stilbenes and Leukemia--Myeloid

stilbenes has been researched along with Leukemia--Myeloid* in 8 studies

Other Studies

8 other study(ies) available for stilbenes and Leukemia--Myeloid

ArticleYear
Effect of methoxy stilbenes-analogs of resveratrol-on the viability and induction of cell cycle arrest and apoptosis in human myeloid leukemia cells.
    Molecular and cellular biochemistry, 2020, Volume: 474, Issue:1-2

    The present study aimed to evaluate the cytotoxicity and its mechanism of five synthetic methoxy stilbenes, namely 3,4,4'-trimethoxy, 3,4,2'-trimethoxy, 3,4,2',4'-tetramethoxy, 3,4,2',6'-tetramethoxy, and 3,4,2',4',6'-pentamethoxy-trans-stilbenes (MS), in comparison with resveratrol (RSV). Human promyelocytic (HL-60) and monocytic leukemia (THP-1) cells were treated with the tested compounds for 24 h, and cytotoxicity, cell cycle distribution, and apoptosis were evaluated. Significant differences were found in the susceptibility of these cell lines to all stilbenes, including RSV. The THP-1 cells were more resistant to cytotoxic activity of these compounds than HL-60 cells. Among the tested stilbenes, 3,4,4'-tri-MS and 3,4,2',4'-tetra-MS exhibited higher cytotoxicity toward both cell lines than RSV and the other methoxy stilbenes. This activity might be related to cell cycle arrest at the G2/M phase and induction of apoptosis. In this regard, 3,4,4'-tri-MS and 3,4,2',4'-tetra-MS at highest concentrations increased the p53 protein level particularly in HL-60 cells. Moreover, treatment with these derivatives increased the ratio of the proapoptotic Bax protein to the antiapoptotic Bcl-xl protein, suggesting the induction of apoptosis through the intrinsic mitochondrial pathway in both cell lines. Further studies are required to fully elucidate the mechanism of these activities.

    Topics: Antioxidants; Apoptosis; bcl-2-Associated X Protein; bcl-X Protein; Cell Cycle Checkpoints; Cell Survival; Gene Expression Regulation, Neoplastic; HL-60 Cells; Humans; Leukemia, Myeloid; Resveratrol; Stilbenes; Tumor Suppressor Protein p53

2020
Chemosensitizing AML cells by targeting bone marrow endothelial cells.
    Experimental hematology, 2016, Volume: 44, Issue:5

    Refractory disease is the greatest challenge in treating patients with acute myeloid leukemia (AML). Blood vessels may serve as sanctuary sites for AML. When AML cells were co-cultured with bone marrow endothelial cells (BMECs), a greater proportion of leukemia cells were in G0/G1. This led us to a strategy of targeting BMECs with tubulin-binding combretastatins, causing BMECs to lose their flat phenotype, degrade their cytoskeleton, cease growth, and impair migration despite unchanged BMEC viability and metabolism. Combretastatins also caused downregulation of BMEC adhesion molecules known to tether AML cells, including vascular cell adhesion molecule (VCAM)-1 and vascular endothelial (VE)-cadherin. When AML-BMEC co-cultures were treated with combretastatins, a significantly greater proportion of AML cells dislodged from BMECs and entered the G2/M cell cycle, suggesting enhanced susceptibility to cell cycle agents. Indeed, the combination of combretastatins and cytotoxic chemotherapy enhanced additive AML cell death. In vivo mice xenograft studies confirmed this finding by revealing complete AML regression after treatment with combretastatins and cytotoxic chemotherapy. Beyond highlighting the pathologic role of BMECs in the leukemia microenvironment as a protective reservoir of disease, these results support a new strategy for using vascular-targeting combretastatins in combination with cytotoxic chemotherapy to treat AML.

