sulindac has been researched along with Multiple-Myeloma* in 1 studies
1 other study(ies) available for sulindac and Multiple-Myeloma
Article | Year |
---|---|
Sulindac-derived reactive oxygen species induce apoptosis of human multiple myeloma cells via p38 mitogen activated protein kinase-induced mitochondrial dysfunction.
Non-steroidal anti-inflammatory drugs are well known to induce apoptosis of cancer cells independent of their ability to inhibit cyclooxygenase-2, but the molecular mechanism for this effect has not yet been fully elucidated. The purpose of this study was to elucidate the potential signaling components underlying sulindac-induced apoptosis in human multiple myeloma (MM) cells. We found that sulindac induces apoptosis by promoting ROS generation, accompanied by opening of mitochondrial permeability transition pores, release of cytochrome c and apoptosis inducing factor from mitochondria, followed by caspase activation. Bcl-2 cleavage and down-regulation of the inhibitor of apoptosis proteins (IAPs) family including cIAP-1/2, XIAP, and survivin, occurred downstream of ROS production during sulindac-induced apoptosis. Forced expression of survivin and Bcl-2 blocked sulindac-induced apoptosis. Most importantly, sulindac-derived ROS activated p38 mitogen-activated protein kinase and p53. SB203580, a p38 mitogen-activated protein kinase inhibitor, and RNA inhibition of p53 inhibited the sulindac-induced apoptosis. Furthermore, p53, Bax, and Bak accumulated in mitochondria during sulindac-induced apoptosis. All of these events were significantly suppressed by SB203580. Our results demonstrate a novel mechanism of sulindac-induced apoptosis in human MM cells, namely, accumulation of p53, Bax, and Bak in mitochondria mediated by p38 MAPK activation downstream of ROS production. Topics: Antineoplastic Agents; Apoptosis; bcl-2 Homologous Antagonist-Killer Protein; bcl-2-Associated X Protein; Caspases; Cell Line, Tumor; Enzyme Activation; Humans; Inhibitor of Apoptosis Proteins; Microtubule-Associated Proteins; Mitochondria; Multiple Myeloma; Neoplasm Proteins; p38 Mitogen-Activated Protein Kinases; Proto-Oncogene Proteins c-bcl-2; Reactive Oxygen Species; Sulindac; Survivin; Tumor Suppressor Protein p53 | 2007 |