stilbenes has been researched along with Disease-Models--Animal* in 766 studies
54 review(s) available for stilbenes and Disease-Models--Animal
Article | Year |
---|---|
Resveratrol, pterostilbene, and dementia.
Resveratrol is a natural phytoestrogen with neuroprotective properties. Polyphenolic compounds including resveratrol exert in vitro antioxidant, anti-inflammatory, and antiamyloid effects. Resveratrol and its derivative pterostilbene are able to cross the blood-brain barrier and to influence brain activity. The present short review summarizes the available evidence regarding the effects of these polyphenols on pathology and cognition in animal models and human subjects with dementia. Numerous investigations in cellular and mammalian models have associated resveratrol and pterostilbene with protection against dementia syndromes such as Alzheimer's disease (AD) and vascular dementia. The neuroprotective activity of resveratrol and pterostilbene demonstrated in in vitro and in vivo studies suggests a promising role for these compounds in the prevention and treatment of dementia. In comparison to resveratrol, pterostilbene appears to be more effective in combatting brain changes associated with aging. This may be attributed to the more lipophilic nature of pterostilbene with its two methoxyl groups compared with the two hydroxyl groups of resveratrol. The findings of available intervention trials of resveratrol in individuals with mild cognitive impairment or AD do not provide evidence of neuroprotective or therapeutic effects. Future clinical trials should be conducted with long-term exposure to preparations of resveratrol and pterostilbene with high bioavailability. © 2017 BioFactors, 44(1):83-90, 2018. Topics: Alzheimer Disease; Animals; Antioxidants; Biological Transport; Blood-Brain Barrier; Brain; Clinical Trials as Topic; Cognitive Dysfunction; Dementia; Disease Models, Animal; Humans; Maze Learning; Neuroprotective Agents; Resveratrol; Stilbenes | 2018 |
An Interplay between Senescence, Apoptosis and Autophagy in Glioblastoma Multiforme-Role in Pathogenesis and Therapeutic Perspective.
Autophagy, cellular senescence, programmed cell death and necrosis are key responses of a cell facing a stress. These effects are partly interconnected, but regulation of their mutual interactions is not completely clear. That regulation seems to be especially important in cancer cells, which have their own program of development and demand more nutrition and energy than normal cells. Glioblastoma multiforme (GBM) belongs to the most aggressive and most difficult to cure cancers, so studies on its pathogenesis and new therapeutic strategies are justified. Using an animal model, it was shown that autophagy is required for GBM development. Temozolomide (TMZ) is the key drug in GBM chemotherapy and it was reported to induce senescence, autophagy and apoptosis in GBM. In some GBM cells, TMZ induces small toxicity despite its significant concentration and GBM cells can be intrinsically resistant to apoptosis. Resveratrol, a natural compound, was shown to potentiate anticancer effect of TMZ in GBM cells through the abrogation G2-arrest and mitotic catastrophe resulting in senescence of GBM cells. Autophagy is the key player in TMZ resistance in GBM. TMZ can induce apoptosis due to selective inhibition of autophagy, in which autophagic vehicles accumulate as their fusion with lysosomes is blocked. Modulation of autophagic action of TMZ with autophagy inhibitors can result in opposite outcomes, depending on the step targeted in autophagic flux. Studies on relationships between senescence, autophagy and apoptosis can open new therapeutic perspectives in GBM. Topics: Animals; Antineoplastic Agents, Alkylating; Apoptosis; Autophagy; Brain Neoplasms; Cellular Senescence; Dacarbazine; Disease Models, Animal; DNA Damage; Glioblastoma; Humans; Mice; Resveratrol; Stilbenes; Temozolomide | 2018 |
Resveratrol as a Novel Anti-Herpes Simplex Virus Nutraceutical Agent: An Overview.
The herpes simplex virus (HSV) is a common human virus affecting many people worldwide. HSV infections manifest with lesions that occur in different parts of the body, including oral, ocular, nasal, and genital skin and mucosa. In rare cases, HSV infections can be serious and lethal. Several anti-HSV drugs have been developed, but the existence of mutant viruses resistant to these drugs led to the individuation of novel antiviral agents. Plant-derived bioactive compounds, and more specifically polyphenols, have been demonstrated to exert marked anti-HSV activity and, among these, resveratrol (RSV) would be considered a good candidate. The purpose of this manuscript is to review the available literature elucidating the efficacy of RSV against HSV and the main demonstrated mechanisms of action. Topics: Animals; Antiviral Agents; Dietary Supplements; Disease Models, Animal; Herpes Simplex; Humans; Resveratrol; Simplexvirus; Stilbenes; Treatment Outcome | 2018 |
Resveratrol as an anti-cancer agent: A review.
Owing to their antimicrobial, antioxidant, and anti-inflammatory activity, grapes (Vitis vinifera L.) are the archetypal paradigms of fruits used not only for nutritional purposes, but also for exclusive therapeutics. Grapes are a prominent and promising source of phytochemicals, especially resveratrol, a phytoalexin antioxidant found in red grapes which has both chemopreventive and therapeutic effects against various ailments. Resveratrol's role in reducing different human cancers, including breast, cervical, uterine, blood, kidney, liver, eye, bladder, thyroid, esophageal, prostate, brain, lung, skin, gastric, colon, head and neck, bone, ovarian, and cervical, has been reviewed. This review covers the literature that deals with the anti-cancer mechanism of resveratrol with special reference to antioxidant potential. Furthermore, this article summarizes the literature pertaining to resveratrol as an anti-cancer agent. Topics: Animals; Antineoplastic Agents; Antineoplastic Agents, Phytogenic; Antioxidants; Cell Line, Tumor; Disease Models, Animal; Fruit; Humans; Neoplasms; Phytoalexins; Phytochemicals; Resveratrol; Sesquiterpenes; Stilbenes; Vitis | 2018 |
The grapes and wrath: using resveratrol to treat the pathophysiology of hemorrhagic shock.