    Topics: Acute Disease; Animals; Antineoplastic Combined Chemotherapy Protocols; Bone Marrow Cells; Cell Adhesion; Cell Line, Tumor; Cell Survival; Cells, Cultured; Coculture Techniques; Cytarabine; Endothelial Cells; Flow Cytometry; Humans; Leukemia, Myeloid; Mice, Inbred NOD; Mice, Knockout; Mice, SCID; Microscopy, Confocal; Reactive Oxygen Species; Stilbenes; Time Factors; Xenograft Model Antitumor Assays

2016
Resveratrol induces apoptosis of leukemia cell line K562 by modulation of sphingosine kinase-1 pathway.
    International journal of clinical and experimental pathology, 2015, Volume: 8, Issue:3

    To explore the effects of resveratrol in a human myelogenous leukemia cell line K562 and its potential molecular mechanisms. The anti-proliferation effect of resveratrol-induced apoptosis on K562 cells were detected using MTT assay. Western blotting was performed for detecting changes of SphK1 expression in total cell protein and membrane/cytosol protein in K562 cells respectively after exposure to resveratrol. A biochemical assay was used to measure the activity of SphK after treatment of resveratrol, and then S1P and ceramide levels were examined using ELISA kits. Hochest 33258 staining and flow cytometry were applied to detect the apoptosis condition of K562 cells treated with resveratrol. Resveratrol inhibited the proliferation and induced apoptosis in K562 cells in a dose and time-dependent manner. Western blotting revealed that resveratrol did not affect total SphK1 expression level in K562 cells, but significantly changed the translocation of SphK1, the membrane SphK1 was decreased while cytosol SphK1 level was elevated. The activity of SphK1 in resveratrol treated groups was decreased compared to control group with a significant decrease of S1P and increase of ceramide level. Furthermore, Hoechst 33258 staining and Annexin V-FITC analysis confirmed the notable apoptotic effect of resveratrol in its anti-leukemia process. Resveratrol-induced proliferation inhibition of K562 cells might be mediated through its modulation activity of SphK1 pathway by regulating S1P and ceramide levels, which then affected the proliferation and apoptosis process of leukemia cells. SphK1/S1P pathway represents a target of resveratrol in human leukemia.

    Topics: Annexin A5; Antineoplastic Agents; Apoptosis; Cell Membrane; Cell Proliferation; Ceramides; Cytosol; Dose-Response Relationship, Drug; Humans; K562 Cells; Leukemia, Myeloid; Lysophospholipids; Phosphotransferases (Alcohol Group Acceptor); Protein Transport; Resveratrol; Signal Transduction; Sphingosine; Stilbenes; Time Factors

2015
[Effects of dihydroxy-stilbene compound Vam3 on airway inflammation, expression of ICAM-1, activities of NF-kappaB and MMP-9 in asthmatic mice].
    Yao xue xue bao = Acta pharmaceutica Sinica, 2010, Volume: 45, Issue:12

    The aim of the present study is to investigate the effects of Vam3 which is one of the dihydroxystilbene compounds on expressions of ICAM-1 in the lungs of OVA-induced asthmatic mice and the mechanisms of anti-airway inflammation. Balb/c mice were challenged with OVA inhalation. Lung tissues were stained with Mayer's hematoxylin and eosin for histopathologic examination. The expression of ICAM-1 in the lungs of mice was analyzed by Western blotting and immunohistochemistry method. The NF-kappaB activities were detected by NF-kappaB-luc reporter genetic transient transfection method. The activities of MMP-9 induced by LPS, TNF-alpha and PMA in THP-1 cells were determined by gelatin zymography method. The results showed that Vam3 could inhibit the expression of ICAM-1 in the OVA-induced mouse model. In addition, Vam3 could significantly suppress the activities of NF-kappaB in A549 cells and MMP-9 in THP-1 cells induced by LPS, TNF-alpha and PMA. These results suggested that Vam3 could alleviate the asthmatic inflammation by decreasing ICAM-1 expression in asthmatic mice, down regulating NF-kappaB and MMP-9 activities. Compound Vam3 showed inhibitory effects on inflammatory signal pathways involved in asthma.

