sulindac-sulfide and Brain-Neoplasms

sulindac-sulfide has been researched along with Brain-Neoplasms* in 3 studies

Other Studies

3 other study(ies) available for sulindac-sulfide and Brain-Neoplasms

ArticleYear
Wnt-beta-catenin pathway signals metastasis-associated tumor cell phenotypes in triple negative breast cancers.
    Oncotarget, 2016, Jul-12, Volume: 7, Issue:28

    Tumor cells acquire metastasis-associated (MA) phenotypes following genetic alterations in them which cause deregulation of different signaling pathways. Earlier, we reported that an upregulation of the Wnt-beta-catenin pathway (WP) is one of the genetic salient features of triple-negative breast cancer (TNBC), and WP signaling is associated with metastasis in TNBC. Using cBioPortal, here we found that collective % of alteration(s) in WP genes, CTNNB1, APC and DVL1 among breast-invasive-carcinomas was 21% as compared to 56% in PAM50 Basal. To understand the functional relevance of WP in the biology of heterogeneous/metastasizing TNBC cells, we undertook this comprehensive study using 15 cell lines in which we examined the role of WP in the context of integrin-dependent MA-phenotypes. Directional movement of tumor cells was observed by confocal immunofluorescence microscopy and quantitative confocal-video-microscopy while matrigel-invasion was studied by MMP7-specific casein-zymography. WntC59, XAV939, sulindac sulfide and beta-catenin siRNA (1) inhibited fibronectin-directed migration, (2) decreased podia-parameters and motility-descriptors, (3) altered filamentous-actin, (4) decreased matrigel-invasion and (5) inhibited cell proliferation as well as 3D clonogenic growth. Sulindac sulfide and beta-catenin siRNA decreased beta-catenin/active-beta-catenin and MMP7. LWnt3ACM-stimulated proliferation, clonogenicity, fibronectin-directed migration and matrigel-invasion were perturbed by WP-modulators, sulindac sulfide and GDC-0941. We studied a direct involvement of WP in metastasis by stimulating brain-metastasis-specific MDA-MB231BR cells to demonstrate that LWnt3ACM-stimulated proliferation, clonogenicity and migration were blocked following sulindac sulfide, GDC-0941 and beta-catenin knockdown. We present the first evidence showing a direct functional relationship between WP activation and integrin-dependent MA-phenotypes. By proving the functional relationship between WP activation and MA-phenotypes, our data mechanistically explains (1) why different components of WP are upregulated in TNBC, (2) how WP activation is associated with metastasis and (3) how integrin-dependent MA-phenotypes can be regulated by mitigating the WP.

    Topics: Adenomatous Polyposis Coli Protein; beta Catenin; Brain Neoplasms; Carcinoma; Cell Line, Tumor; Cell Movement; Cell Proliferation; Dishevelled Proteins; Female; Fibronectins; Gene Expression Regulation, Neoplastic; Heterocyclic Compounds, 3-Ring; Humans; Indazoles; Integrins; Matrix Metalloproteinase 7; Microscopy, Confocal; Microscopy, Fluorescence; Microscopy, Video; Mutation; Phenotype; RNA Interference; RNA, Small Interfering; Sulfonamides; Sulindac; Triple Negative Breast Neoplasms; Up-Regulation; Wnt Proteins; Wnt Signaling Pathway

2016
DNA methylation-mediated silencing of nonsteroidal anti-inflammatory drug-activated gene (NAG-1/GDF15) in glioma cell lines.
    International journal of cancer, 2012, Jan-15, Volume: 130, Issue:2