Resveratrol, a naturally occurring polyphenol found in grapes, has been shown to reduce oxidative stress and inflammation in a variety of conditions. Recently, resveratrol has been investigated as a potential adjunct to resuscitation therapy for hemorrhagic shock-a condition characterized by tissue hypoxia, mitochondrial dysfunction, and inflammation. Although standard resuscitation restores tissue perfusion, it can exacerbate oxidative stress and organ damage. In rodent models of severe hemorrhagic shock, resveratrol mitigates reperfusion injury, preserves organ function, and improves survival. While many of these benefits can be attributed to its ability to activate sirtuin 1, resveratrol interacts with many targets that are relevant to ischemia-reperfusion. Here, we explore the probable mechanisms, potential benefits, and possible problems associated with administering resveratrol as an adjunct during resuscitation of hemorrhagic shock. Topics: Animals; Antioxidants; Disease Models, Animal; Humans; Oxidative Stress; Resuscitation; Resveratrol; Shock, Hemorrhagic; Stilbenes | 2017 |
Dietary (Poly)phenols, Brown Adipose Tissue Activation, and Energy Expenditure: A Narrative Review.
The incidence of overweight and obesity has reached epidemic proportions, making the control of body weight and its complications a primary health problem. Diet has long played a first-line role in preventing and managing obesity. However, beyond the obvious strategy of restricting caloric intake, growing evidence supports the specific antiobesity effects of some food-derived components, particularly (poly)phenolic compounds. The relatively new rediscovery of active brown adipose tissue in adult humans has generated interest in this tissue as a novel and viable target for stimulating energy expenditure and controlling body weight by promoting energy dissipation. This review critically discusses the evidence supporting the concept that the antiobesity effects ascribed to (poly)phenols might be dependent on their capacity to promote energy dissipation by activating brown adipose tissue. Although discrepancies exist in the literature, most in vivo studies with rodents strongly support the role of some (poly)phenol classes, particularly flavan-3-ols and resveratrol, in promoting energy expenditure. Some human data currently are available and most are consistent with studies in rodents. Further investigation of effects in humans is warranted. Topics: Adipose Tissue, Brown; Adrenergic Agonists; Animals; Anti-Obesity Agents; Body Weight; Diet; Disease Models, Animal; Energy Metabolism; Flavonoids; Humans; Obesity; Polyphenols; Resveratrol; Stilbenes; Tea; Thermogenesis; Uncoupling Protein 1 | 2017 |
The Beneficial Effects of Quercetin, Curcumin, and Resveratrol in Obesity.
Over the past two decades, obesity has been one of the major public health concerns in most countries. In the search for new molecules that could be used for the treatment of obesity, good perspectives have been opened up for polyphenols, a class of natural bioactive phytochemicals. Experimental and limited clinical trial evidence supports that some polyphenols such as quercetin, curcumin, and resveratrol have potential benefit functions on obesity treatment. This brief review focuses on the main functions of the above-named polyphenols on adipose tissue. These polyphenols may play beneficial effects on adipose tissue under obese condition by alleviating intracellular oxidative stress, reducing chronic low-grade inflammation, inhibiting adipogenesis and lipogenesis, and suppressing the differentiation of preadipocytes to mature adipocytes. Topics: Animals; Antioxidants; Curcumin; Disease Models, Animal; Humans; Mice; Obesity; Quercetin; Rats; Resveratrol; Stilbenes | 2017 |
SIRT1 as a Promising Novel Therapeutic Target for Myocardial Ischemia Reperfusion Injury and Cardiometabolic Disease.
Cardiovascular diseases, especially ischemic heart disease and cardiometabolic disease, remain to be the leading cause of morbidity and mortality worldwide. Despite recent progress in diagnostic and therapeutic approaches, the incidence of cardiovascular disease is still rising. Therefore, alternative favorable treatment is urgently needed to rescue the fast growing numbers of patients.. Herein we aimed to review the relevant role and explore the possibility of SIRT1 as a promising target for protection of heart from ischemia/reperfusion injury and cardiometabolic diseases.. The activation of SIRT1 participates in a variety of important metabolic and physiologic processes including stress resistance, metabolism, apoptosis and energy balance in heart ischemia injury and cardiometabolic disease.. Current medication targeting SIRT1 may represent a new therapeutic trend for the prevention of cardiovascular disease that is related to energy balance and metabolism. Topics: Animals; Apoptosis; Disease Models, Animal; Heterocyclic Compounds, 4 or More Rings; Humans; Metabolic Diseases; Molecular Targeted Therapy; Myocardial Ischemia; Myocardial Reperfusion Injury; Myocytes, Cardiac; Resveratrol; Sirtuin 1; Stilbenes; Transcriptional Activation | 2017 |
Resveratrol, Potential Therapeutic Interest in Joint Disorders: A Critical Narrative Review.
Trans-resveratrol (t-Res) is a natural compound of a family of hydroxystilbenes found in a variety of spermatophyte plants. Because of its effects on lipids and arachidonic acid metabolisms, and its antioxidant activity, t-Res is considered as the major cardioprotective component of red wine, leading to the "French Paradox" health concept. In the past decade, research on the effects of resveratrol on human health has developed considerably in diverse fields such as cancer, neurodegenerative and cardiovascular diseases, and metabolic disorders. In the field of rheumatic disorders, in vitro evidence suggest anti-inflammatory, anti-catabolic, anti-apoptotic and anti-oxidative properties of t-Res in various articular cell types, including chondrocytes and synoviocytes, along with immunomodulation properties on T and B lymphocytes. In preclinical models of osteoarthritis and rheumatoid arthritis, resveratrol has shown joint protective effects, mainly mediated by decreased production of pro-inflammatory and pro-degradative soluble factors, and modulation of cellular and humoral responses. Herein, we comprehensively reviewed evidence supporting a potential therapeutic interest of t-Res in treating symptoms related to rheumatic disorders. Topics: Animals; Anti-Inflammatory Agents; Antioxidants; Arthritis, Rheumatoid; Biological Availability; Disease Models, Animal; Humans; Resveratrol; Stilbenes | 2017 |
Potential benefits of phytochemicals against Alzheimer's disease.
