sucrose-monolaurate has been researched along with Clostridium-Infections* in 1 studies
1 other study(ies) available for sucrose-monolaurate and Clostridium-Infections
Article | Year |
---|---|
Feasibility of using food-grade additives to control the growth of Clostridium perfringens.
Previously, it was demonstrated that the combination of sucrose laurate (SL) ethylenediaminetetraacetate (E) and butylated hydroxyl anisole (B) (SLEB) was an effective antimicrobial agent against both gram-negative (aerobes) and gram-positive (facultative anaerobes) foodborne bacteria. This investigation examines the sensitivity of Clostridium perfringens to SLEB relative to: (1) the minimum inhibitory concentration (MIC) of SLEB required to inhibit the growth of C. perfringens and (2) the antibacterial effectiveness of different combination ratios of SLEB in fluid thioglycollate medium (FTM). Results indicated that the MIC of SLEB (1:1:1, v/v/v) against C. perfringens on tryptose sulfite cycloserine (TSC) agar was > 150 ppm at 37 degrees C. However, in FTM, a SLEB (1:1:1, v/v/v) concentration of > 100 ppm inhibited C. perfringens during an incubation (anaerobic) period of 196 h at 37 degrees C. The sensitivity of C. perfringens to different combination ratios was also investigated in FTM. The results showed that, when the concentrations of SL and E were held at 75 ppm in the SLEB combination, and the concentration of B increased from 0 to 75 ppm, C. perfringens growth increased initially during the first 24 h of incubation (37 degrees C) but remained constant during the next 48 h. Similarly, when concentrations of SL and E were held constant at 150 ppm in the SLEB combination and the B ratio increased from 50 to 150 ppm in FTM, C. perfringens viability decreased in all of the treated samples during 72-h incubation at 37 degrees C. The results indicated that SLEB was an effective inhibitor of C. perfringens growth activities, and the ratios of the components of SLEB can be adjusted to meet specific preservation needs. Topics: Butylated Hydroxyanisole; Clostridium Infections; Clostridium perfringens; Colony Count, Microbial; Edetic Acid; Food Additives; Food Microbiology; Microbial Sensitivity Tests; Sucrose | 1999 |