syringin has been researched along with Reperfusion-Injury* in 3 studies
3 other study(ies) available for syringin and Reperfusion-Injury
Article | Year |
---|---|
Guhong injection mitigates myocardial ischemia/reperfusion injury by activating GST P to inhibit ASK1-JNK/p38 pathway.
Guhong injection (GHI), a novel compound preparation that is composed of a chemical drug, namely aceglutamide, and the aqueous extract of safflower (Carthamus tinctorius L.), exhibits extreme antioxidative, antiapoptotic, anti-inflammatory, and neuroprotective effects. Since oxidative stress, apoptosis, and inflammatory response are all the dominant mechanisms of myocardial ischemia/reperfusion (MI/R) injury, we probe into the protective mechanism of GHI on MI/R injury for the first time.. In this research, we first employed molecular docking to determine whether three active ingredients in GHI, acetylglutamine (NAG), hydroxysafflor yellow A (HSYA), and syringin, possessed the potential activity to modulate the protein, glutathione S-transferase P (GST P). We further identified the protective effect of GHI on myocardial tissue with TTC staining, HE staining, TUNEL staining, and ELISA, and on H9c2 with flow cytometry and ELISA. We next explored whether the cardioprotective effect of GHI on left anterior descending ligation-reperfusion in rats and hypoxia/reoxygenation (H/R) in H9c2 cells was related to activate GST P to inhibit ASK1-JNK/p38 pathway via approaches of qRT-PCR and Western blot.. Results of molecular docking indicated that all three compounds spontaneously docked to GST P, among them the binding affinities of both HSYA and syringin to GST P were higher than NAG. In vivo, GHI reduced myocardial infarction size and mitigated myocardial pathological injury. In vitro, GHI enhanced cell viability and extenuated depolarization of mitochondrial membrane potential. In addition, the results of in vivo and in vitro studies demonstrated that the cardioprotection of GHI was associated with improving the mRNA and protein expression levels of GST P to modulate oxidative stress, and inhibiting the levels of mRNA expression and protein phosphorylation of ASK1, JNK, and p38. However, the suppressed effect of GHI on ASK1-JNK/p38 pathway was reversed by ethacrynic acid (EA, a GST inhibitor), indicating that the regulation of GHI on ASK1-JNK/p38 was related to the activity of GST P. Besides, the in vitro results of qRT-PCR and western-blot also certified that the inhibited JNK and p38 further reduced Bax expression and elevated Bcl-2 expression to reduce the expression of caspase-3 to exert anti-apoptosis effects.. Taken together, the cardioprotection of GHI mainly incarnated in activating GST P to relieve oxidation properties, thereby inhibiting ASK1-JNK/p38 pathway to suppress apoptosis. Topics: Animals; Glutathione Transferase; Molecular Docking Simulation; Myocardial Reperfusion Injury; Rats; Reperfusion Injury; RNA, Messenger | 2023 |
LC-MS/MS combined with blood-brain dual channel microdialysis for simultaneous determination of active components of astragali radix-safflower combination and neurotransmitters in rats with cerebral ischemia reperfusion injury: Application in pharmacokine
Astragali Radix-Safflower combination (ARSC) is widely utilized in clinic to treat cerebral ischemia/reperfusion injury (CI/RI). Whereas, there is no in-depth research of the pharmacokinetics (PK) and pharmacodynamics (PD) analysis of ARSC after intragastric administration in rats with CI/RI.. The purpose of this research is to investigate the PK characteristics of eight active ingredients (astragaloside IV, calycosin, calycosin-7-O-β-glucoside, formononetin, ononin, hydroxysafflor yellow A, syringin and vernine) of ARSC, and the regulation of neurotransmitters disorders, revealing the pharmacodynamic substance basis and the mechanism of ARSC in treating CI/RI from the molecular level.. The validated LC-MS/MS method had specificity and selectivity to simultaneously analyze the concentration of eight active components of ARSC extract and five neurotransmitters of CI/RI rats. The recovery rates of brain MD probe and blood MD probe were stable within six hours. The MD probes recovery rates decreased with the increase of flow rates, but the solution concentration had little effect on the probes recovery rates. It was feasible to correct the recovery rates of probes in vivo by using reverse dialysis method. All eight active ingredients of ARSC could pass across the blood brain barrier after CI/RI. ARSC regulated the release of glutamate (Glu), γ-aminobutyric acid (GABA), dopamine (DA), 5-hydroxytryptamine (5-HT) and aspartic acid (Asp). Notably, astragaloside IV and hydroxysafflor yellow A might have better regulatory effect on neurotransmitters in comparison with other six measured components of ARSC, and Glu was the neurotransmitter mainly regulated in CI/RI rats.. The ARSC was able to treat CI/RI through ameliorating neurotransmitters disorders. There was a hysteresis between the peaked drug concentration and maximum therapeutic effect of ARSC. The drug effective concentrations range of ASIV, calycosin, calycosin-7-O-β-glucoside, syringin and vernine in blood microdialysate and calycosin, syringin, vernine in brain microdialysate were narrow, which need be paid attention in clinical use. Topics: Animals; Aspartic Acid; Astragalus Plant; Blood-Brain Barrier; Carthamus tinctorius; Chalcone; Chromatography, High Pressure Liquid; Chromatography, Liquid; Dopamine; Drugs, Chinese Herbal; gamma-Aminobutyric Acid; Glucosides; Glutamates; Microdialysis; Neurotransmitter Agents; Phenylpropionates; Quinones; Rats; Reperfusion Injury; Saponins; Serotonin; Tandem Mass Spectrometry; Triterpenes | 2022 |
Syringin protects against cerebral ischemia/reperfusion injury via inhibiting neuroinflammation and TLR4 signaling.
Cerebral ischemia/reperfusion injury (CI/R) is associated with high mortality and remains a large challenge in the clinic. Syringin is a bioactive compound with anti-inflammation, antioxidant, as well as neuroprotective effects. Nevertheless, whether syringin could protect against CI/R injury and its potential mechanism was still unclear.. Rats were randomly divided into five groups: sham group, syringin group, CI/R group, CI/R + syringin group, and CI/R + syringin + LPS (TLR4 agonist) group. The CI/R injury rat model was established by the middle cerebral artery occlusion (MCAO). The learning and memory ability of rats was estimated by the Morris water maze test. Modified neurological severity score test (mNSS) and infarct volume were detected to assess the neuroprotective effect of syringin. ELISA and RT-qPCR were used to analyze the concentration of proinflammation cytokines and the expression of TLR4.. CI/R injury induced increased mNSS scores and decreased learning and memory ability of rats. Syringin could significantly protect against CI/R injury as it decreased the cerebral damage and improved the cognitive ability of CI/R rats. Moreover, syringin also reduced neuroinflammation of CI/R injury rats. Additionally, TLR4 was significantly upregulated in CI/R injury rats, which was suppressed by syringin. The activation of TLR4 reversed the neuroprotective effect of syringin in CI/R rats.. Syringin decreased the inflammation reaction and cerebral damage in CI/R injury rats. The neuroprotective effect of syringin may be correlated with the inhibition of TLR4. Topics: Animals; Brain Ischemia; Glucosides; Infarction, Middle Cerebral Artery; Neuroinflammatory Diseases; Neuroprotective Agents; Phenylpropionates; Rats; Rats, Sprague-Dawley; Reperfusion Injury; Toll-Like Receptor 4 | 2022 |