syringin has been researched along with Disease-Models--Animal* in 5 studies
5 other study(ies) available for syringin and Disease-Models--Animal
Article | Year |
---|---|
Main active components of Ilex rotunda Thunb. protect against ulcerative colitis by restoring the intestinal mucosal barrier and modulating the cytokine-cytokine interaction pathways.
Ilex rotunda Thunb. (IR) is widely used for gastrointestinal diseases by Yao physician, and it has a better clinical curative effect on ulcerative colitis (UC). However, the main active components and mechanism of IR in the treatment of UC remain to be clarified.. To investigate the main active components and mechanism of IR in the treatment of UC.. Ten biological active components of IR were quantified by UPLC-MS/MS. In vitro, Caco2 cell monolayers were stimulated by lipopolysaccharide, and were treated with 10 biologically active components individually to investigate the protective role of the components of IR in mucosal barrier damage. In vivo, a mouse model of UC was induced by dextran sulfate sodium and administered with the candidate active components of IR. On day 8, the serum and colon tissue were collected for histological and molecular analysis to investigate the main active components and mechanism of IR.. Ziyuglycoside I, ziyuglycoside II, syringin, and pedunculoside in IR reduced phenol red transmission of the monolayer, and inhibited the protein expression of oncostatin M and oncostatin M receptor in Caco2 cells. Notably, ziyuglycoside II and syringin decreased the transepithelial electrical resistance of the monolayer, and promoted the protein expression of Occludin, Claudin-1 and zonula occludens-1 (ZO-1) in Caco2 cells. In vivo, ziyuglycoside II and syringin improved the symptoms of UC mice, including body weight, disease activity score, shortening of colon length, damaging of acidic mucus layer, histopathological changes, and protein expression of Occludin, Claudin-1, and ZO-1. Pedunculoside reduced the neutrophils and inflammatory response in the UC mice. Moreover, when the combination of ziyuglycoside II, syringin and pedunculoside was used for the treatment of UC, syringin and pedunculoside enhanced the therapeutic effect of ziyuglycoside II. Finally, RNA sequencing and RT-qPCR analysis revealed that ziyuglycoside II + syringin + pedunculoside and IR coregulated up to 42.7% of genes, and mainly reduced the overexpression of C-X-C motif ligand 1(CXCL1), oncostatin M receptor (OSMR), interleukin 1 receptor type I (IL1R1), tumor necrosis factor receptor superfamily member 9 (TNFRSF9), C-X-C motif chemokine 13 (CXCL13), oncostatin M (OSM), and interleukin 6 (IL-6) in the cytokine-cytokine interaction pathways.. The combination of ziyuglycoside II, syringin, and pedunculoside protects against UC by modulating the intestinal mucosal barrier and inhibiting the cytokine-cytokine interaction pathways, and the effect is relatively equivalent to that of the water extract of Ilex rotunda Thunb. Topics: Animals; Caco-2 Cells; Chromatography, Liquid; Claudin-1; Colitis; Colitis, Ulcerative; Colon; Dextran Sulfate; Disease Models, Animal; Humans; Ilex; Mice; Mice, Inbred C57BL; Occludin; Oncostatin M; Receptors, Oncostatin M; Tandem Mass Spectrometry | 2024 |
Syringin alleviates ovalbumin-induced lung inflammation in BALB/c mice asthma model via NF-κB signaling pathway.
Asthma is an allergic chronic inflammatory disease of the pulmonary airways, characterized by the infiltration of white blood cells and release of inflammatory cytokines of complex pathways linked to its pathogenesis. Syringin extracted from various medicinal plants has been used extensively for the treatment of inflammatory diseases. Hence, this study was conducted to further explore the protective effects of the syringin in ovalbumin (OVA) induced-asthma mice model. OVA-sensitized BALB mice were treated intraperitonealy with three doses (25, 50 and 100 mg/kg) of the syringin which was validated by the alteration in the immunoglobulin E (IgE) levels, cytokines levels, histopathological evaluation inflammatory cell count, lung weight, nitrite (NO) levels, oxidative stress biomarkers and gene markers. The treatment of syringin intensely reduced the increased IgE, inflammatory cytokines, WBC count and restored the antioxidant stress markers OVA stimulated animals. In addition, a significant reduction in inflammation and mucus production was evidenced in histopathological analysis which was further validated by suppression NF-κB pathway activation by syringin. These results suggest that syringin may improve asthma symptoms in OVA-induced mice by modulating NF-κB pathway activation. Topics: Animals; Anti-Asthmatic Agents; Asthma; Cytokines; Disease Models, Animal; Female; Glucosides; Inflammation; Lung; Mice; Mice, Inbred BALB C; NF-kappa B; Ovalbumin; Phenylpropionates; Pneumonia; Signal Transduction | 2021 |
Synergistic cardioptotection by tilianin and syringin in diabetic cardiomyopathy involves interaction of TLR4/NF-κB/NLRP3 and PGC1a/SIRT3 pathways.