Our current therapeutic drugs for Alzheimer's disease are predominantly derived from the alkaloid class of plant phytochemicals. These drugs, such as galantamine and rivastigmine, attenuate the decline in the cholinergic system but, as the alkaloids occupy the most dangerous end of the phytochemical spectrum (indeed they function as feeding deterrents and poisons to other organisms within the plant itself), they are often associated with unpleasant side effects. In addition, these cholinesterase inhibiting alkaloids target only one system in a disorder, which is typified by multifactorial deficits. The present paper will look at the more benign terpene (such as Ginkgo biloba, Ginseng, Melissa officinalis (lemon balm) and Salvia lavandulaefolia (sage)) and phenolic (such as resveratrol) phytochemicals; arguing that they offer a safer alternative and that, as well as demonstrating efficacy in cholinesterase inhibition, these phytochemicals are able to target other salient systems such as cerebral blood flow, free radical scavenging, anti-inflammation, inhibition of amyloid-β neurotoxicity, glucoregulation and interaction with other neurotransmitters (such as γ-aminobutyric acid) and signalling pathways (e.g. via kinase enzymes). Topics: Alkaloids; Alzheimer Disease; Animals; Cholinesterase Inhibitors; Disease Models, Animal; Galantamine; Ginkgo biloba; Humans; Melissa; Panax; Phytochemicals; Plant Extracts; Resveratrol; Rivastigmine; Salvia officinalis; Stilbenes; Terpenes | 2017 |
Bioactivation of Phytoestrogens: Intestinal Bacteria and Health.
Phytoestrogens are polyphenols similar to human estrogens found in plants or derived from plant precursors. Phytoestrogens are found in high concentration in soya, flaxseed and other seeds, fruits, vegetables, cereals, tea, chocolate, etc. They comprise several classes of chemical compounds (stilbenes, coumestans, isoflavones, ellagitannins, and lignans) which are structurally similar to endogenous estrogens but which can have both estrogenic and antiestrogenic effects. Although epidemiological and experimental evidence indicates that intake of phytoestrogens in foods may be protective against certain chronic diseases, discrepancies have been observed between in vivo and in vitro experiments. The microbial transformations have not been reported so far in stilbenes and coumestans. However, isoflavones, ellagitanins, and lignans are metabolized by intestinal bacteria to produce equol, urolithins, and enterolignans, respectively. Equol, urolithin, and enterolignans are more bioavailable, and have more estrogenic/antiestrogenic and antioxidant activity than their precursors. Moreover, equol, urolithins and enterolignans have anti-inflammatory effects and induce antiproliferative and apoptosis-inducing activities. The transformation of isoflavones, ellagitanins, and lignans by intestinal microbiota is essential to be protective against certain chronic diseases, as cancer, cardiovascular disease, osteoporosis, and menopausal symptoms. Bioavailability, bioactivity, and health effects of dietary phytoestrogens are strongly determined by the intestinal bacteria of each individual. Topics: Animals; Chocolate; Chronic Disease; Coumarins; Disease Models, Animal; Edible Grain; Flax; Fruit; Gastrointestinal Microbiome; Glycine max; Humans; Hydrolyzable Tannins; Intestines; Isoflavones; Lignans; Phytoestrogens; Polyphenols; Stilbenes; Tea; Vegetables | 2016 |
Combination chemoprevention with grape antioxidants.
Antioxidant ingredients present in grape have been extensively investigated for their cancer chemopreventive effects. However, much of the work has been done on individual ingredients, especially focusing on resveratrol and quercetin. Phytochemically, whole grape represents a combination of numerous phytonutrients. Limited research has been done on the possible synergistic/additive/antagonistic interactions among the grape constituents. Among these phytochemical constituents of grapes, resveratrol, quercetin, kaempferol, catechin, epicatechin, and anthocyanins (cyanidin and malvidin) constitute more than 70% of the grape polyphenols. Therefore, these have been relatively well studied for their chemopreventive effects against a variety of cancers. While a wealth of information is available individually on cancer chemopreventive/anti-proliferative effects of resveratrol and quercetin, limited information is available regarding the other major constituents of grape. Studies have also suggested that multiple grape antioxidants, when used in combination, alone or with other agents/drugs show synergistic or additive anti-proliferative response. Based on strong rationale emanating from published studies, it seems probable that a combination of multiple grape ingredients alone or together with other agents could impart 'additive synergism' against cancer. Topics: Animals; Anthocyanins; Anticarcinogenic Agents; Antineoplastic Combined Chemotherapy Protocols; Antioxidants; Catechin; Cell Line, Tumor; Chemoprevention; Disease Models, Animal; Humans; Kaempferols; Neoplasms; Plant Extracts; Polyphenols; Quercetin; Resveratrol; Stilbenes; Vitis | 2016 |
Prevention and treatment of cancers by immune modulating nutrients.
