su-5402 and Sarcoma--Synovial

su-5402 has been researched along with Sarcoma--Synovial* in 2 studies

Other Studies

2 other study(ies) available for su-5402 and Sarcoma--Synovial

ArticleYear
Disruption of fibroblast growth factor signal pathway inhibits the growth of synovial sarcomas: potential application of signal inhibitors to molecular target therapy.
    Clinical cancer research : an official journal of the American Association for Cancer Research, 2005, Apr-01, Volume: 11, Issue:7

    Synovial sarcoma is a soft tissue sarcoma, the growth regulatory mechanisms of which are unknown. We investigated the involvement of fibroblast growth factor (FGF) signals in synovial sarcoma and evaluated the therapeutic effect of inhibiting the FGF signal.. The expression of 22 FGF and 4 FGF receptor (FGFR) genes in 18 primary tumors and five cell lines of synovial sarcoma were analyzed by reverse transcription-PCR. Effects of recombinant FGF2, FGF8, and FGF18 for the activation of mitogen-activated protein kinase (MAPK) and the growth of synovial sarcoma cell lines were analyzed. Growth inhibitory effects of FGFR inhibitors on synovial sarcoma cell lines were investigated in vitro and in vivo.. Synovial sarcoma cell lines expressed multiple FGF genes especially those expressed in neural tissues, among which FGF8 showed growth stimulatory effects in all synovial sarcoma cell lines. FGF signals in synovial sarcoma induced the phosphorylation of extracellular signal-regulated kinase (ERK1/2) and p38MAPK but not c-Jun NH2-terminal kinase. Disruption of the FGF signaling pathway in synovial sarcoma by specific inhibitors of FGFR caused cell cycle arrest leading to significant growth inhibition both in vitro and in vivo. Growth inhibition by the FGFR inhibitor was associated with a down-regulation of phosphorylated ERK1/2 but not p38MAPK, and an ERK kinase inhibitor also showed growth inhibitory effects for synovial sarcoma, indicating that the growth stimulatory effect of FGF was transmitted through the ERK1/2.. FGF signals have an important role in the growth of synovial sarcoma, and inhibitory molecules will be of potential use for molecular target therapy in synovial sarcoma.

    Topics: Animals; Cell Line, Tumor; Cell Proliferation; Dose-Response Relationship, Drug; Enzyme Activation; Female; Fibroblast Growth Factors; Gene Expression Regulation, Neoplastic; Humans; Male; Mice; Mice, Inbred BALB C; Mice, Nude; Mitogen-Activated Protein Kinase 1; Mitogen-Activated Protein Kinase 3; Mitogen-Activated Protein Kinases; Phosphorylation; Protein Isoforms; Pyrimidines; Pyrroles; Receptors, Fibroblast Growth Factor; Recombinant Proteins; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Sarcoma, Synovial; Signal Transduction; Urea; Xenograft Model Antitumor Assays

2005
Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin prevents synovial sarcoma proliferation via apoptosis in in vitro models.
    Clinical cancer research : an official journal of the American Association for Cancer Research, 2005, Aug-01, Volume: 11, Issue:15

    Synovial sarcoma is a soft tissue malignancy with a poor prognosis; many patients will die from this disease within 10 years of diagnosis, despite treatment. Gene expression profiling and immunohistochemistry studies have identified oncogenes that are highly expressed in synovial sarcoma. Included in this group are receptor tyrosine kinases such as epidermal growth factor receptor, insulin-like growth factor receptor 1, fibroblast growth factor receptor 3, KIT, and HER2. Inhibitors of these growth-promoting receptors are likely to inhibit proliferation of synovial sarcoma; however, the effect of receptor tyrosine kinase inhibitors on synovial sarcoma is largely unknown. We assessed the ability of the following receptor tyrosine kinase inhibitors to halt proliferation and induce apoptosis in synovial sarcoma monolayer and three dimensional spheroid in vitro models: gefitinib (Iressa), NVP-AEW541, imatinib mesylate (Gleevec), SU5402, PRO-001, trastuzumab (Herceptin), and 17-allylamino-17-demethoxygeldanamycin (17-AAG). Gefitinib, NVP-AEW541, and imatinib inhibited proliferation only at relatively high concentrations, which are not clinically applicable. 17-AAG, which destabilizes multiple receptor tyrosine kinases and other oncoproteins through heat shock protein 90 inhibition, prevented proliferation and induced apoptosis in synovial sarcoma monolayer models at concentrations achievable in human serum. 17-AAG treatment was also associated with receptor tyrosine kinase degradation and induction of apoptosis in synovial sarcoma spheroid models. 17-AAG was more effective than doxorubicin, particularly in the spheroid models. Here we provide in vitro evidence that 17-AAG, a clinically applicable drug with known pharmacology and limited toxicity, inhibits synovial sarcoma proliferation by inducing apoptosis, and thus has potential as a systemic therapy for this disease.

    Topics: Antibodies, Monoclonal; Antibodies, Monoclonal, Humanized; Antineoplastic Agents; Apoptosis; Benzamides; Benzoquinones; Cell Line, Tumor; Cell Proliferation; Dose-Response Relationship, Drug; ErbB Receptors; Flow Cytometry; Gefitinib; HSP90 Heat-Shock Proteins; Humans; Imatinib Mesylate; Immunoblotting; Immunohistochemistry; In Situ Hybridization, Fluorescence; In Vitro Techniques; Inhibitory Concentration 50; Lactams, Macrocyclic; Piperazines; Prognosis; Pyrimidines; Pyrroles; Quinazolines; Rifabutin; Sarcoma, Synovial; Trastuzumab

2005