    Nonsteroidal anti-inflammatory drug-activated gene, NAG-1, a transforming growth factor-β member, is involved in tumor progression and development. The association between NAG-1 expression and development and progression of glioma has not been well defined. Glioblastoma cell lines have lower basal expression of NAG-1 than other gliomas and normal astrocytes. Most primary human gliomas have very low levels of NAG-1 expression. NAG-1 basal expression appeared to inversely correlate with tumor grade in glioma. Aberrant promoter hypermethylation is a common mechanism for silencing of tumor suppressor genes in cancer cells. In glioblastoma cell lines, NAG-1 expression was increased by the demethylating agent, 5-aza-2'-deoxycytidine. To investigate whether the NAG-1 gene was silenced by hypermethylation in glioblastoma, we examined DNA methylation status using genomic bisulfite sequencing. The NAG-1 promoter was densely methylated in several glioblastoma cell lines as well as in primary oligodendroglioma tumor samples, which have low basal expression of NAG-1. DNA methylation at two specific sites (-53 and +55 CpG sites) in the NAG-1 promoter was strongly associated with low NAG-1 expression. The methylation of the NAG-1 promoter at the -53 site blocks Egr-1 binding and thereby suppresses Nag-1 induction. Treatment of cells with low basal NAG-1 expression with NAG-1 inducer also did not increase NAG-1. Incubation with a demethylation chemical increased Nag-1 basal expression and subsequent incubation with a NAG-1 inducer increased NAG-1 expression. We concluded from these data that methylation of specific promoter sequences causes transcriptional silencing of the NAG-1 locus in glioma and may ultimately contribute to tumor progression.

    Topics: Anti-Inflammatory Agents, Non-Steroidal; Apoptosis; Azacitidine; Brain Neoplasms; Cell Growth Processes; Cell Line, Tumor; Decitabine; DNA Methylation; Early Growth Response Protein 1; Gene Expression Regulation, Neoplastic; Gene Silencing; Glioblastoma; Growth Differentiation Factor 15; Humans; Hydroxamic Acids; Promoter Regions, Genetic; Sulindac; Transfection

2012
The cyclooxygenase inhibitor sulindac sulfide inhibits EP4 expression and suppresses the growth of glioblastoma cells.
    Cancer prevention research (Philadelphia, Pa.), 2009, Volume: 2, Issue:12

    EP4 expression in human glioblastoma cells correlates with growth on soft agar. The cyclooxygenase inhibitor sulindac sulfide first altered specificity protein-1 (Sp-1) and early growth response gene-1 expression, then increased the expression of nonsteroidal anti-inflammatory drug-activated gene 1 and activating transcription factor 3, and then decreased EP4 expression. EP4 suppression was dependent on blocking the Sp-1 binding sites in the human EP4 promoter. Mutation in the Sp-1 sites in EP4 altered the promoter activity and abolished sulindac sulfide effects. The inhibitory effect of sulindac sulfide on EP4 expression was reversed by PD98059, a mitogen-activated protein/extracellular signal-regulated kinase kinase-1/extracellular signal-regulated kinase inhibitor. Sp-1 phosphorylation was dependent on sulindac sulfide-induced Erk activation. Chromatin immunoprecipitation assay confirmed that Sp-1 phosphorylation decreases Sp-1 binding to DNA and leads to the suppression of EP4. Inhibition of cell growth on soft agar assay was found to be a highly complex process and seems to require not only the inhibition of cyclooxygenase activity but also increased expression of nonsteroidal anti-inflammatory drug-activated gene 1 and activating transcription factor 3 and suppression of EP4 expression. Our data suggest that the suppression of EP4 expression by sulindac sulfide represents a new mechanism for understanding the tumor suppressor activity.

    Topics: Activating Transcription Factor 3; Anti-Inflammatory Agents, Non-Steroidal; Blotting, Western; Brain Neoplasms; Calcium-Calmodulin-Dependent Protein Kinases; Chromatin Immunoprecipitation; Colony-Forming Units Assay; Cyclooxygenase Inhibitors; Early Growth Response Protein 1; Flavonoids; Glioblastoma; Humans; Immunoprecipitation; Luciferases; Mitogen-Activated Protein Kinase 3; Mitogen-Activated Protein Kinases; Neoplasm Proteins; Phosphorylation; Promoter Regions, Genetic; Receptors, Prostaglandin E; Receptors, Prostaglandin E, EP4 Subtype; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; RNA, Small Interfering; Sp1 Transcription Factor; Sulindac; Tumor Cells, Cultured

2009