    Topics: Animals; Anti-Asthmatic Agents; Anti-Inflammatory Agents; Asthma; Benzofurans; Cell Line, Tumor; Humans; Inflammation; Intercellular Adhesion Molecule-1; Leukemia, Myeloid; Lung; Lung Neoplasms; Male; Matrix Metalloproteinase 9; Mice; Mice, Inbred BALB C; NF-kappa B; Ovalbumin; Stilbenes

2010
Reversal of p-glycoprotein-mediated multidrug resistance by macrocyclic bisbibenzyl derivatives in adriamycin-resistant human myelogenous leukemia (K562/A02) cells.
    Toxicology in vitro : an international journal published in association with BIBRA, 2009, Volume: 23, Issue:1

    Macrocyclic bisbibenzyls, a class of characteristic natural molecules derived from liverworts, have diverse biological significances. Dihydroptychantol A (DHA) was identified to be an antifungal active macrocyclic bisbibenzyl from liverwort Asterella angusta. In an attempt to understand other biological activities of this compound, the chemical synthesized DHA and its analogues (compounds 1-3) were employed to test this possibility by using adriamycin-resistant K562/A02 cells. Among the tested compounds (1-4), DHA showed the strongest potency to increase adriamycin cytotoxicity toward K562/A02 cells by MTT assays and its reversal fold is 8.18 (20 microM). Mechanisms of DHA on p-glycoprotein (P-gp)-mediated multidrug resistance (MDR) were further investigated. Based on the flow cytometry, we detected the significant increase of adriamycin and rhodamine123 accumulation in K562/A02 cells exposed to various concentrations of DHA, meanwhile, notable decrease of rhodamine123 efflux was also observed, which revealed DHA caused a decline of P-gp activity. Furthermore, P-gp expression was analyzed by the flow cytometry and RT-PCR. Dose-dependent reduction of P-gp expression was measured in K562/A02 cells pretreated with DHA for 24h. No such results were found in parental K562 cells. These results demonstrated DHA reversed effectively MDR by blocking the drugs to be pumped out via inhibiting P-gp function and expression pathway.

    Topics: Antibiotics, Antineoplastic; Antineoplastic Agents, Phytogenic; ATP Binding Cassette Transporter, Subfamily B, Member 1; Cell Line, Tumor; Cell Survival; Dose-Response Relationship, Drug; Doxorubicin; Drug Resistance, Multiple; Drug Resistance, Neoplasm; Drug Screening Assays, Antitumor; Flow Cytometry; Gene Expression; Hepatophyta; Humans; Leukemia, Myeloid; Phenyl Ethers; Rhodamine 123; RNA, Messenger; Stilbenes; Structure-Activity Relationship

2009
Evaluation of antitumor effects of two vine stalk oligomers of resveratrol on a panel of lymphoid and myeloid cell lines: comparison with resveratrol.
    Life sciences, 2007, Nov-30, Volume: 81, Issue:23-24

    This study aims to evaluate and compare the antiproliferative and proapoptotic effects of resveratrol (trans-3,4',5-trihydoxystilbene) with two of its naturally occurring oligomers, epsilon-viniferin (a dimer) and miyabenol C (a trimer). Proliferation assays performed on myeloid and lymphoid cell lines show that the three compounds inhibit cell growth of all cell types tested, with miyabenol C being the most efficient (IC50 ranging from 10.8 to 29.4 muM). Further analysis performed on the multiple myeloma cell line U266 shows that all compounds modify cell cycle distribution probably via actions on different targets. Whereas cells treated with resveratrol accumulate in S phase, cells treated with epsilon-viniferin and miyabenol C accumulate in G2/M and G0/G1, respectively. Miyabenol C is also the most efficient at inducing cell death in U266 cells. All compounds induce apoptosis of U266 cells via mechanisms entirely dependent on caspase activation and associated with mitochondrial membrane potential disruption. Compounds do not act directly on the mitochondrial membrane, but could induce activation of upstream caspases such as caspase 8 and/or caspase 2, depending on the compound. In no case did upstream caspase 8 activation involve Fas/FasL interaction. Taken together, these results show that epsilon-viniferin and, more importantly, miyabenol C represent potent antitumor agents that require further investigation, either alone or in combination with resveratrol.

