sulprostone has been researched along with Leukemia--Erythroblastic--Acute* in 2 studies
2 other study(ies) available for sulprostone and Leukemia--Erythroblastic--Acute
Article | Year |
---|---|
Increased cyclooxygenase-2 and thromboxane synthase expression is implicated in diosgenin-induced megakaryocytic differentiation in human erythroleukemia cells.
Differentiation induction as a therapeutic strategy has, so far, the greatest impact in hematopoietic malignancies, most notably leukemia. Diosgenin is a very interesting natural product because, depending on the specific dose used, its biological effect is very different in HEL (human erythroleukemia) cells. For example, at 10 microM, diosgenin induced megakaryocytic differentiation, in contrast to 40 microM diosgenin, which induced apoptosis in HEL cells previously demonstrated using sedimentation field-flow fractionation (SdFFF). The goal of this work focused on the correlation between cyclooxygenase-2 (COX-2) and thromboxane synthase (TxS) and megakaryocytic differentiation induced by diosgenin in HEL cells. Furthermore, the technique of SdFFF, having been validated in our models, was used in this new study as an analytical tool that provided us with more or less enriched differentiated cell fractions that could then be used for further analyses of enzyme protein expression and activity for the first time. In our study, we showed the implication of COX-2 and TxS in diosgenin-induced megakaryocytic differentiation in HEL cells. Furthermore, we showed that the analytical technique of SdFFF may be used as a tool to confirm our results as a function of the degree of cell differentiation. Topics: 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid; Animals; Cattle; Cell Differentiation; Cell Line, Tumor; Cyclooxygenase 2; Cyclooxygenase 2 Inhibitors; Dinoprostone; Diosgenin; Fractionation, Field Flow; Gene Expression Regulation, Neoplastic; Humans; Leukemia, Erythroblastic, Acute; Megakaryocytes; Microsomes; Platelet Membrane Glycoprotein IIb; Ploidies; Thromboxane-A Synthase | 2008 |
Differential activation of Gi and Gs proteins by E- and I-type prostaglandins in membranes from the human erythroleukaemia cell line, HEL.
The group of prostaglandin (PG) E2- and prostacyclin receptors consists of different subtypes, which exhibit different affinities for prostaglandins and synthetic analogues. PGE2 activities the E-type PG receptor subtypes EP1, EP2 and EP3, whereas the PGE2 analogue, sulprostone, binds only to the EP1 and EP3 receptor subtypes. The stable PGI2 analogues, iloprost and cicaprost, both activate the PGI2 receptor (IP) and iloprost, additionally, bind to the EP1 subtype. Using these subtype-selective PG receptor agonists, we studied the interaction of PG receptor subtypes with Gs and Gi-type heterotrimeric guanine nucleotide-binding proteins (G proteins) in membranes from the human erythroleukaemia cell line, HEL. Sulprostone stimulated high-affinity GTPase in HEL membranes in a pertussis toxin (PTX)-sensitive manner. In contrast, the stimulations induced by PGE2, iloprost and cicaprost were only partially inhibited by PTX. PGE2, sulprostone, iloprost and cicaprost stimulated cholera toxin-catalysed ADP-ribosylation as well as labelling with GTP azidoanilide of membrane proteins comigrating with immunologically identified Gi protein alpha subunits. Furthermore, PGE2, iloprost and cicaprost enhanced GTP azidoanilide-labelling of Gs protein alpha subunits, whereas sulprostone did not. We suggest that in HEL cells (1) EP1 and EP3 receptor subtypes activate G1 proteins, that (2) the EP2 receptor subtype activates Gs proteins and that (3) the IP receptor activates both Gi and Gs proteins. Topics: Cell Membrane; Dinoprostone; Epoprostenol; GTP-Binding Proteins; Humans; Iloprost; Leukemia, Erythroblastic, Acute; Prostaglandins E; Receptors, Epoprostenol; Receptors, Prostaglandin; Receptors, Prostaglandin E; Signal Transduction; Tumor Cells, Cultured | 1995 |