stilbenes has been researched along with Peritonitis* in 3 studies
3 other study(ies) available for stilbenes and Peritonitis
Article | Year |
---|---|
Resveratrol attenuates ICAM-1 expression and monocyte adhesiveness to TNF-α-treated endothelial cells: evidence for an anti-inflammatory cascade mediated by the miR-221/222/AMPK/p38/NF-κB pathway.
Resveratrol, an edible polyphenolic phytoalexin, improves endothelial dysfunction and attenuates inflammation. However, the mechanisms have not been thoroughly elucidated. Therefore, we investigated the molecular basis of the effects of resveratrol on TNF-α-induced ICAM-1 expression in HUVECs. The resveratrol treatment significantly attenuated the TNF-α-induced ICAM-1 expression. The inhibition of p38 phosphorylation mediated the reduction in ICAM-1 expression caused by resveratrol. Resveratrol also decreased TNF-α-induced IκB phosphorylation and the phosphorylation, acetylation, and translocation of NF-κB p65. Moreover, resveratrol induced the AMPK phosphorylation and the SIRT1 expression in TNF-α-treated HUVECs. Furthermore, TNF-α significantly suppressed miR-221/-222 expression, which was reversed by resveratrol. miR-221/-222 overexpression decreased p38/NF-κB and ICAM-1 expression, which resulted in reduced monocyte adhesion to TNF-α-treated ECs. In a mouse model of acute TNF-α-induced inflammation, resveratrol effectively attenuated ICAM-1 expression in the aortic ECs of TNF-α-treated wild-type mice. These beneficial effects of resveratrol were lost in miR-221/222 knockout mice. Our data showed that resveratrol counteracted the TNF-α-mediated reduction in miR-221/222 expression and decreased the TNF-α-induced activation of p38 MAPK and NF-κB, thereby suppressing ICAM-1 expression and monocyte adhesion. Collectively, our results show that resveratrol attenuates endothelial inflammation by reducing ICAM-1 expression and that the protective effect was mediated partly through the miR-221/222/AMPK/p38/NF-κB pathway. Topics: AMP-Activated Protein Kinases; Animals; Anti-Inflammatory Agents; Cell Adhesion; Disease Models, Animal; Gene Expression Regulation; Human Umbilical Vein Endothelial Cells; Humans; Inflammation; Intercellular Adhesion Molecule-1; Mice; Mice, Inbred C57BL; Mice, Knockout; MicroRNAs; Monocytes; p38 Mitogen-Activated Protein Kinases; Peritonitis; Primary Cell Culture; Resveratrol; Signal Transduction; Sirtuin 1; Stilbenes; Transcription Factor RelA; Tumor Necrosis Factor-alpha | 2017 |
Anti-inflammatory and antioxidant properties of a novel resveratrol-salicylate hybrid analog.
Resveratrol is a natural compound with a plethora of activities as well as limitations. We recently reported a series of resveratrol-salicylate analogs with potential chemopreventive activity. Herein, we report the anti-inflammatory and antioxidant properties of these resveratrol derivatives. Using an in vitro COX inhibition assay, and two in vivo protocols (carrageenan-induced peritonitis and paw edema), we identified a novel compound (C10) as a potent anti-inflammatory agent. The enhanced potency of C10 was associated with the ability of C10 to decrease the activity of myeloperoxidase (MPO) enzyme at 10mg/kg, whereas resveratrol and it's natural analog (TMS) did not exert the same effect. Additionally, C10 significantly reduced the concentration of intracellular reactive oxygen species. Because of the proven association between cancer, inflammation, and oxidative stress, we believe that C10 is a promising chemopreventive molecule. Topics: Administration, Oral; Animals; Anti-Inflammatory Agents, Non-Steroidal; Antioxidants; Carrageenan; Cyclooxygenase Inhibitors; Dose-Response Relationship, Drug; Edema; Hep G2 Cells; Humans; Hydrogen Peroxide; Mice; Molecular Structure; Oxidative Stress; Peritonitis; Prostaglandin-Endoperoxide Synthases; Reactive Oxygen Species; Resveratrol; Salicylates; Stilbenes; Structure-Activity Relationship | 2016 |
Resveratrol attenuates C5a-induced inflammatory responses in vitro and in vivo by inhibiting phospholipase D and sphingosine kinase activities.
The anti-inflammatory activity of the phytoalexin resveratrol (RSV) was evaluated in C5 anaphylatoxin (C5a)-stimulated primary neutrophils and in a mouse model of acute peritonitis. Pretreatment of human and mouse neutrophils with RSV significantly blocked oxidative burst, leukocyte migration, degranulation, and inflammatory cytokine production. The anti-inflammatory activity of RSV was a function of inhibition of sphingosine kinase (SphK) activity (IC(50) approximately 20 microM) within 5 min of exposure, its membrane localization, and SphK1-mediated Ca(2+) release. As an experimental control, the SphK1 pharmacological inhibitor N,N-dimethyl sphingosine (DMS) was used to compare the inhibitory effect of RSV. We also provide evidence that the SphK inhibitory effect of RSV was mediated via its ability to block phospholipase D (PLD) activity and membrane recruitment. Furthermore, RSV blocked ERK1/2 phosphorylation, which functioned independently of SphK1 in this study. To provide in vivo relevance to these data, C5a-induced model of acute peritonitis was established, and the effects of prior injection of RSV were investigated. Indeed, prior injection of RSV virtually completely attenuated the effects of C5a on vascular permeability, neutrophil migration, release of interleukin 1beta, tumor necrosis factor alpha, interleukin 6, and the chemokine MIP-1alpha. Taken together, these data demonstrate strong anti-inflammatory activity of RSV in vitro and in vivo and highlight SphK1 as a potential target of this remarkable phytoalexin. These data could have tremendous implications for the clinical use of RSV in inflammatory pathologies. Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Biological Transport, Active; Cell Degranulation; Cell Membrane; Chemokines; Chemotaxis, Leukocyte; Complement C5a; Cytokines; Disease Models, Animal; Enzyme Inhibitors; Extracellular Signal-Regulated MAP Kinases; Humans; In Vitro Techniques; Inflammation; Male; Mice; Mice, Inbred BALB C; Neutrophils; NF-kappa B; Peritonitis; Phospholipase D; Phosphotransferases (Alcohol Group Acceptor); Respiratory Burst; Resveratrol; Stilbenes | 2009 |