Epidemiological and laboratory data support the protective effects of bioactive nutrients in our diets for various diseases. Along with various factors, such as genetic history, alcohol, smoking, exercise, and dietary choices play a vital role in affecting an individual's immune responses toward a transforming cell, by either preventing or accelerating a neoplastic transformation. Ample evidence suggests that dietary nutrients control the inflammatory and protumorigenic responses in immune cells. Immunoprevention is usually associated with the modulation of immune responses that help in resolving the inflammation, thus improving clinical outcome. Various metabolic pathway-related nutrients, including glutamine, arginine, vitamins, minerals, and long-chain fatty acids, are important components of immunonutrient mixes. Epidemiological studies related to these substances have reported different results, with no or minimal effects. However, several studies suggest that these nutrients may have immune-modulating effects that may lower cancer risk. Preclinical studies submit that most of these components may provide beneficial effects. The present review discusses the available data, the immune-modulating functions of these nutrients, and how these substances could be used to study immune modulation in a neoplastic environment. Further research will help to determine whether the mechanistic signaling pathways in immune cells altered by nutrients can be exploited for cancer prevention and treatment. Topics: Animals; Arginine; Catechin; Cell Line, Tumor; Diet; Disease Models, Animal; Fatty Acids, Unsaturated; Glutamine; Humans; Isothiocyanates; Lignans; Meta-Analysis as Topic; Micronutrients; Neoplasms; Observational Studies as Topic; Phytochemicals; Polyphenols; Randomized Controlled Trials as Topic; Stilbenes | 2016 |
Sulforaphane and Other Nutrigenomic Nrf2 Activators: Can the Clinician's Expectation Be Matched by the Reality?
The recognition that food-derived nonnutrient molecules can modulate gene expression to influence intracellular molecular mechanisms has seen the emergence of the fields of nutrigenomics and nutrigenetics. The aim of this review is to describe the properties of nutrigenomic activators of transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2), comparing the potential for sulforaphane and other phytochemicals to demonstrate clinical efficacy as complementary medicines. Broccoli-derived sulforaphane emerges as a phytochemical with this capability, with oral doses capable of favourably modifying genes associated with chemoprevention. Compared with widely used phytochemical-based supplements like curcumin, silymarin, and resveratrol, sulforaphane more potently activates Nrf2 to induce the expression of a battery of cytoprotective genes. By virtue of its lipophilic nature and low molecular weight, sulforaphane displays significantly higher bioavailability than the polyphenol-based dietary supplements that also activate Nrf2. Nrf2 activation induces cytoprotective genes such as those playing key roles in cellular defense mechanisms including redox status and detoxification. Both its high bioavailability and significant Nrf2 inducer capacity contribute to the therapeutic potential of sulforaphane-yielding supplements. Topics: Animals; Anticarcinogenic Agents; Area Under Curve; Brassica; Chemoprevention; Curcumin; Disease Models, Animal; Exercise; Gene Expression Profiling; Glucosinolates; Glycoside Hydrolases; Humans; Isothiocyanates; NAD(P)H Dehydrogenase (Quinone); NF-E2-Related Factor 2; Nitriles; Nutrigenomics; Nutritional Sciences; Oxidation-Reduction; Phytochemicals; Resveratrol; Signal Transduction; Silymarin; Stilbenes; Sulfoxides | 2016 |
Impact of nanotechnology on the delivery of natural products for cancer prevention and therapy.
Chemoprevention of human cancer by dietary products is a practical approach of cancer control, especially when chemoprevention is involved during the early stages of the carcinogenesis process. Research over the last few decades has clearly demonstrated the efficacy of dietary products for chemoprevention in cell culture and preclinical animal model systems. However, these in vitro and in vivo effects have not been able to be translated to bedside for clinical use. Among many reasons, inefficient systemic delivery and bioavailability of promising chemopreventive agents are considered to significantly contribute to such a disconnection. Since its advent in the field of cancer, nanotechnology has provided researchers with expertise to explore new avenues for diagnosis, prevention, and therapy of the disease. In a similar trait, we introduced a novel concept in which nanotechnology was utilized for enhancing the outcome of chemoprevention (Cancer Res. 2009; 69:1712-1716). This idea, which we termed as 'nanochemoprevention', was exploited by several laboratories and has now become an advancing field in chemoprevention research. This review summarizes some of these applications of nanotechnology in medicine, particularly focused on controlled and sustained release of bioactive compounds with emphasis on current and future utilization of nanochemoprevention for prevention and therapy of cancer. Topics: Animals; Anticarcinogenic Agents; Biological Products; Catechin; Cell Line, Tumor; Chemoprevention; Curcumin; Disease Models, Animal; Humans; Nanoparticles; Nanotechnology; Neoplasms; Resveratrol; Stilbenes | 2016 |
Anti-Oxidant, Anti-Inflammatory and Anti-Angiogenic Properties of Resveratrol in Ocular Diseases.
Resveratrol (3,4',5 trihydroxy-trans-stilbene) is one of the best known phytophenols with pleiotropic properties. It is a phytoalexin produced by vine and it leads to the stimulation of natural plant defenses but also exhibits many beneficial effects in animals and humans by acting on a wide range of organs and tissues. These include the prevention of cardiovascular diseases, anti-cancer potential, neuroprotective effects, homeostasia maintenance, aging delay and a decrease in inflammation. Age-related macular degeneration (AMD) is one of the main causes of deterioration of vision in adults in developed countries This review deals with resveratrol and ophthalmology by focusing on the antioxidant, anti-inflammatory, and anti-angiogenic effects of this molecule. The literature reports that resveratrol is able to act on various cell types of the eye by increasing the level of natural antioxidant enzymatic and molecular defenses. Resveratrol anti-inflammatory effects are due to its capacity to limit the expression of pro-inflammatory factors, such as interleukins and prostaglandins, and also to decrease the chemo-attraction and recruitment of immune cells to the inflammatory site. In addition to this, resveratrol was shown to possess anti-VEGF effects and to inhibit the proliferation and migration of vascular endothelial cells. Resveratrol has the potential to be used in a range of human ocular diseases and conditions, based on animal models and in vitro experiments. Topics: Angiogenesis Inhibitors; Animals; Anti-Inflammatory Agents; Antioxidants; Disease Models, Animal; Drug Evaluation, Preclinical; Eye Diseases; Gene Expression Regulation; Humans; Resveratrol; Stilbenes | 2016 |
Targeting cancer stem-like cells using dietary-derived agents - Where are we now?