Diabetic cardiomyopathy (DCM) is a chronic multifactorial complication of type-2 diabetes mellitus, leading to heart failure. A combination of multifaceted therapeutics for the management of DCM is needed. Here, we investigated the combined effect of syringin and tilianin on DCM by evaluating cardiac function, inflammation, oxidative stress, apoptosis and mitochondrial function, and explored the contribution of TLR4/NF-κB/NLRP3 and PGC1α/SIRT3 pathways in diabetic rats and hyperglycemic-H9c2 cells. Syringin and tilianin (50 and 60 mg/kg, i.p, respectively) were administered for eight weeks, individually or in combination, to healthy and type-2 diabetic Sprague-Dawley rats. Myocardial function was recorded using a carotid catheter, mitochondrial and histopathological changes were evaluated by fluorometric and staining methods, cardiac markers and signaling pathways' proteins expression were measured through ELISA and immunoblotting. In comparison to individual treatments, combination of syringin and tilianin effectively exerted antidiabetic effects and improved cardiac function and DCM markers, reduced NLRP3/IL-6/IL-1β/TNF-α expression, and suppressed diabetes/hyperglycemia‑induced oxidative stress in rats' heart and H9c2 cells, as demonstrated by decreased 8-isoprostane, and increased superoxide dismutase-2 levels. Mitochondrial membrane depolarization and ROS production were inhibited, and caspase-3 and Bax/Bcl2 expression downregulated by combination therapy. Combined treatment markedly inhibited up-regulation of TLR4, MyD88 and NF-κB in diabetic rats. Finally, inhibition of PGC1α/SIRT3 pathway by 3-TYP in hyperglycemic H9c2-cells reversed the beneficial effects of combination therapy on cardiomyocytes injury and NF-κB/NLRP3/IL-1β expression, without affecting TLR4/MyD88 expression. Syringin plus tilianin synergistically inhibited the diabetes-induced cardiac functional, biochemical and histopathological changes in DCM. Crosstalk between TLR4/NF-κB/NLRP3 and PGC1α/SIRT3/mitochondrial pathways contributed to this protection. Topics: Animals; Cells, Cultured; Diabetes Mellitus, Experimental; Diabetic Cardiomyopathies; Disease Models, Animal; Drug Synergism; Flavonoids; Glucosides; Glycosides; Inflammasomes; Male; NF-kappa B; NLR Family, Pyrin Domain-Containing 3 Protein; Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha; Phenylpropionates; Rats; Rats, Sprague-Dawley; Signal Transduction; Sirtuins; Toll-Like Receptor 4 | 2021 |
Effects of Acanthopanax senticosus on Brain Injury Induced by Simulated Spatial Radiation in Mouse Model Based on Pharmacokinetics and Comparative Proteomics.
Topics: Animals; Brain Injuries; Computational Biology; Disease Models, Animal; Eleutherococcus; Gene Expression Profiling; Gene Ontology; Gene Regulatory Networks; Glucosides; Lignans; Male; Mice; Neuroprotective Agents; Phenylpropionates; Phytochemicals; Plant Extracts; Polysaccharides; Proteome; Proteomics; Radiation Injuries, Experimental | 2018 |
Hepatoprotective effects of syringin on fulminant hepatic failure induced by D-galactosamine and lipopolysaccharide in mice.
The prognosis for fulminant hepatic failure (FHF) still remains extremely poor with a high mortality and, therefore, better treatments are urgently needed. Syringin, a main active substance isolated from Eleutherococcus senticosus, has been reported to exhibit immunomodulatory and anti-inflammatory properties. In this study, we investigated the effects and underlying mechanisms of syringin on lipopolysaccharide (LPS) and D-galactosamine (D-GalN)-induced FHF in mice. Mice were administered syringin (10, 30 and 100 mg kg(-1), respectively) intraperitoneally (i.p) 30 min before LPS/D-GalN then mortality and liver injury were evaluated subsequently. We found that syringin dose-dependently attenuated LPS/D-GalN-induced FHF, as indicated by reduced mortality, inhibited aminotransferase and malondialdehyde (MDA) content, an increased glutathione (GSH) concentration and alleviated pathological liver injury. In addition, syringin inhibited LPS/D-GalN-induced hepatic caspase-3 activation and hepatocellular apoptosis, myeloperoxidase (MPO) activity and intercellular adhesion molecule-1 (ICAM-1) expression, as well as hepatic tissues tumor necrosis factor-alpha (TNF-α) production and NF-κB activation in a dose-dependent manner. These experimental data indicate that syringin might alleviate the FHF induced by LPS/D-GalN through inhibiting NF-κB activation to reduce TNF-α production. Topics: Animals; Chemical and Drug Induced Liver Injury; Disease Models, Animal; Dose-Response Relationship, Drug; Eleutherococcus; Galactosamine; Glucosides; Lipopolysaccharides; Liver Failure, Acute; Liver Function Tests; Mice; Mice, Inbred BALB C; Phenylpropionates; Protective Agents; Survival Analysis | 2014 |