strychnine has been researched along with Nervous-System-Diseases* in 9 studies
3 review(s) available for strychnine and Nervous-System-Diseases
Article | Year |
---|---|
Neurochemical and neuropharmacological indications for the involvement of GABA and glycine receptors in neuropsychiatric disorders.
From binding studies using 3H-GABA and 3H-strychnine in dissected human brain material, inhibitory amino acid neurotransmitter receptors have a widespread distribution in the human CNS. Generally GABA receptors are predominant in the forebrain and upper brainstem whereas glycine receptors are more localized in the lower brainstem and spinal cord. Some areas (eg. the substantia nigra) have appreciable quantities of both receptors. Although glycine receptors are altered in some pathological conditions (eg. in Parkinson's disease, in the substantia nigra) the neuropharmacology of the glycine system is still poorly understood. On the other hand the GABA system has been intensively studied. Dysfunction of GABA receptors occurs in various neurological states, as epilepsy, Parkinson's disease and Huntington's chorea. Furthermore GABA agonists are active in animal models for dyskinesia, epilepsy and depression, amongst others. Clinical studies with progabide confirm these findings in animal models, and suggest that low-medium affinity GABA agonists are more appropriate clinical agents than are high or very high affinity GABA agonists. From these and many other findings there appears to be a very large potential for creating new pharmacological agents for different neuropsychiatric disorders based on agonist activity at inhibitory amino-acid receptors. From the example of progabide these compounds can be made not only specific for the receptor involved, but also to have a lower incidence of neurotoxic effects than presently available drugs. Topics: Central Nervous System; Epilepsy; Humans; Huntington Disease; Mental Disorders; Nervous System Diseases; Neurotransmitter Agents; Parkinson Disease; Receptors, Cell Surface; Receptors, GABA-A; Receptors, Glycine; Seizures; Strychnine | 1983 |
[Brain cerebrosides].
Topics: Animals; Biological Evolution; Brain; Brain Chemistry; Ceramides; Cerebrosides; Diffuse Cerebral Sclerosis of Schilder; Encephalomyelitis, Autoimmune, Experimental; Fatty Acids; Galactosidases; Gas Gangrene; Humans; Infant Nutrition Disorders; Insulin Coma; Nervous System Diseases; Phenylketonurias; Sphingolipidoses; Sphingosine; Strychnine; Tetanus | 1972 |
[Clinical use of gamma-aminobutyric acid derivatives in experimental and clinical psychiatry and neurology (review of the literature)].
Topics: Aminobutyrates; Animals; Choline; Epilepsy; Humans; Hydroxybutyrates; Hypertension; Hypoxia; Mental Disorders; Mice; Nervous System Diseases; Oxygen; Psychopharmacology; Seizures; Sound; Strychnine | 1971 |
6 other study(ies) available for strychnine and Nervous-System-Diseases
Article | Year |
---|---|
Endogenous strychnine, nicotine, and morphine--description of hypo and hyper-strychninergic, nicotinergic and morphinergic state in relation to neuropsychiatric diseases.
