sulindac has been researched along with Head-and-Neck-Neoplasms* in 7 studies
2 trial(s) available for sulindac and Head-and-Neck-Neoplasms
Article | Year |
---|---|
Erlotinib, erlotinib-sulindac versus placebo: a randomized, double-blind, placebo-controlled window trial in operable head and neck cancer.
The EGF receptor (EGFR) and COX2 pathways are upregulated in head and neck squamous cell carcinoma (HNSCC). Preclinical models indicate synergistic antitumor activity from dual blockade. We conducted a randomized, double-blind, placebo-controlled window trial of erlotinib, an EGFR inhibitor; erlotinib plus sulindac, a nonselective COX inhibitor; versus placebo.. Patients with untreated, operable stage II-IVb HNSCC were randomized 5:5:3 to erlotinib, erlotinib-sulindac, or placebo. Tumor specimens were collected before and after seven to 14 days of treatment. The primary endpoint was change in Ki67 proliferation index. We hypothesized an ordering effect in Ki67 reduction: erlotinib-sulindac > erlotinib > placebo. We evaluated tissue microarrays by immunohistochemistry for pharmacodynamic modulation of EGFR and COX2 signaling intermediates.. From 2005-2009, 47 patients were randomized for the target 39 evaluable patients. Thirty-four tumor pairs were of sufficient quality to assess biomarker modulation. Ki67 was significantly decreased by erlotinib or erlotinib-sulindac (omnibus comparison, two-sided Kruskal-Wallis, P = 0.04). Wilcoxon pairwise contrasts confirmed greater Ki67 effect in both erlotinib groups (erlotinib-sulindac vs. placebo, P = 0.043; erlotinib vs. placebo, P = 0.027). There was a significant trend in ordering of Ki67 reduction: erlotinib-sulindac > erlotinib > placebo (two-sided exact Jonckheere-Terpstra, P = 0.0185). Low baseline pSrc correlated with greater Ki67 reduction (R(2) = 0.312, P = 0.024).. Brief treatment with erlotinib significantly decreased proliferation in HNSCC, with additive effect from sulindac. Efficacy studies of dual EGFR-COX inhibition are justified. pSrc is a potential resistance biomarker for anti-EGFR therapy, and warrants investigation as a molecular target. Topics: Adult; Aged; Aged, 80 and over; Antineoplastic Combined Chemotherapy Protocols; Biomarkers, Tumor; Carcinoma, Squamous Cell; Cohort Studies; Double-Blind Method; ErbB Receptors; Erlotinib Hydrochloride; Female; Follow-Up Studies; Head and Neck Neoplasms; Humans; Immunoenzyme Techniques; Male; Middle Aged; Neoplasm Staging; Prognosis; Quinazolines; Sulindac; Tissue Array Analysis | 2014 |
Serum biomarker modulation following molecular targeting of epidermal growth factor and cyclooxygenase pathways: a pilot randomized trial in head and neck cancer.
Targeting the epidermal growth factor receptor (EGFR) using the tyrosine kinase inhibitor (TKI) erlotinib has demonstrated activity in aerodigestive tract malignancies. Co-targeting of the G-protein-coupled receptor cyclooxygenase (COX) with EGFR inhibitors has shown promise in preclinical models and early phase clinical studies.. We studied the modulation of serum proteins after neoadjuvant treatment with erlotinib with or without sulindac in head and neck cancer patients. In a prospective, randomized, double-blind clinical trial, paired serum samples were obtained before and after neoadjuvant treatment in three groups of patients (n = 23 total), who were randomized to receive 7-14 consecutive days of erlotinib alone, erlotinib plus sulindac, or placebo. Two separate multiplexed ELISA systems (SearchLight™ or Luminex™) were used to measure serum biomarkers. HGF and IL-6 levels were tested on both systems, and validated using single analyte ELISAs.. Several analytes were significantly altered (generally decreased) post-treatment, in patients who received erlotinib (with or without sulindac) as well as in the placebo groups. No single analyte was differentially altered across the three treatment groups using either multiplex platform. Single HGF ELISA suggested a nonspecific decrease in all patients.. These results demonstrate the importance of a placebo group when assessing changes in expression of serum biomarkers. While multiplex platforms can provide quantitative information on a large number of serum analytes, results should be cautiously compared across platforms due to their intrinsic features. Furthermore, the dynamic range of expression of a single analyte is constrained in multiplex versus standard ELISA. Topics: Adult; Aged; Antineoplastic Agents; Biomarkers, Tumor; Carcinoma, Squamous Cell; Double-Blind Method; Enzyme-Linked Immunosorbent Assay; ErbB Receptors; Erlotinib Hydrochloride; Female; Head and Neck Neoplasms; Hepatocyte Growth Factor; Humans; Interleukin-6; Male; Middle Aged; Neoadjuvant Therapy; Pilot Projects; Placebos; Prospective Studies; Protein Kinase Inhibitors; Quinazolines; Sulindac; Transforming Growth Factor alpha | 2012 |
5 other study(ies) available for sulindac and Head-and-Neck-Neoplasms
Article | Year |
---|---|
Sulindac sulfone induces a decrease of beta-catenin in HNSCC.
