stilbenes and Hypoglycemia

stilbenes has been researched along with Hypoglycemia* in 2 studies

Other Studies

2 other study(ies) available for stilbenes and Hypoglycemia

ArticleYear
Resveratrol ameliorates mitochondrial dysfunction but increases the risk of hypoglycemia following hemorrhagic shock.
    The journal of trauma and acute care surgery, 2014, Volume: 77, Issue:6

    Hemorrhagic shock (HS) may contribute to organ failure, by profoundly altering mitochondrial function. Resveratrol (RSV), a naturally occurring polyphenol, has been shown to promote mitochondrial function and regulate glucose homeostasis in diabetes. We hypothesized that RSV during resuscitation would ameliorate HS-induced mitochondrial dysfunction and improve hyperglycemia following acute blood loss.. With the use a decompensated HS model, male Long-Evans rats (n = 6 per group) were resuscitated with lactated Ringer's solution with or without RSV (30 mg/kg) and were killed before hemorrhage (sham), at severe shock, following resuscitation, and 18 hours after resuscitation. At each time point, the liver and kidney mitochondria were isolated to assess individual respiratory complexes (CI, CII, and CIV) and the production of reactive oxygen species (ROS). Blood samples were assayed for glucose, insulin, corticosterone, total glucagon-like peptide (GLP-1), glucagon, and serum cytokine levels. The Homeostatic Model Assessment-Insulin Resistance index was used to quantify insulin resistance.. RSV supplementation following HS significantly improved mitochondrial function and decreased mitochondrial ROS production in both liver and kidney. RSV-treated animals had significantly lower blood glucose levels following resuscitation when compared with sham animals (116.0 ± 20.2 mg/dL vs. 227.7 ± 8.3 mg/dL, p < 0.05) or those resuscitated with lactated Ringer's solution (116.0 ± 20.2 mg/dL vs. 359.0 ± 79.5 mg/dL, p < 0.05). RSV supplementation was associated with significantly decreased plasma insulin levels (1.0 ± 0.4 ng/mL vs. 6.5 ± 3.7 ng/mL, p < 0.05), increased total GLP-1 levels (385.8 ± 56.6 ng/mL vs. 187.3 ± 11.1 ng/mL, p < 0.05), and a lower natural Log Homeostatic Model Assessment-Insulin Resistance index (1.30 ± 0.42 vs. 4.18 ± 0.68, p < 0.05) but had minimal effect on plasma corticosterone, glucagon, or cytokine levels.. Resuscitation with RSV restores mitochondrial function and decreases insulin resistance but may be associated with increased hypoglycemia. The observed antiglycemic effects of RSV may be mediated by decreased mitochondrial ROS and increased GLP-1 secretion.

    Topics: Animals; Blood Glucose; Corticosterone; Glucagon; Glucagon-Like Peptide 1; Hypoglycemia; Insulin; Insulin Resistance; Kidney; Male; Mitochondria; Mitochondria, Liver; Rats, Long-Evans; Reactive Oxygen Species; Resuscitation; Resveratrol; Shock, Hemorrhagic; Stilbenes

2014
Desoxyrhaponticin (3,5-dihydroxy-4'-methoxystilbene 3-O-beta-D-glucoside) inhibits glucose uptake in the intestine and kidney: In vitro and in vivo studies.
    The Journal of pharmacology and experimental therapeutics, 2007, Volume: 320, Issue:1

    Rhubarb extracts have been reported to improve oral glucose tolerance in diabetic animals. In the present study we have investigated the antidiabetic actions of desoxyrhaponticin, a major stilbene in rhubarb, as a glucose uptake inhibitor. Desoxyrhaponticin was demonstrated to inhibit glucose uptake in rabbit intestinal membrane vesicles as well as in rat everted gut sleeves, with IC50 values of 148.3 and 30.9 microM, respectively. Kinetics studies revealed that desoxyrhaponticin is a competitive inhibitor of glucose uptake in both systems. Moreover, desoxyrhaponticin could reduce glucose uptake in the intestinal membrane vesicles of both normal and diabetic rats. In addition, glucose uptake in the renal membrane vesicles of both normal and diabetic rats was reduced by desoxyrhaponticin. Under the inhibition of desoxyrhaponticin, uptake of glucose in both the intestinal and renal membrane vesicles of the normal rats was no different from that of the diabetic rats. The IC50 values of the uptake inhibition in the renal membrane vesicles of normal and diabetic rats were 118.8 and 115.7 microM, respectively. In a type 2 diabetic animal model in which rats have been treated with streptozotocin at the neonatal stage, postprandial hyperglycemia was significantly suppressed by oral administration of this compound (300 mg/kg b.wt.). These results suggest that desoxyrhaponticin is an agent that is potentially effective in controlling postprandial hyperglycemia in diabetes. The in vivo antidiabetic action of this compound can be explained, in part at least, by inhibition of glucose transport in the small intestine and inhibition of glucose reabsorption in the kidney.

    Topics: Animals; Biological Transport; Diabetes Mellitus, Experimental; Glucose; Glucosides; Hyperglycemia; Hypoglycemia; Hypoglycemic Agents; Intestinal Mucosa; Kidney; Microvilli; Rabbits; Rats; Rats, Wistar; Stilbenes

2007