Previous work from this laboratory had demonstrated the presence of endogenous morphine, strychnine and nicotine in the mammalian brain and human serum samples. Morphine is synthesised from tyrosine and strychnine and nicotine from tryptophan. This study examines the role of strychnine, nicotine and morphine in neuropsychiatric disorders. The blood levels of tyrosine, tryptophan, strychnine, nicotine and morphine were studied as also RBC membrane Na(+)-K+ ATPase activity. It was found that serum tyrosine levels were reduced and tryptophan levels elevated in all neuropsychiatric disorders studied with a reduction in RBC Na(+)-K+ ATPase activity. Nicotine was present in significant amounts in serum of patients with schizophrenia, CNS glioma and syndrome X with multiple lacunar state. Morphine was present in significant amounts only in the serum of patients with multiple sclerosis and MDP. Strychnine was present in significant amounts in the serum of patients with epilepsy, Parkinson's disease and MDP. The presence of nicotine and strychnine in significant amounts could be related to elevated tryptophan levels suggesting the synthesis of these alkaloids from tryptophan. Morphine was not detected in most of the disorders owing to low tyrosine levels noted in them. Na(+)-K+ ATPase inhibition noticed in most of the disorders could be related to decreased hyperpolarising morphinergic transmission and increased depolarising nicotinergic and strychinergic transmission. The role of morphine, strychnine and nicotine in the pathogenesis of these disorders in the setting of membrane Na(+)-K+ ATPase inhibition is discussed. Topics: Adult; Alkaloids; Brain Neoplasms; Chromatography, High Pressure Liquid; Erythrocyte Membrane; Glioma; Humans; Male; Mental Disorders; Middle Aged; Morphine; Neoplasm Proteins; Nervous System Diseases; Nicotine; Sodium-Potassium-Exchanging ATPase; Strychnine; Tryptophan; Tyrosine | 2000 |
Properties of human glycine receptors containing the hyperekplexia mutation alpha1(K276E), expressed in Xenopus oocytes.
1. Inherited defects in human glycine receptors give rise to hyperekplexia (startle disease). We expressed human glycine receptors in Xenopus oocytes, in order to examine the pharmacological and single-channel properties of receptors that contain a mutation, alpha1(K276E), associated with an atypical form of hyperekplexia. 2. Equilibrium concentration-response curves showed that recombinant human alpha1(K276E)beta receptors had a 29-fold lower glycine sensitivity than wild-type alpha1beta receptors, and a greatly reduced Hill coefficient. The maximum response to glycine also appeared much reduced, whereas the equilibrium constant for the glycine receptor antagonist strychnine was unchanged. 3. Both wild-type and mutant channels opened to multiple conductance levels with similar main conductance levels (33 pS) and weighted mean conductances (41.5 versus 49.8 pS, respectively). 4. Channel openings were shorter for the alpha1(K276E)beta mutant than for the wild-type alpha1beta, with mean overall apparent open times of 0.82 and 6.85 ms, respectively. 5. The main effect of the alpha1(K276E) mutation is to impair the opening of the channel rather than the binding of glycine. This is shown by the results of fitting glycine dose-response curves with particular postulated mechanisms, the shorter open times of mutant channels, the properties of single-channel bursts, and the lack of an effect of the mutation on the strychnine-binding site. Topics: Animals; Binding, Competitive; Electrophysiology; Female; Humans; Ion Channels; Mutation; Nervous System Diseases; Oocytes; Receptors, Glycine; Reflex, Startle; Strychnine; Xenopus laevis | 1998 |
Decreased agonist affinity and chloride conductance of mutant glycine receptors associated with human hereditary hyperekplexia.
Hereditary hyperekplexia is a dominant neurological disorder associated with point mutations at the channel-forming segment M2 of the glycine receptor alpha 1 subunit. Voltage-clamp recordings from the heterologously expressed mutants (alpha 1R271L or alpha 1R271Q) revealed 146- to 183-fold decreased potencies of glycine to activate the chloride channel, and significantly reduced maximal whole-cell currents as compared with wild-type receptors. In contrast, the ability of the competitive antagonist strychnine to block glycine-induced currents was similar in all cases. Radioligand binding assays showed a 90- to 1365-fold reduction in the ability of glycine to displace [3H]strychnine from its binding site on the mutant receptors. Paralleling the reductions in whole-cell current, the elementary main-state conductances of the mutants (alpha 1R271L, 64 pS; alpha 1R271Q, 14 pS) were lower than that of the wild-type receptor (86 pS). The decreased agonist affinities and chloride conductances of the mutants are likely to cause neural hyperexcitability of affected patients by impairing glycinergic inhibition. In addition, our data reveal that structural modifications of the ion-channel region can affect agonist binding to the glycine receptor. Topics: Animals; Chloride Channels; Chlorides; Electric Conductivity; Genes, Dominant; Glycine; Humans; Infant; Mutation; Nervous System Diseases; Oocytes; Receptors, Glycine; Reflex, Startle; RNA, Complementary; Strychnine; Xenopus | 1994 |
Seizures induced by fluoroacetic acid and fluorocitric acid may involve chelation of divalent cations in the spinal cord.
