sun-n8075 has been researched along with Retinal-Degeneration* in 1 studies
1 other study(ies) available for sun-n8075 and Retinal-Degeneration
Article | Year |
---|---|
Involvement of endoplasmic reticulum stress in rotenone-induced leber hereditary optic neuropathy model and the discovery of new therapeutic agents.
Leber hereditary optic neuropathy (LHON) is caused by mitochondrial DNA mutations and is the most common inherited mitochondrial disease. It is responsible for central vision loss in young adulthood. However, the precise mechanisms of onset are unknown. This study aimed to elucidate the mechanisms underlying LHON pathology and to discover new therapeutic agents. First, we assessed whether rotenone, a mitochondrial complex Ⅰ inhibitor, induced retinal degeneration such as that in LHON in a mouse model. Rotenone decreased the thickness of the inner retina and increased the expression levels of 8-hydroxy-2'-deoxyguanosine (8-OHdG) and immunoglobulin heavy-chain binding protein (BiP). Second, we assessed whether rotenone reproduces LHON pathologies on RGC-5, a neural progenitor cell derived from the retina. Rotenone increased the cell death rate, ROS production and the expression levels of ER stress markers. During chemical compounds screening, we used anti-oxidative compounds, ER stress inhibitors and anti-inflammatory compounds in a rotenone-induced in vitro model. We found that SUN N8075, an ER stress inhibitor, reduced mitochondrial ROS production and improved the mitochondrial membrane potential. Consequently, the ER stress response is strongly related to the pathologies of LHON, and ER stress inhibitors may have a protective effect against LHON. Topics: Aniline Compounds; Animals; Cells, Cultured; Disease Models, Animal; DNA, Mitochondrial; Drug Discovery; Drug Evaluation, Preclinical; Endoplasmic Reticulum Stress; Male; Membrane Potential, Mitochondrial; Mice, Inbred C57BL; Molecular Targeted Therapy; Mutation; Optic Atrophy, Hereditary, Leber; Piperazines; Reactive Oxygen Species; Retina; Retinal Degeneration; Rotenone | 2021 |