The most common neoplasm arising in the upper gastrointestinal tract is head and neck squamous cell carcinoma (HNSCC). This is an aggressive epithelial malignancy. Many growth factors and cytokines have been discovered that are responsible for the growth and formation of tumours. Among these factors, beta-catenin is considered to be the most important for reducing cell-cell adhesions in malignant tissue. The degradation of beta-catenin triggers apoptosis by different routes. Sulindac sulfone has been shown to induce apoptosis in several different tumours. In the present study, we surveyed the concentration of beta-catenin in an HNSCC line after incubation with different concentrations of sulindac sulfone.. Immunohistochemical and Western blot analyses were performed after treatment of the UMSCC 11A cell line with different concentrations of sulindac sulfone (100, 200, 400, 600 and 800 microMol) for 48 hours.. At 100 microMol of sulindac sulfone, a decrease in beta-catenin concentration of 5% was observed; increasing concentrations of sulindac sulfone resulted in >70% reduction in secreted beta-catenin. Thus in conclusion, incubation with sulindac sulfone seemed to stop proliferation. With respect to the controls, there was no greater reduction in total protein.. In this study, sulindac sulfone reduced levels of secreted beta-catenin in the HNSCC cell line UM-SCC 11A after 48 hours of incubation. It is presumed that reduction of cell-cell adhesion, which is predominately affected by beta-catenin, is an essential step in the progression from localized malignancy to stromal and vascular invasion and ultimately metastatic disease. The reduction in the level of mural expression of beta-catenin has been associated with loss of differentiation in laryngeal carcinomas. Thus, prevention of intracellular beta-catenin accumulation is regarded as an attractive target for chemopreventive agents. Topics: Antineoplastic Agents; beta Catenin; Blotting, Western; Carcinoma, Squamous Cell; Down-Regulation; Enzyme-Linked Immunosorbent Assay; Head and Neck Neoplasms; Humans; Immunoenzyme Techniques; Sulindac; Tumor Cells, Cultured | 2010 |
Differential activity of sulindac metabolites against squamous cell carcinoma of the head and neck is mediated by p21waf1/cip1 induction and cell cycle inhibition.
Sulindac sulfide and sulindac sulfone have demonstrated anti-neoplastic and chemo-preventive activity against various human tumors, but few studies have examined the relative effectiveness of these drugs against squamous cell carcinoma of the head and neck (SCCHN). These compounds are metabolites of the nonsteroidal anti-inflammatory drug sulindac and differ in their ability to inhibit cyclooxygenase-2 (COX-2) enzyme function. Sulindac sulfide (the sulindac metabolite with COX-2 inhibitory function) demonstrated strong cell growth inhibition as measured by MTT and growth assays in UM-SCC-1 and SCC-25 cells, while sulindac sulfone had only moderate effect. Growth inhibition by sulindac sulfide was associated with a significant increase in percent G cells and activation of caspase-3. Sulindac sulfide induced expression of p21wafl/cipl in a dose-dependent fashion, decreased cyclin D1 protein levels, and increased Rb hypophosphorylation. p21waf1/cip1 protein levels increased without a significant increase in wild-type p53, suggesting that sulindac sulfide induces a p53-independent pathway regulating p2lwafl/ciP1 protein levels in SCCHN. Sulindac sulfide also induced dose-dependent expression of PPAR-gamma. In contrast, sulindac sulfone did not significantly alter apoptosis, cell cycle distribution or G1 checkpoint protein expression at doses below 200 microM. These results demonstrate the differential activity of sulindac metabolites and support the hypothesis that sulindac sulfide induced perturbations in SCCHN cellular proliferation could be regulated both by p21waf1/cip1-dependent cytostatic and caspase-dependent cytotoxic pathways. Topics: Apoptosis; Carcinoma, Squamous Cell; Cell Cycle; Cell Cycle Proteins; Cell Proliferation; Cyclin-Dependent Kinase Inhibitor p21; Head and Neck Neoplasms; Humans; PPAR gamma; Sulindac; Tumor Suppressor Protein p53; Up-Regulation | 2007 |
Sulindac induces apoptosis and inhibits tumor growth in vivo in head and neck squamous cell carcinoma.