Fluoroacetic and fluorocitric acid toxicity is often characterized by seizures, however the mechanism of this activity is unknown. Intrathecal (i.t.) injection of fluorocitrate in mice resulted in seizures after an average latency of 15 s, while intracerebroventricular (i.c.v.) injection produced seizures after 36.5 min, and required higher doses to achieve this effect. This indicates the probable site of fluoroacetate and fluorocitrate neurotoxicity is the spinal cord. To mimic citrate accumulation, characteristic of fluoroacetate and fluorocitrate poisoning, citric acid was injected i.t. and also found to produce seizures. The structurally unrelated compounds EDTA, EGTA, glutamic acid and lactic acid also produced seizures identical to fluorocitrate. The ability of these compounds to chelate Ca2+ correlates well with their ability to cause seizures when administered i.t. and coadministration of calcium greatly attenuated the neurotoxicity of these compounds as well as fluoroacetate and fluorocitrate. In contrast, Ca2+ was unable to inhibit seizures elicited by strychnine, suggesting calcium's ability to inhibit chelators of divalent cations is not due to a general anticonvulsant effect. These results suggest that changes in Ca2+ concentration in the spinal cord may be responsible for some forms of seizure activity. Topics: Animals; Calcium; Cations, Divalent; Chelating Agents; Citrates; Fluoroacetates; Injections, Intraventricular; Injections, Spinal; Male; Mice; Nervous System Diseases; Seizures; Spinal Cord; Strychnine | 1990 |
Investigations into the origin of the high pressure neurological syndrome: the interaction between pressure, strychnine and 1,2-propandiols in the mouse.
1. The effects of a variety of structural isomers of the centrally acting muscle relaxant mephenesin on the high pressure neurological syndrome have been investigated. Threshold pressures for the onset of the behavioural signs, tremors and convulsions, were established. The effects of these compounds on the response to pressure were also compared with their ability to antagonize the convulsive action of strychnine. 2. The dose-response relationships for strychnine and picrotoxin were investigated at fixed pressures. Additionally, the dose-response relationship of strychnine, in the presence of mephenesin, at pressure was investigated. 3. All the isomers of mephenesin protected against the effects of both pressure and strychnine. The relative potency was found to be identical with respect to both. Mephenesin was clearly the most effective; it raised the threshold pressure for tremors by 2.5 times, that for convulsions elicited by pressure by 1.5 and the ED50 for strychnine convulsions by 1.6 times. Strychnine was found to be strictly additive with pressure whereas picrotoxin exhibited gross deviations from additivity. Mephenesin ameliorated the combined effects of pressure and strychnine equally. 4. The marked dependence on structure of the anticonvulsant activity of the mephenesin isomers can be interpreted as evidence that pressure acts not by some general perturbation of the membranes of excitable cells but rather via some specific interaction. The finding that strychnine and pressure are strictly additive supports the idea of specificity and also indicates that they may share a common mechanism in the production of convulsions. By analogy with the established mechanism of action of strychnine, it is suggested that the hyperexcitability associated with pressure might arise from an action on glycine-mediated inhibitory processes. Topics: Animals; Atmospheric Pressure; Dose-Response Relationship, Drug; Male; Mephenesin; Mice; Muscle Relaxants, Central; Nervous System Diseases; Picrotoxin; Propylene Glycols; Strychnine | 1988 |
[The treatment of brain diseases and neurologic complications of chronic alcoholism by the combination of strychnal and massive doses of vitamin B1].
Topics: Alcoholism; Brain Diseases; Humans; Nervous System Diseases; Neurologic Manifestations; Strychnine; Thiamine | 1963 |