Diet has been linked to an overwhelming proportion of cancers. Current chemotherapy and targeted therapies are limited by toxicity and the development of resistance against these treatments results in cancer recurrence or progression. In vitro evidence indicates that a number of dietary-derived agents have activity against a highly tumorigenic, chemoradiotherapy resistant population of cells within a tumour. This population is associated with cancer recurrence and is therefore clinically significant. Targeting this subpopulation, termed cancer stem-like cells with dietary-derived agents provides a potentially low toxicity strategy to enhance current treatment regimens. In addition, dietary-derived compounds also provide a novel approach to cancer prevention strategies. This review focusses on selected diet-derived agents that have been shown to specifically target cancer stem-like cells using in vivo models, or in clinical trials. Furthermore, the potential limitations of these studies are discussed, and areas of research that need to be addressed to allow successful translation of dietary-derived agents to the clinical arena are highlighted. Topics: Animals; Anticarcinogenic Agents; Catechin; Cell Line, Tumor; Curcumin; Diet; Disease Models, Animal; Flavonoids; Humans; Isothiocyanates; Neoplasms; Neoplastic Stem Cells; Randomized Controlled Trials as Topic; Resveratrol; Stilbenes; Sulfoxides; Vitamin A | 2016 |
Nutritional Epigenetics and the Prevention of Hepatocellular Carcinoma with Bioactive Food Constituents.
Hepatocellular carcinoma (HCC) is an aggressive and life-threatening disease often diagnosed at intermediate or advanced stages, which substantially limits therapeutic approaches to its successful treatment. This indicates that the prevention of HCC may be the most promising strategy in reducing its incidence and mortality. Emerging evidence indicates that numerous nutrients and nonnutrient dietary bioactive components can reduce the occurrence and/or delay the development of HCC through modifications of deregulated epigenetic mechanisms. This review examines the existing knowledge on the epigenetic mechanism-based studies in in vitro and in vivo models of HCC on the chemopreventive potential of epigenetic food components, including dietary methyl-group donors, epigallocatechin-3-gallate, sodium butyrate, resveratrol, curcumin, and sulforaphane, on liver carcinogenesis. Future direction and potential challenges in the effective use of bioactive food constituents in the prevention of HCC are highlighted and discussed. Topics: Animals; Butyric Acid; Carcinoma, Hepatocellular; Catechin; Cell Line, Tumor; Curcumin; Disease Models, Animal; DNA Methylation; Epigenesis, Genetic; Food; Humans; Isothiocyanates; Phytochemicals; Resveratrol; Stilbenes; Sulfoxides | 2016 |
Challenges in Analyzing the Biological Effects of Resveratrol.
The suggested health effects (e.g., disease prevention) of dietary bioactive compounds such as resveratrol are challenging to prove in comparison to man-made drugs developed for therapeutic purposes. Dietary bioactive compounds have multiple cellular targets and therefore have a variety of biological effects. Extrapolating the biological effects of dietary compounds from in vitro and in vivo animal experiments to humans may lead to over- or under-estimation of the effect and role of these compounds. The present paper will discuss a few of these challenges and suggest directions for future research. Questions we address include: (1) Is the combinatorial effect of resveratrol and other compounds real? (2) What are the real and relevant doses of resveratrol after administration? and (3) Is it possible to estimate the preventive effect of resveratrol by clinical trials using standard experimental designs? The examples concerning resveratrol taken from the scientific literature are mainly from 2010 and later. The challenges pointed out in this review are similar to most naturally occurring bioactive compounds. Topics: Alzheimer Disease; Animals; Antioxidants; Biological Availability; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Interactions; Humans; Metabolic Diseases; Neoplasms; Phytochemicals; Randomized Controlled Trials as Topic; Resveratrol; Stilbenes | 2016 |
Resveratrol: A Potential Hippocampal Plasticity Enhancer.
The search for molecules capable of restoring altered hippocampal plasticity in psychiatric and neurological conditions is one of the most important tasks of modern neuroscience. It is well established that neural plasticity, such as the ability of the postnatal hippocampus to continuously generate newly functional neurons throughout life, a process called adult hippocampal neurogenesis (AHN), can be modulated not only by pharmacological agents, physical exercise, and environmental enrichment, but also by "nutraceutical" agents. In this review we focus on resveratrol, a phenol and phytoalexin found in the skin of grapes and red berries, as well as in nuts. Resveratrol has been reported to have antioxidant and antitumor properties, but its effects as a neural plasticity inducer are still debated. The current review examines recent evidence implicating resveratrol in regulating hippocampal neural plasticity and in mitigating the effects of various disorders and diseases on this important brain structure. Overall, findings show that resveratrol can improve cognition and mood and enhance hippocampal plasticity and AHN; however, some studies report opposite effects, with resveratrol inhibiting aspects of AHN. Therefore, further investigation is needed to resolve these controversies before resveratrol can be established as a safe coadjuvant in preventing and treating neuropsychiatric conditions. Topics: Aging; Animals; Disease Models, Animal; Fatigue; Hippocampus; Neurogenesis; Neuronal Plasticity; Resveratrol; Stilbenes; Stress, Physiological; Stroke | 2016 |
Biological Activities of 2,3,5,4'-Tetrahydroxystilbene-2-O-β-D-Glucoside in Antiaging and Antiaging-Related Disease Treatments.