Sulindac has antineoplastic effects on various cancer cell lines; consequently, we assessed sulindac's effects on laryngeal squamous cell carcinoma (SCC) cells in vitro and in vivo. In vitro, SCC (HEP-2) cells treated with various cyclooxygenase inhibitors or transfected with constitutively active signal transducer and activator of transcription 3 (Stat3) or survivin vectors were analyzed using Western blot analysis, annexin V assay, and cell proliferation assay. In parallel, nude mice injected subcutaneously with HEP-2 cells were either treated intraperitoneally with sulindac or left untreated, and analyzed for tumor weight, survivin expression, and tyrosine-phosphorylated Stat3 expression. In vitro studies confirmed the selective antiproliferative and proapoptotic effects of sulindac, which also downregulated Stat3 and survivin protein expression. Stat3 or survivin forced expression partially rescued the antiproliferative effects of sulindac. In vivo studies showed significant repression of HEP-2 xenograft growth in sulindactreated mice versus controls, with near-complete resolution at 10 days. Additionally, tumor specimens treated with sulindac showed downregulation of phosphorylated tyrosine-705 Stat3 and survivin expression. Taken together, our data suggest, for the first time, a specific inhibitory effect of sulindac on tumor growth and survivin expression in laryngeal cancer, both in vitro and in vivo, in a Stat3-dependent manner, suggesting a novel therapeutic approach to head and neck cancer. Topics: Animals; Apoptosis; Carcinoma, Squamous Cell; Cell Line, Tumor; Cell Proliferation; Cyclooxygenase Inhibitors; Female; Head and Neck Neoplasms; Humans; Inhibitor of Apoptosis Proteins; Mice; Microtubule-Associated Proteins; Neoplasm Proteins; Neoplasm Transplantation; Phosphorylation; STAT3 Transcription Factor; Sulindac; Survivin; Transplantation, Heterologous | 2007 |
Chemopreventive alteration of the cell-cell adhesion in head and neck squamous cell cancer.
