sulindac-sulfide and Leukemia

sulindac-sulfide has been researched along with Leukemia* in 1 studies

Other Studies

1 other study(ies) available for sulindac-sulfide and Leukemia

ArticleYear
Assessment of the involvement of oxidative stress and Mitogen-Activated Protein Kinase signaling pathways in the cytotoxic effects of arsenic trioxide and its combination with sulindac or its metabolites: sulindac sulfide and sulindac sulfone on human leu
    Medical oncology (Northwood, London, England), 2012, Volume: 29, Issue:2

    The purpose of the study was to characterize the involvement of reactive oxygen species (ROS) in mediating the cytotoxic effects of arsenic trioxide (ATO) in combination with sulindac or its metabolites: sulfide (SS) and sulfone (SF) on human leukemic cell lines. Jurkat, HL-60, K562, and HPB-ALL cells were exposed to the drugs alone or in combinations. Cell viability was measured using WST-1 or XTT reduction tests and ROS production by dichlorodihydrofluorescein diacetate staining (flow cytometry). Modulation of (a) intracellular glutathione (GSH) level was done by using L: -buthionine sulfoximine (BSO) or diethylmaleate (DEM), (b) NADPH oxidase by using diphenyleneiodonium (DPI), and (c) MAP kinases by using SB202190 (p38), SP600125 (JNK), and U0126 (ERK) inhibitors. ATO cytotoxicity (0.5 or 1 μM) was enhanced by sulindacs, with higher activity showed by the metabolites. Strong cytotoxic effects appeared at SS and SF concentrations starting from 50 μM. The induction of ROS production seemed not to be the major mechanism responsible for the cytotoxicity of the combinations. A strong potentiating effect of BSO on ATO cytotoxicity was demonstrated; DEM (10-300 μM) and DPI (0.0025-0.1 μM; 72 h) did not influence the effects of ATO. Some significant decreases in the viability of the cells exposed to ATO in the presence of MAPK inhibitors comparing with the cells exposed to ATO alone were observed; however, the effects likely resulted from a simple additive cytotoxicity of the drugs. The combinations of ATO with sulindacs offer potential therapeutic usefulness.

    Topics: Antineoplastic Combined Chemotherapy Protocols; Arsenic Trioxide; Arsenicals; Cell Line, Tumor; Cell Proliferation; Cell Survival; Drug Synergism; Glutathione; Humans; Leukemia; Mitogen-Activated Protein Kinases; Oxidative Stress; Oxides; Reactive Oxygen Species; Signal Transduction; Sulindac

2012