sulfoxaflor and Disease-Models--Animal

sulfoxaflor has been researched along with Disease-Models--Animal* in 3 studies

Reviews

3 review(s) available for sulfoxaflor and Disease-Models--Animal

ArticleYear
Human relevance framework for rodent liver tumors induced by the insecticide sulfoxaflor.
    Critical reviews in toxicology, 2014, Volume: 44 Suppl 2

    Sulfoxaflor, a novel active substance that targets sap-feeding insects, induced rodent hepatotoxicity when administered at high dietary doses. Specifically, hepatocellular adenomas and carcinomas increased after 18 months in male and female CD-1 mice at 750 and 1250 ppm, respectively, and hepatocellular adenomas increased after 2 years in male F344 rats at 500 ppm. Studies to determine the mode of action (MoA) for these liver tumors were performed in an integrated and prospective manner as part of the standard battery of toxicology studies such that the MoA data were available prior to, or by the time of, the completion of the carcinogenicity studies. Sulfoxaflor is not genotoxic and the MoA data support the following key events in the etiology of the rodent liver tumors: (1) CAR nuclear receptor activation and (2) hepatocellular proliferation. The MoA data were evaluated in a weight of evidence approach using the Bradford Hill criteria for causation and were found to align with dose and temporal concordance, biological plausibility, coherence, strength, consistency, and specificity for a CAR-mediated MoA while excluding other alternate MoAs. The available data include: activation of CAR, Cyp2b induction, hepatocellular hypertrophy and hyperplasia, absence of liver effects in KO mice, absence of proliferation in humanized mice, and exclusion of other possible mechanisms (e.g., genotoxicity, cytotoxicity, AhR, or PPAR activation), and indicate that the identified rodent liver tumor MoA for sulfoxaflor would not occur in humans. In this case, sulfoxaflor is considered not to be a potential human liver carcinogen.

    Topics: Animals; Carcinogens; Disease Models, Animal; Dose-Response Relationship, Drug; Humans; Insecticides; Liver Neoplasms; Male; Mice; Pyridines; Rats; Rats, Inbred F344; Risk Assessment; Sulfur Compounds

2014
Mode-of-action and human relevance framework analysis for rat Leydig cell tumors associated with sulfoxaflor.
    Critical reviews in toxicology, 2014, Volume: 44 Suppl 2

    Sulfoxaflor, a molecule that targets sap-feeding insects, was assessed for carcinogenic potential in groups of 50 Fischer rats fed with diets containing 0, 25, 100, 500 (males), or 750 (females) ppm sulfoxaflor for 2 years according to OECD 453. Sulfoxaflor did not alter the number of rats with Leydig cell tumors (LCTs: 88% of controls and 90-92% in treated groups). The size of LCT was increased at 100 and 500 ppm. The spontaneous incidence of LCT in Fischer rat is 75-100% compared with less than 0.01% in humans. These fundamental interspecies differences in spontaneous incidence of LCT are the result of quantitative and qualitative differences in Leydig cell response to hormonal stimuli. There are nine known modes of actions (MoA) for LCT induction. Analysis sulfoxaflor data suggested a hormone-based dopamine enhancement MoA causing the LCT effect through: 1) increased neuronal dopamine release via specific dopaminergic neuron-based nicotinic acetylcholine receptor (nAChR) agonism, leading to 2) decreased serum prolactin (Prl) levels, 3) downregulation of luteinizing hormone receptor (LHR) gene expression in Leydig cells, 4) transient decreases in serum testosterone, 5) increased serum LH levels, and 6) promotion of LCTs. The analysis suggested that sulfoxaflor promoted LCTs through a subtle stimulation of dopamine release. The MoA for LCT promotion in the carcinogenicity study is considered to have no relevance to humans due to qualitative and quantitative differences between rat and human Leydig cells. Therefore, the Fischer 344 rat LCT promotion associated with lifetime administration of high-dose levels of sulfoxaflor would not pose a cancer hazard to humans.

    Topics: Animals; Carcinogens; Disease Models, Animal; Humans; Leydig Cell Tumor; Leydig Cells; Male; Pyridines; Rats; Sulfur Compounds

2014
Human relevance framework evaluation of a novel rat developmental toxicity mode of action induced by sulfoxaflor.
    Critical reviews in toxicology, 2014, Volume: 44 Suppl 2

    Sulfoxaflor (CAS# 946578-00-3) is a novel active substance with insecticidal properties mediated via its agonism on the highly abundant insect nicotinic acetylcholine receptor (nAChR). In developmental and reproductive toxicity studies, gestational exposure caused fetal abnormalities (primarily limb contractures) and reduced neonatal survival in rats, but not rabbits, following high-dose dietary exposure. Sulfoxaflor induced these effects via a novel mode of action (MoA) mediated by the fetal-type muscle nAChR with the following key events: (1) binding to the receptor, (2) agonism on the receptor, causing (3) sustained muscle contracture in the near-term fetus and neonatal offspring. This sustained muscle contracture results in misshapen limbs, bent clavicles, and reduced diaphragm function, which compromises respiration in neonatal rats at birth, reducing their survival. This review evaluates the weight of evidence for this MoA based upon the Bradford Hill criteria, includes a cross-comparison of applied and internal doses in a variety of in vitro, ex vivo, and in vivo study designs, examines alternative MoAs, and applies a Human relevance framework (HRF) to ascertain human risk for this rat MoA. The review indicated, with a high level of confidence, that the sulfoxaflor-induced fetal abnormalities and neonatal death in rats occur via a single MoA comprising sustained activation of the rat fetal-type muscle nAChR resulting in a sustained muscle contracture. This MoA is considered not relevant to humans, given fundamental qualitative differences in sulfoxaflor agonism on the rat versus the human muscle nAChR. Specifically, sulfoxaflor does not cause agonism on either the human fetal- or adult-type muscle nAChR.

    Topics: Animals; Carcinogens; Disease Models, Animal; Dose-Response Relationship, Drug; Humans; Insecticides; Muscle Contraction; Muscle Proteins; Pyridines; Rats; Receptors, Nicotinic; Reproduction; Sulfur Compounds

2014