stilbenes and Lung-Diseases--Obstructive

stilbenes has been researched along with Lung-Diseases--Obstructive* in 3 studies

Reviews

2 review(s) available for stilbenes and Lung-Diseases--Obstructive

ArticleYear
Antioxidant and anti-inflammatory effects of resveratrol in airway disease.
    Antioxidants & redox signaling, 2010, Nov-15, Volume: 13, Issue:10

    Respiratory diseases, such as asthma and chronic obstructive pulmonary disease (COPD), are a significant and increasing global health problem. These diseases are characterized by airway inflammation, which develops in response to various stimuli. In asthma, inflammation is driven by exposure to a variety of triggers, including allergens and viruses, which activate components of both the innate and acquired immune responses. In COPD, exposure to cigarette smoke is the primary stimulus of airway inflammation. Activation of airway inflammatory cells leads to the release of excessive quantities of reactive oxygen species (ROS), resulting in oxidative stress. Antioxidants provide protection against the damaging effects of oxidative stress and thus may be useful in the management of inflammatory airways disease. Resveratrol, a polyphenol that demonstrates both antioxidative and anti-inflammatory functions, has been shown to improve outcomes in a variety of diseases, in particular, in cancer. We review the evidence for a protective role of resveratrol in respiratory disease. Mechanisms of resveratrol action that may be relevant to respiratory disease are described. We conclude that resveratrol has potential as a therapeutic agent in respiratory disease, which should be further investigated.

    Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Antioxidants; Humans; Inflammation; Lung Diseases, Obstructive; Oxidative Stress; Resveratrol; Stilbenes

2010
The potential role of natural agents in treatment of airway inflammation.
    Therapeutic advances in respiratory disease, 2007, Volume: 1, Issue:2

    Obstructive airway diseases including asthma, chronic obstructive pulmonary disease and cystic fibrosis present with dyspnea and variety of other symptoms. Physiologically, they are characterized by maximal expiratory flow limitation and pathologically, by inflammation of the airways and the lung parenchyma. Inflammation plays a major role in the gradual worsening of the lung function resulting in worsening symptoms. For many years, scientists focused their efforts in identifying various pathways involved in the chronic inflammation present in these diseases. Further, studies are underway to identify various molecular targets in these pathways for the purpose of developing novel therapeutic agents. Natural agents have been used for thousands of years in various cultures for the treatment of several medical conditions and have mostly proven to be safe. Recent in vivo and in vitro studies show potential anti-inflammatory role for some of the existing natural agents. This review provides an overview of the literature related to the anti-inflammatory effects of some of the natural agents which have potential value in the treatment of inflammatory lung diseases.

    Topics: Ambroxol; Anti-Inflammatory Agents, Non-Steroidal; Curcumin; Cystic Fibrosis; Diet; Expectorants; Humans; Justicia; Lung Diseases, Obstructive; Phytotherapy; Picrorhiza; Pneumonia; Prostaglandins; Resveratrol; Stilbenes; Treatment Outcome; Tylophora

2007

Other Studies

1 other study(ies) available for stilbenes and Lung-Diseases--Obstructive

ArticleYear
Retinoic acid signaling is essential for airway smooth muscle homeostasis.
    JCI insight, 2018, 08-23, Volume: 3, Issue:16

    Airway smooth muscle (ASM) is a dynamic and complex tissue involved in regulation of bronchomotor tone, but the molecular events essential for the maintenance of ASM homeostasis are not well understood. Observational and genome-wide association studies in humans have linked airway function to the nutritional status of vitamin A and its bioactive metabolite retinoic acid (RA). Here, we provide evidence that ongoing RA signaling is critical for the regulation of adult ASM phenotype. By using dietary, pharmacologic, and genetic models in mice and humans, we show that (a) RA signaling is active in adult ASM in the normal lung, (b) RA-deficient ASM cells are hypertrophic, hypercontractile, profibrotic, but not hyperproliferative, (c) TGF-β signaling, known to cause ASM hypertrophy and airway fibrosis in human obstructive lung diseases, is hyperactivated in RA-deficient ASM, (d) pharmacologic and genetic inhibition of the TGF-β activity in ASM prevents the development of the aberrant phenotype induced by RA deficiency, and (e) the consequences of transient RA deficiency in ASM are long-lasting. These results indicate that RA signaling actively maintains adult ASM homeostasis, and disruption of RA signaling leads to aberrant ASM phenotypes similar to those seen in human chronic airway diseases such as asthma.

    Topics: Adult; Animals; Benzoates; Cells, Cultured; Disease Models, Animal; Female; Fibrosis; Humans; Hypertrophy; Lung; Lung Diseases, Obstructive; Male; Mice; Mice, Transgenic; Muscle, Smooth; Myocytes, Smooth Muscle; Primary Cell Culture; Receptors, Retinoic Acid; Signal Transduction; Stilbenes; Tretinoin

2018