2,3,5,4'-Tetrahydroxystilbene-2-O-β-D-glucoside (THSG) is active component of the Chinese medicinal plant Polygonum multiflorum Thunb. (THSG). Pharmacological studies have demonstrated that THSG exhibits numerous biological functions in treating atherosclerosis, lipid metabolism, vascular and cardiac remodeling, vascular fibrosis, cardiac-cerebral ischemia, learning and memory disorders, neuroinflammation, Alzheimer and Parkinson diseases, diabetic complications, hair growth problems, and numerous other conditions. This review focuses on the biological effects of THSG in antiaging and antiaging-related disease treatments and discusses its molecular mechanisms. Topics: Aging; Animals; Cardiovascular Agents; Cellular Senescence; Disease Models, Animal; Drugs, Chinese Herbal; Fallopia multiflora; Gene Expression Regulation; Glucosides; Humans; Hypoglycemic Agents; Neuroprotective Agents; Phytotherapy; Plants, Medicinal; Signal Transduction; Stilbenes | 2016 |
Impact of 2, 3, 5, 4'-tetrahydroxystilbene-2-O-β-D-glucoside on cognitive deficits in animal models of Alzheimer's disease: a systematic review.
The efficacy of 2, 3, 5, 4'-tetrahydroxystilbene-2-O-β-D-glucoside (TSG) treatment on cognitive decline in individuals with Alzheimer's disease (AD) has not been investigated. Therefore, we systematically reviewed the effect of TSG on cognitive deficits in a rodent model of AD.. We identified eligible studies published from January 1980 to April 2015 by searching seven electronic databases. We assessed the study quality, evaluated the efficacy of TSG treatment, and performed a stratified meta-analysis and meta-regression analysis to assess the influence of study design on TSG efficacy.. Among a total of 381 publications, 18 fulfilled our inclusion criteria. The overall methodological quality of these studies was poor. The meta-analysis revealed a statistically significant benefit of TSG on acquisition memory (standardized mean difference [SMD] = -1.46 (95 % CI: -1.81 to -1.10, P < 0.0001) and retention memory (SMD =1.93 (95 % CI: 1.40 to 2.46, P < 0.0001) in experimental models of AD. The stratified analysis revealed a significantly higher effect size for both acquisition and retention memory in studies that used mixed sex models and a significantly higher effect size for acquisition memory in studies that used transgenic models.. Our meta-analysis highlights a significantly better treatment effect in rodent AD models that received TSG that in those that did not. These findings indicate a potential therapeutic role of TSG in AD therapy. However, additional well-designed and detailed experimental studies are needed to evaluate the safety of TSG. Topics: Alzheimer Disease; Animals; Cognition; Disease Models, Animal; Glucosides; Humans; Mice; Rats; Stilbenes | 2016 |
Anticancer Efficacy of Polyphenols and Their Combinations.
Polyphenols, found abundantly in plants, display many anticarcinogenic properties including their inhibitory effects on cancer cell proliferation, tumor growth, angiogenesis, metastasis, and inflammation as well as inducing apoptosis. In addition, they can modulate immune system response and protect normal cells against free radicals damage. Most investigations on anticancer mechanisms of polyphenols were conducted with individual compounds. However, several studies, including ours, have indicated that anti-cancer efficacy and scope of action can be further enhanced by combining them synergistically with chemically similar or different compounds. While most studies investigated the anti-cancer effects of combinations of two or three compounds, we used more comprehensive mixtures of specific polyphenols and mixtures of polyphenols with vitamins, amino acids and other micronutrients. The mixture containing quercetin, curcumin, green tea, cruciferex, and resveratrol (PB) demonstrated significant inhibition of the growth of Fanconi anemia head and neck squamous cell carcinoma and dose-dependent inhibition of cell proliferation, matrix metalloproteinase (MMP)-2 and -9 secretion, cell migration and invasion through Matrigel. PB was found effective in inhibition of fibrosarcoma HT-1080 and melanoma A2058 cell proliferation, MMP-2 and -9 expression, invasion through Matrigel and inducing apoptosis, important parameters for cancer prevention. A combination of polyphenols (quercetin and green tea extract) with vitamin C, amino acids and other micronutrients (EPQ) demonstrated significant suppression of ovarian cancer ES-2 xenograft tumor growth and suppression of ovarian tumor growth and lung metastasis from IP injection of ovarian cancer A-2780 cells. The EPQ mixture without quercetin (NM) also has shown potent anticancer activity in vivo and in vitro in a few dozen cancer cell lines by inhibiting tumor growth and metastasis, MMP-2 and -9 secretion, invasion, angiogenesis, and cell growth as well as induction of apoptosis. The presence of vitamin C, amino acids and other micronutrients could enhance inhibitory effect of epigallocatechin gallate (EGCG) on secretion of MMPs. In addition, enrichment of NM with quercetin (EPQ mix) enhanced anticancer activity of NM in vivo. In conclusion, polyphenols, especially in combination with other polyphenols or micronutrients, have been shown to be effective against multiple targets in cancer development and progression, and s Topics: Animals; Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Ascorbic Acid; Biological Availability; Catechin; Cell Line, Tumor; Cell Proliferation; Curcumin; Disease Models, Animal; Humans; Micronutrients; Neoplasms; Plant Extracts; Polyphenols; Quercetin; Resveratrol; Stilbenes; Tea | 2016 |
Anti-obesity effects of resveratrol: comparison between animal models and humans.
