t-0070907 has been researched along with Brain-Injuries* in 2 studies
2 other study(ies) available for t-0070907 and Brain-Injuries
Article | Year |
---|---|
Neurorestoration after traumatic brain injury through angiotensin II receptor blockage.
See Moon (doi:10.1093/awv239) for a scientific commentary on this article.Traumatic brain injury frequently leads to long-term cognitive problems and physical disability yet remains without effective therapeutics. Traumatic brain injury results in neuronal injury and death, acute and prolonged inflammation and decreased blood flow. Drugs that block angiotensin II type 1 receptors (AT1R, encoded by AGTR1) (ARBs or sartans) are strongly neuroprotective, neurorestorative and anti-inflammatory. To test whether these drugs may be effective in treating traumatic brain injury, we selected two sartans, candesartan and telmisartan, of proven therapeutic efficacy in animal models of brain inflammation, neurodegenerative disorders and stroke. Using a validated mouse model of controlled cortical impact injury, we determined effective doses for candesartan and telmisartan, their therapeutic window, mechanisms of action and effect on cognition and motor performance. Both candesartan and telmisartan ameliorated controlled cortical impact-induced injury with a therapeutic window up to 6 h at doses that did not affect blood pressure. Both drugs decreased lesion volume, neuronal injury and apoptosis, astrogliosis, microglial activation, pro-inflammatory signalling, and protected cerebral blood flow, when determined 1 to 3 days post-injury. Controlled cortical impact-induced cognitive impairment was ameliorated 30 days after injury only by candesartan. The neurorestorative effects of candesartan and telmisartan were reduced by concomitant administration of the peroxisome proliferator-activated receptor gamma (PPARγ, encoded by PPARG) antagonist T0070907, showing the importance of PPARγ activation for the neurorestorative effect of these sartans. AT1R knockout mice were less vulnerable to controlled cortical impact-induced injury suggesting that the sartan's blockade of the AT1R also contributes to their efficacy. This study strongly suggests that sartans with dual AT1R blocking and PPARγ activating properties have therapeutic potential for traumatic brain injury. Topics: Angiotensin II Type 1 Receptor Blockers; Animals; Apoptosis; Benzamides; Benzimidazoles; Benzoates; Biphenyl Compounds; Brain Injuries; Cerebrovascular Circulation; Gliosis; Inflammation; Mice; Mice, Knockout; Microglia; Neurons; Neuroprotective Agents; PPAR gamma; Pyridines; Receptor, Angiotensin, Type 1; Signal Transduction; Telmisartan; Tetrazoles | 2015 |
Peroxisome proliferator-activated receptor gamma agonist, rosiglitazone, suppresses CD40 expression and attenuates inflammatory responses after lithium pilocarpine-induced status epilepticus in rats.
Inflammatory responses in the brain are involved in the etiopathogenesis and sequelae of seizures. Ligation of microglial CD40 plays a role in the development of inflammatory responses in the central nervous system (CNS). Our study showed that there was an increased CD40 expression on activated microglia in the brain injury after lithium pilocarpine-induced status epilepticus (SE) in rats. Since peroxisome proliferator-activated receptor gamma (PPARgamma) acts as a regulator of CNS inflammation and a powerful pharmacological target for counteracting CNS diseases, we investigated the role of the PPARgamma agonist, rosiglitazone, in the modulation of CD40 expression and in the pathological processes of inflammation after SE. We found that rosiglitazone inhibited the expression of CD40, tumor necrosis factor (TNF-alpha), and microglial activation in different regions of hippocampus. The results were indicated by immunohistochemistry, Western blot, and ELISA, respectively. Rosiglitazone also prevented neuronal loss in the CA1 area after SE observed by Nissl-staining. These protective effects were significantly reversed by the co-treatment with T0070907, a selective antagonist of the PPARgamma, which clearly demonstrated a PPARgamma-dependent mechanism. Our data provide evidence that rosiglitazone considerably attenuates inflammatory responses after SE by suppressing CD40 expression and microglial activation. Our data also support the idea that rosiglitazone might be a potential neuroprotective agent in epilepsy. Topics: Animals; Benzamides; Blotting, Western; Brain Injuries; CD40 Antigens; Central Nervous System Diseases; Enzyme-Linked Immunosorbent Assay; Epilepsy; Hippocampus; Immunohistochemistry; Inflammation; Lithium Compounds; Male; Pilocarpine; PPAR gamma; Pyridines; Rats; Rats, Sprague-Dawley; Rosiglitazone; Seizures; Status Epilepticus; Thiazolidinediones; Tumor Necrosis Factor-alpha; Vasodilator Agents | 2008 |