sulindac-sulfide and Breast-Neoplasms

sulindac-sulfide has been researched along with Breast-Neoplasms* in 4 studies

Other Studies

4 other study(ies) available for sulindac-sulfide and Breast-Neoplasms

ArticleYear
Inhibition of PDE5 by sulindac sulfide selectively induces apoptosis and attenuates oncogenic Wnt/β-catenin-mediated transcription in human breast tumor cells.
    Cancer prevention research (Philadelphia, Pa.), 2011, Volume: 4, Issue:8

    Nonsteroidal anti-inflammatory drugs (NSAID) such as sulindac sulfide (SS) display promising antineoplastic properties, but toxicities resulting from COX inhibition limit their clinical use. Although COX inhibition is responsible for the anti-inflammatory activity of SS, recent studies suggest that phosphodiesterase (PDE) 5 inhibition and activation of cyclic guanosine monophosphate (cGMP) signaling are closely associated with its ability to induce apoptosis of tumor cells. However, the underlying mechanisms responsible for apoptosis induction, factors that influence sensitivity of tumor cells to SS, and the importance of PDE5 for breast tumor cell growth have not been established. Here we show that SS can induce apoptosis of breast tumor cells, which predominantly rely on PDE5 for cGMP hydrolysis but not normal mammary epithelial cells, which rely on PDE isozymes other than PDE5 for cGMP hydrolysis. Inhibition of PDE5 and activation of protein kinase G (PKG) by SS was associated with increased β-catenin phosphorylation, decreased β-catenin mRNA and protein levels, reduced β-catenin nuclear localization, decreased T-cell factor/lymphoid enhancer factor (Tcf/Lef) promoter activity, and decreased expression of Wnt/β-catenin-regulated proteins. Suppression of PDE5 with siRNA or known PDE5 inhibitors was sufficient to selectively induce apoptosis and attenuate β-catenin-mediated transcription in breast tumor cells with minimal effects on normal mammary epithelial cells. These findings provide evidence that SS induces apoptosis of breast tumor cells through a mechanism involving inhibition of PDE5 and attenuation of oncogenic Wnt/β-catenin-mediated transcription. We conclude that PDE5 represents a novel molecular target for the discovery of safer and more efficacious drugs for breast cancer chemoprevention.

    Topics: Apoptosis; beta Catenin; Breast Neoplasms; Cell Line, Tumor; Cyclic GMP; Cyclic Nucleotide Phosphodiesterases, Type 5; Female; Humans; Isoenzymes; Oncogenes; Phosphodiesterase 5 Inhibitors; Signal Transduction; Sulindac; Transcription, Genetic; Wnt Proteins

2011
Sulindac sulfide selectively inhibits growth and induces apoptosis of human breast tumor cells by phosphodiesterase 5 inhibition, elevation of cyclic GMP, and activation of protein kinase G.
    Molecular cancer therapeutics, 2009, Volume: 8, Issue:12

    Sulindac displays promising antineoplastic activity, but toxicities from cyclooxygenase inhibition limit its use for chemoprevention. Previous reports suggest that its anticancer properties may be attributed to a cyclooxygenase-independent mechanism, although alternative targets have not been well defined. Here, we show that sulindac sulfide (SS) induces apoptosis and inhibits the growth of human breast tumor cells with IC50 values of 60 to 85 micromol/L. Within the same concentration range, SS inhibited cyclic GMP (cGMP) hydrolysis in tumor cell lysates but did not affect cyclic AMP hydrolysis. SS did not induce apoptosis of normal human mammary epithelial cells (HMEC) nor did it inhibit phosphodiesterase (PDE) activity in HMEC lysates. SS increased intracellular cGMP levels and activated protein kinase G in breast tumor cells but not HMEC. The guanylyl cyclase (GC) activator, NOR-3, and cGMP PDE inhibitors, trequinsin and MY5445, displayed similar growth-inhibitory activity as SS, but the adenylyl cyclase activator, forskolin, and other PDE inhibitors had no effect. Moreover, GC activation increased the sensitivity of tumor cells to SS, whereas GC inhibition reduced sensitivity. By comparing PDE isozyme profiles in breast tumor cells with HMEC and determining the sensitivity of recombinant PDE isozymes to SS, PDE5 was found to be overexpressed in breast tumor cells and selectively inhibited by SS. The mechanism of SS binding to the catalytic domain of PDE5 was revealed by molecular modeling. These data suggest that PDE5 inhibition is responsible for the breast tumor cell growth-inhibitory and apoptosis-inducing activity of SS and may contribute to the chemopreventive properties of sulindac.