The prevalence of obesity has increased rapidly during recent years and has reached epidemic proportions. As a result, the scientific community is interested in active biomolecules which are naturally present in plants and foodstuffs and may be useful in body weight management. In recent years, polyphenols have made up one of the most frequently studied groups among these molecules. Numerous studies have been carried out on animals to analyse the potential anti-obesity effects of resveratrol, a non-flavonoid polyphenol, and a general consensus concerning the body-fat-lowering effect of this compound exists. By contrast, studies in humans have been few so far. Moreover, in these studies, the effectiveness of resveratrol is low. The aims of the present review are to summarize the results reported so far on this topic and to justify the differences observed between animals and humans. It seems that the reduced response to resveratrol in humans cannot be attributed to the use of lower doses in humans because the doses that induce body-fat-lowering effects in rodents are in the same range as those used in human studies. With regard to the experimental period length, treatments were longer in animal studies than in human studies. This can be one of the reasons contributing to the reduced responses observed in humans. Moreover, animals used in the reported studies are young while volunteers participating in human studies are adults, suggesting that resveratrol may be more efficient in young individuals. In addition to differences in the experimental designs, metabolic differences between animals and human cannot be discarded. Topics: Animals; Anti-Obesity Agents; Disease Models, Animal; Drug Evaluation, Preclinical; Humans; Obesity; Resveratrol; Stilbenes | 2016 |
In vitro and in vivo experimental hepatotoxic models in liver research: applications to the assessment of potential hepatoprotective drugs.
This mini-review highlights our and others' experience about in vitro and in vivo models that are being used to follow up events of liver injuries under various hepatotoxic agents and potential hepatoprotective drugs. Due to limitations of the outcomes in each model, we focus primarily on two models. First, a developed perfusion method for isolated immobilized hepatocytes that improves the process of oxygenation and helps in end-product removal is of considerable value in improving cell maintenance. This cellular model is presented as a short-term research-scale laboratory bioreactor with various physiological, biochemical, molecular, toxicological and pharmacological applications. Second, the in vivo model of D-galactosamine and lipopolysaccharide (D-GalN/LPS) combination-induced liver damage is described with some details. Recently, we have revealed that resveratrol and other natural polyphenols attenuate D-GalN/LPS-induced hepatitis. Moreover, we reported that D-GalN/LPS down-regulates sirtuin 1 in rat liver. Therefore, we discuss here the role of sirtuin 1 modulation in hepatoprotection. A successful development of pharmacotherapy for liver diseases depends on the suitability of in vitro and in vivo hepatic injury systems. Several models are available to screen the hepatotoxic or hepatoprotective activity of any substance. It is important to combine different methods for confirmation of the findings. Topics: Animals; Biomedical Research; Disease Models, Animal; Down-Regulation; Drug Discovery; Galactosamine; Humans; Lipopolysaccharides; Liver Failure, Acute; Protective Agents; Resveratrol; Sirtuin 1; Stilbenes | 2016 |
Potential application of non-flavonoid phenolics in diabetes: antiinflammatory effects.
Polyphenols are members of a very large family of plant-derived compounds that may have beneficial effects on human health, and thus their study has become an increasingly important area of human nutrition research. Considering that it is increasingly accepted that chronic sub-acute inflammation plays an important role in the development of insulin resistance and of diabetes in animals and in humans, the aim of the present review is to compile information concerning the anti-inflammatory effects of non-flavonoid polyphenols on diabetes prevention and/or treatment. Most of these studies have been carried out with different cultured cells and using animal models displaying different types of diabetes, such as diabetes induced by streptozotocin or streptozotocin-nicotinamide, genetic diabetes or diabetes induced by high-fat feeding. In general terms, non-flavonoid polyphenols reduce the production of inflammatory mediators, such as IL-1β, IL-8, MCP-1, COX-2 or iNOS in these animal models of diabetes. This effect is accompanied in the vast majority of these studies by improved insulin action. In addition, some of the non-flavonoid polyphenols are also able to ameliorate or prevent several pathological alterations associated with the development of diabetes, such as nephropathy, cardiopathy or retinopathy. Very little information has been reported with regard to human studies to date. Thus, new studies are needed to confirm if the beneficial effects observed in preclinical studies can apply to human beings. Topics: Animals; Anti-Inflammatory Agents; Clinical Trials as Topic; Curcumin; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 2; Disease Models, Animal; Humans; Hydroxybenzoates; Phenols; Polyunsaturated Alkamides; Stilbenes | 2015 |
Anti-inflammatory and antifibrotic effects of resveratrol in the lung.
Resveratrol, a natural polyphenolic molecule with several biological activities, is a well recognized anti-oxidant, anti-aging and cancer chemopreventive agent. Moreover, resveratrol anti-inflammatory and antifibrotic properties have been demonstrated both in vitro and in different animal models of inflammatory pathologies, including bowel and liver diseases. We review the evidence of resveratrol protective role in respiratory diseases such as acute lung injury, asthma, chronic obstructive pulmonary disease and lung fibrosis. We conclude that resveratrol and its derivatives may act as a therapeutic agents in respiratory diseases and pertinent clinical trials should be performed. Topics: Acute Lung Injury; Animals; Anti-Inflammatory Agents; Antioxidants; Asthma; Disease Models, Animal; Fibrosis; Humans; Inflammation; Liver Diseases; Lung; Mice; Pulmonary Disease, Chronic Obstructive; Resveratrol; Stilbenes | 2015 |
A Review: Phytochemicals Targeting JAK/STAT Signaling and IDO Expression in Cancer.