Approximately 310,000 new cases of oral and pharynx cancer account for a major cause of neoplasm related morbidity and mortality world-wide. Unfortunately, the survival rate has not improved significantly in the last decade. The vast majority of head and neck cancer is squamous cell carcinoma. The major adhesion-proteins involved in the development and maintenance of all solid tissue are the Cadherins. Cadherins are the transmembrane components of the adherent junction with interaction with plakoglobin and beta-catenin. Downregulation of Cadherins and catenins is frequently observed in many types of human cancer. Sulindac sulfone is one of the new therapeutic apoptotic agents that show promise in the treatment of cancer. In this study, we incubated sulindac sulfone with a head and neck cancer cell line and investigated the outcome of E-Cadherin. Immunohistochemical and Western blot analyses were then performed, with different concentrations of sulindac sulfone (100, 200, 400, 600, and 800 microMol) for 48 h. At 400 microMol of sulindac sulfone a decrease of 21% was observed; at 600 microMol, 44% decrease of beta-catenin concentration was seen, and incubation with 800 microMol resulted in 73% reduction of secreted beta-catenin. Incubation with sulindac sulfone seemed to stop proliferation; however, with respect to the controls, there was no increased reduction of the total protein. Sulindac sulfone resulted in an increase of E-Cadherin content in the head and neck squamous cell cancer cell line after 48 h of incubation; however, the reactivity was restricted to the adherent junctions. At increasing concentrations of sulindac sulfone, intercellular E-Cadherin immunostaining intensifyied. ELISA also depicted significant rising levels of E-Cadherin. Sulindac sulfone contributes to the inactivation of cGMP phospho-diesterase. Thus, the accumulation of cellular cGMP and protein kinase G is induced. The following degradation of the phosphorylated beta-catenin and the dissociation from the Cadherin-catenin complex releases E-Cadherin. This may also contribute to growth inhibition and co-ordinate with apoptosis induction. It is not really clear as to, which pathway results in the elevation of the E-Cadherin proteins. However, in epithelial cancer cells, the Cadherin-catenin complex serves as a target for the chemopreventive agent, sulindac sulfone. Topics: 3',5'-Cyclic-GMP Phosphodiesterases; Antineoplastic Agents; Apoptosis; beta Catenin; Cadherins; Carcinoma, Squamous Cell; Cell Adhesion; Cyclic GMP; Head and Neck Neoplasms; Humans; Immunohistochemistry; Protein Kinase C; Sulindac; Tumor Cells, Cultured; Up-Regulation | 2006 |
Apoptosis induction and enhancement of cytotoxicity of anticancer drugs by celecoxib, a selective cyclooxygenase-2 inhibitor, in human head and neck carcinoma cell lines.
Colorectal carcinomas are well known to highly express COX-2 and their growth is markedly inhibited by COX-2 inhibitors, but little is known about head and neck carcinomas. In this study, we investigated the effect of a selective COX-2 inhibitor, celecoxib, on growth and apoptosis induction of four human head and neck carcinoma cell lines, SCC25, KB, HSG and HSY, in comparison with frequently used COX inhibitor sulindac. Also, we examined whether celecoxib augments the sensitivity of these cell lines to anticancer drugs such as doxorubicin (DOX), vincristine (VCR), cisplatin (CDDP), bleomycin (BLM) and 5-fluorouracil (5-FU). The growth of all cultured cell lines particularly SCC25 and HSG was inhibited by celecoxib and sulindac in a dose-dependent manner. The IC50 of celecoxib was ten times lower than that of sulindac. SCC25 produced ample PGE2 whereas KB, HSG and HSY produced a small amount of PGE2. The PGE2 production and COX-2 expression were inhibited more efficiently by celecoxib than by sulindac. Exogenous addition of PGE2 resulted in an increased cell growth of SCC25 even under the celecoxib-treated condition, but not of HSG. These results suggested that PGE2 is involved in the growth of SCC25 but not of HSG. The ability of celecoxib to induce apoptosis is greater than that of sulindac. Treatment of SCC25 and HSG with non-cytotoxic 1 micro M or less cytotoxic 5 micro M of celecoxib enhanced the sensitivity of both cell lines to anticancer drugs, particularly in DOX, VCR and BLM two to ten times as demonstrated by lowering of IC50s. The enhanced rate was almost parallel to the degree of apoptosis induction. These findings indicated that a selective COX-2 inhibitor celecoxib inhibits cell proliferation, induces apoptosis and augments sensitivity to anticancer drugs in human head and neck carcinoma cells. Therefore, celecoxib would be useful as biological modulator in treatment of head and neck cancer. Topics: Antibiotics, Antineoplastic; Antineoplastic Agents; Antineoplastic Agents, Phytogenic; Apoptosis; Bleomycin; Blotting, Western; Carcinoma; Celecoxib; Cell Line, Tumor; Cell Survival; Cisplatin; Cyclooxygenase 2; Cyclooxygenase 2 Inhibitors; Cyclooxygenase Inhibitors; Dinoprostone; DNA Fragmentation; Dose-Response Relationship, Drug; Doxorubicin; Drug Synergism; Fluorouracil; Head and Neck Neoplasms; Humans; Inhibitory Concentration 50; Isoenzymes; Membrane Proteins; Prostaglandin-Endoperoxide Synthases; Pyrazoles; Sulfonamides; Sulindac; Time Factors; Vincristine | 2003 |