: 0.318+/-0.021 g, control: 0.401+/-0.013 g, p<0.05). Our present results suggest that T-1032 selectively reduces RVSP, and resulting in the suppression of right ventricular remodeling with a delay of the death in MCT-induced pulmonary hypertensive rats.

    Topics: 3',5'-Cyclic-GMP Phosphodiesterases; Animals; Cyclic Nucleotide Phosphodiesterases, Type 5; Dose-Response Relationship, Drug; Drug Administration Schedule; Hypertension, Pulmonary; Isoquinolines; Male; Monocrotaline; Phosphodiesterase Inhibitors; Phosphoric Diester Hydrolases; Pyridines; Rats; Rats, Wistar

2002