    Topics: Antineoplastic Agents; Apoptosis; Blotting, Western; Breast Neoplasms; Cell Line; Cell Line, Tumor; Cell Proliferation; Cyclic GMP; Cyclic GMP-Dependent Protein Kinases; Cyclic Nucleotide Phosphodiesterases, Type 5; Dose-Response Relationship, Drug; Enzyme Activation; Humans; Inhibitory Concentration 50; Isoenzymes; Models, Biological; Models, Molecular; Phosphodiesterase 5 Inhibitors; Protein Binding; Sulindac

2009
Sulindac sulfide and exisulind inhibit expression of the estrogen and progesterone receptors in human breast cancer cells.
    Clinical cancer research : an official journal of the American Association for Cancer Research, 2006, Jun-01, Volume: 12, Issue:11 Pt 1

    In previous studies, we found that sulindac sulfide and exisulind (sulindac sulfone, Aptosyn) cause growth inhibition, arrest cells in the G1 phase of the cell cycle, and induce apoptosis in human breast cancer cell lines. These effects were associated with decreased expression of cyclin D1. The present study focuses on the effects of sulindac sulfide and exisulind on hormone signaling components in breast cancer cells. We found that estrogen receptor (ER)-positive and progesterone receptor (PR)-positive T47D breast cancer cells were somewhat more sensitive to growth inhibition by sulindac sulfide or exisulind than ER-negative PR-negative MB-MDA-468 breast cancer cells. Further studies indicated that sulindac sulfide and exisulind caused marked down-regulation of expression of the ER and PR-A and PR-B in T47D cells. However, neither compound caused a major change in expression of the retinoic acid receptor alpha (RARalpha), RARbeta, or RARalpha in T47D cells. Sulindac sulfide and exisulind also caused a decrease in expression of the ER in estrogen-responsive MCF-7 breast cancer cells. Both compounds also markedly inhibited estrogen-stimulated activation of an estrogen-responsive promoter in transient transfection reporter assays. Treatment of T47D cells with specific protein kinase G (PKG) activators did not cause a decrease in ER or PR expression. Therefore, although sulindac sulfide and exisulind can cause activation of PKG, the inhibitory effects of these two compounds on ER and PR expression does not seem to be mediated by PKG. Our findings suggest that the growth inhibition by sulindac sulfide and exisulind in ER-positive and PR-positive human breast cancer cells may be mediated, in part, by inhibition of ER and PR signaling. Thus, these and related compounds may provide a novel approach to the prevention and treatment of human breast cancers, especially those that are ER positive.

    Topics: Breast Neoplasms; Cell Line, Tumor; Cell Proliferation; Down-Regulation; Drug Screening Assays, Antitumor; Female; Gene Expression Regulation, Neoplastic; Genes, Reporter; Humans; Promoter Regions, Genetic; Receptors, Estrogen; Receptors, Progesterone; Retinoid X Receptors; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Structure-Activity Relationship; Sulindac; Transcription, Genetic; Transfection

2006
Effects of sulindac and its metabolites on growth and apoptosis in human mammary epithelial and breast carcinoma cell lines.
    Breast cancer research and treatment, 1998, Volume: 48, Issue:3

    Nonsteriodal anti-inflammatory drugs (NSAIDs) are among the most commonly used medications in the United States and elsewhere, mainly for the treatment of arthritis. The NSAID sulindac causes regression and prevents the recurrence of premalignant colonic polyps in patients with familial adenomatous polyposis and inhibits colon carcinogenesis in rodents. Sulindac and sulindac sulfone, a metabolite of sulindac that lacks cyclooxygenase (cox) inhibitory activity, also inhibit mammary carcinogenesis in rats. To obtain insights into the relevance of these findings to human breast cancer, we examined the mechanism of action of sulindac and its sulfide and sulfone metabolites on the normal human mammary epithelial cell line MCF-10F and the human breast cancer cell line MCF-7. Of the three compounds, the sulfide was the most potent inhibitor of cell growth, although the sulfone and sulfoxide were also active at higher concentrations. Treatment of MCF-10F and MCF-7 cells with 100 microM sulindac sulfide resulted in accumulation of cells in the G1 phase of the cell cycle and induction of apoptosis. Apoptosis occurred within 24 h as determined by the TUNEL assay and DNA laddering was observed at 72 h. The accumulation of cells in G1 was associated with decreased levels of expression of cyclin D1 but no effect was seen on the expression of CDK4 or the immediate early response gene c-jun. Treatment with sulindac sulfide caused a striking induction of the CDK inhibitor p21WAF1 in MCF-10F cells. The MCF-7 cell line expressed a high basal level of p21WAF1 which did not change significantly after drug treatment. The pro-apoptotic gene BAX was not induced in either MCF-10F or MCF-7 cells by sulindac sulfide. Stable overexpression of cyclin D1, which frequently occurs in breast cancers, did not protect mammary epithelial cells from inhibition by the sulfide. These studies suggest that this class of compounds warrants further study with respect to breast cancer prevention and treatment.

    Topics: Anti-Inflammatory Agents, Non-Steroidal; Antineoplastic Agents; Apoptosis; Breast; Breast Neoplasms; Cell Division; Cell Line; Cyclin D1; Cyclin-Dependent Kinase Inhibitor p21; Cyclins; Epithelial Cells; Female; Humans; Sulindac

1998