strychnine and Glioblastoma

strychnine has been researched along with Glioblastoma* in 2 studies

Other Studies

2 other study(ies) available for strychnine and Glioblastoma

ArticleYear
Inhibition of Glioblastoma Cell Growth In Vitro and In Vivo by Brucine, a Component of Chinese Medicine.
    Oncology research, 2014, Volume: 22, Issue:5-6

    Glioblastoma multiforme (GBM) is one of the most common glial cell tumors and has drawn more and more attention in the clinic in recent years. Brucine has been reported to significantly suppress gastric cancer, lung cancer, and prostate cancer growth in vivo by inducing cell apoptosis. Here, the effects of brucine on U251 human glioma cell growth were investigated in vitro by cell proliferation assay, FACs, and qPCR in a xenograft tumor model. Treatment with brucine reduced the expression of BCL-2 and cyclooxygenase-2 (COX-2), while upregulated BAX expression in U251 human glioma cells resulted in reduced glioma cell survival rate and inhibited the growth of xenograft tumors. We concluded that brucine has a suppressive effect on U251 human glioma cells in vitro and in vivo, which could help in understanding the role of brucine in glioma cells and guiding drug use in the clinic.

    Topics: Animals; Brain Neoplasms; Cell Line, Tumor; Cell Proliferation; Dose-Response Relationship, Drug; Female; Glioblastoma; Growth Inhibitors; Humans; Medicine, Chinese Traditional; Mice; Mice, Nude; Strychnine; Xenograft Model Antitumor Assays

2014
Isostrychnopentamine, an indolomonoterpenic alkaloid from Strychnos usambarensis, with potential anti-tumor activity against apoptosis-resistant cancer cells.
    International journal of oncology, 2010, Volume: 36, Issue:4

    Isostrychnopentamine (ISP) is an indolomonoter-penic alkaloid that is present in the leaves of Strychnos usambarensis, an East African small tree. We have reported previously pro-apoptotic effects induced in vitro by ISP in the human HCT-116 colon cancer cell line, a model that displays relative sensitivity to apoptosis. In the present study, we observed that the in vitro growth inhibitory activities of ISP are similar in cancer cells that display sensitivity versus resistance to apoptosis. We made use of the U373 glioblastoma and the A549 non-small cell lung cancer (NSCLC) cell lines as models relatively resistant to apoptosis, and the human PC-3 prostate cancer cell line as a model relatively sensitive to apoptosis. While ISP induced transient decreases in [ATP]i and apoptosis in human U373 GBM cells, it did not provoke such features in A549 NSCLC cells. It thus seems that ISP-induced anti-cancer activity can lead to pro-apoptotic effects as a consequence, while apoptosis seems not to be the main cause by which ISP induces cancer cell death. ISP is a compound that merits further investigations in order to: i) identify the mechanism(s) of action by which it kills cancer cells, and ii) hemisynthesize novel ISP derivatives aiming to overcome, at least partly, the resistance of metastatic cancers to apoptosis.

    Topics: Adenosine Triphosphate; Antineoplastic Agents, Phytogenic; Apoptosis; Brain Neoplasms; Breast Neoplasms; Carbolines; Carcinoma, Non-Small-Cell Lung; Cell Line, Tumor; Cell Proliferation; Dose-Response Relationship, Drug; Drug Resistance, Neoplasm; Female; Glioblastoma; Humans; Inhibitory Concentration 50; Lung Neoplasms; Male; Neoplasms; Plant Leaves; Prostatic Neoplasms; Strychnos; Time Factors

2010