    Topics: Antineoplastic Agents, Phytogenic; Apoptosis; Caspases; Cell Cycle; Cell Line, Tumor; Cell Proliferation; Drug Screening Assays, Antitumor; Enzyme Activation; fas Receptor; Humans; Leukemia, Lymphoid; Leukemia, Myeloid; Membrane Potentials; Mitochondrial Membranes; Plants; Resveratrol; Stilbenes

2007
Resveratrol blocks interleukin-1beta-induced activation of the nuclear transcription factor NF-kappaB, inhibits proliferation, causes S-phase arrest, and induces apoptosis of acute myeloid leukemia cells.
    Blood, 2003, Aug-01, Volume: 102, Issue:3

    Resveratrol, an edible polyphenolic stilbene, has been reported to possess substantial antileukemic activities in different leukemia cell lines. We investigated whether resveratrol is active against fresh acute myeloid leukemia (AML) cells and its mechanism of action. Because interleukin 1beta(IL-1beta) plays a key role in proliferation of AML cells, we first tested the effect of resveratrol on the AML cell lines OCIM2 and OCI/AML3, both of which produce IL-1beta and proliferate in response to it. Resveratrol inhibited proliferation of both cell lines in a dose-dependent fashion (5-75 microM) by arresting the cells at S phase, thus preventing their progression through the cell cycle; IL-1beta partially reversed this inhibitory effect. Resveratrol significantly reduced production of IL-1beta in OCIM2 cells. It also suppressed the IL-1beta-induced activation of transcription factor nuclear factor kappaB (NF-kappaB), which modulates an array of signals controlling cellular survival, proliferation, and cytokine production. Indeed, incubation of OCIM2 cells with resveratrol resulted in apoptotic cell death. Because caspase inhibitors Ac-DEVD-CHO or z-DEVD-FMK partially reversed the antiproliferative effect of resveratrol, we tested its effect on the caspase pathway and found that resveratrol induced the activation of the cysteine protease caspase 3 and subsequent cleavage of the DNA repair enzyme poly (adenosine diphosphate [ADP]-ribose) polymerase. Finally, resveratrol suppressed colony-forming cell proliferation of fresh AML marrow cells from 5 patients with newly diagnosed AML in a dose-dependent fashion. Taken together, our data showing that resveratrol is an effective in vitro inhibitor of AML cells suggest that this compound may have a role in future therapies for AML.

    Topics: Acute Disease; Aged; Antineoplastic Agents, Phytogenic; Apoptosis; Bone Marrow; Cell Division; Female; Humans; Interleukin-1; Leukemia, Myeloid; Male; Middle Aged; NF-kappa B; Resveratrol; S Phase; Stilbenes; Tumor Cells, Cultured

2003
Resveratrol, a natural product derived from grapes, is a new inducer of differentiation in human myeloid leukemias.
    International journal of hematology, 2002, Volume: 75, Issue:5

    A natural product, resveratrol (3,4,40-trihydroxy-trans-stilbene), a phytoalexin found in grapes and other food products, is known as a cancer chemopreventive agent. We studied the in vitro biological activity of this compound by examining its effect on proliferation and differentiation in myeloid leukemia cell lines (HL-60, NB4, U937,THP-1, ML-1, Kasumi-1) and fresh samples from 17 patients with acute myeloid leukemia. Resveratrol (20 microM, 4 days) alone inhibited the growth in liquid culture of each of the 6 cell lines. Resveratrol (10 microM) enhanced the expression of adhesion molecules (CD11a, CD11b, CD18, CD54) in each of the cell lines except for Kasumi-1. Moreover, resveratrol (25 microM, 4 days) induced 37% of U937 cells to produce superoxide as measured by the ability to reduce nitroblue tetrazolium (NBT). The combination of resveratrol (10 microM) and all-trans-retinoic acid (ATRA) (50 nM, 4 days) induced 95% of the NB4 cells to become NBT-positive, whereas <1% and 12% of the cells became positive for NBT after a similar exposure to either resveratrol or ATRA alone, respectively. In U937 cells exposed to resveratrol (25 microM, 3 days), the binding activity of nuclear factor-kappaB (NFkappaB) protein was suppressed. Eight of 19 samples of fresh acute leukemia cells reduced NBT after exposure to resveratrol (20 microM, 4 days). Taken together, these findings show that resveratrol inhibits proliferation and induces differentiation of myeloid leukemia cells.

    Topics: Antineoplastic Agents, Phytogenic; Cell Adhesion Molecules; Cell Differentiation; Cell Division; Drug Synergism; Humans; Leukemia, Myeloid; NF-kappa B; Resveratrol; Stilbenes; Superoxides; Tretinoin; Tumor Cells, Cultured; Vitis

2002