Cancer remains a major health problem worldwide. Among many other factors, two regulatory defects that are present in most cancer cells are constitutive activation of Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathway and the induction of indoleamine 2, 3-dioxygenase (IDO), an enzyme that catalyzes tryptophan degradation, through JAK/STAT signaling. Cytokine signaling activates STAT proteins in regulating cell proliferation, differentiation, and survival through modulation of target genes. Many phytochemicals can inhibit both JAK/STAT signaling and IDO expression in antigen-presenting cells by targeting different pathways. Some of the promising phytochemicals that are discussed in this review include resveratrol, cucurbitacin, curcumin, (-)-epigallocatechin gallate, and others. It is now evident that phytochemicals play key roles in inhibition of tumor proliferation and development and provide novel means for therapeutic targeting of cancer. Topics: Animals; Catechin; Cell Proliferation; Cucurbitacins; Curcumin; Disease Models, Animal; Humans; Indoleamine-Pyrrole 2,3,-Dioxygenase; Janus Kinases; Neoplasms; Phytochemicals; Resveratrol; Signal Transduction; STAT Transcription Factors; Stilbenes | 2015 |
A review of the efficacy of dietary polyphenols in experimental models of inflammatory bowel diseases.
Crohn's disease and ulcerative colitis presently have no cure and are treated with anti-inflammatory drugs or monoclonal antibodies targeting pro-inflammatory cytokines. A variety of rodent models have been used to model chronic and acute colitis. Dietary polyphenols in foods and botanicals are of considerable interest for prevention and treatment of colitis. Many dietary polyphenols have been utilized for prevention of colitis in rodent models. Berries, green tea polyphenols, curcumin, and stilbenes have been the most extensively tested polyphenols in rodent models of colitis. The majority of polyphenols tested have inhibited colitis in rodents, but increasing doses of EGCG and green tea, isoflavones, flaxseed, and α-mangostin have exacerbated colitis. Few studies have examined combination of polyphenols or other bioactives for inhibition of colitis. Translating polyphenol doses used in rodent models of colitis to human equivalent doses reveals that supplemental doses are most likely required to inhibit colitis from a single polyphenol treatment. The ability to translate polyphenol treatments in rodent models is likely to be limited by species differences in xenobiotic metabolism and microbiota. Given these limitations, data from polyphenols in rodent models suggests merit for pursuing additional clinical studies for prevention of colitis. Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Coumaric Acids; Dietary Supplements; Disease Models, Animal; Flavonoids; Functional Food; Gastrointestinal Agents; Humans; Inflammatory Bowel Diseases; Phenols; Plant Extracts; Polyphenols; Stilbenes; Xanthones | 2015 |
Is the Modulation of Autophagy the Future in the Treatment of Neurodegenerative Diseases?
The pathogenesis of neurodegenerative diseases involves altered activity of proteolytic systems and accumulation of protein aggregates. Autophagy is an intracellular process in which damaged organelles and long-lived proteins are degraded and recycled for maintaining normal cellular homeostasis. Disruption of autophagic activity in neurons leads to modify the cellular homeostasis, causing deficient elimination of abnormal and toxic protein aggregates that promotes cellular stress and death. Therefore, induction of autophagy has been proposed as a reasonable strategy to help neurons to clear abnormal protein aggregates and survive. This review aims to give an overview of some of the main modulators of autophagy that are currently being studied as possible alternatives in the search of therapies that slow the progression of neurodegenerative diseases, which are incurable to date. Topics: Animals; Autophagy; Disease Models, Animal; Food; Humans; Isothiocyanates; Lithium; Neurodegenerative Diseases; Resveratrol; Sirolimus; Spermidine; Stilbenes; Sulfoxides; Trehalose; Valproic Acid | 2015 |
Evaluating resveratrol as a therapeutic bone agent: preclinical evidence from rat models of osteoporosis.
Resveratrol (RSV) is a naturally occurring plant polyphenol that has potential to attenuate osteoporosis with distinct pathologies. This review evaluates preclinical evidence regarding the efficacy and safety of RSV as a therapeutic bone agent using different rat models. Limitations of these animal models are discussed, and suggestions for strengthening the experimental design of future studies are provided. The ovariectomized rat model of postmenopausal osteoporosis reported that RSV supplementation attenuated estrogen deficiency-induced bone loss and trabecular structural deterioration. RSV safety was indicated by the absence of stimulation of estrogen-sensitive tissue. Providing RSV to rats aged >6 months attenuated age-related bone mass loss and structural deterioration but produced inconsistent effects on bones in rats aged <6 months. The hindlimb-suspension rat model of disuse osteoporosis reported that RSV attenuated bone loss in old rats, but higher doses and longer duration supplementation before mechanical loading were required for younger rats. Limitations common to studies using rat models of osteoporosis include requirements to include animals that are skeletally mature, longer study durations, and to adjust for potential confounding effects due to altered body weight and endocrine function. Strengthening experimental design can contribute to translation of animal results to clinically relevant recommendations for humans. Topics: Animals; Bone Density Conservation Agents; Dietary Supplements; Disease Models, Animal; Drug Evaluation, Preclinical; Humans; Osteoporosis; Rats; Resveratrol; Stilbenes | 2015 |
Addressing Therapeutic Options for Ebola Virus Infection in Current and Future Outbreaks.
Ebola virus can cause severe hemorrhagic disease with high fatality rates. Currently, no specific therapeutic agent or vaccine has been approved for treatment and prevention of Ebola virus infection of humans. Although the number of Ebola cases has fallen in the last few weeks, multiple outbreaks of Ebola virus infection and the likelihood of future exposure highlight the need for development and rapid evaluation of pre- and postexposure treatments. Here, we briefly review the existing and future options for anti-Ebola therapy, based on the data coming from rare clinical reports, studies on animals, and results from in vitro models. We also project the mechanistic hypotheses of several potential drugs against Ebola virus, including small-molecule-based drugs, which are under development and being tested in animal models or in vitro using various cell types. Our paper discusses strategies toward identifying and testing anti-Ebola virus properties of known and medically approved drugs, especially those that can limit the pathological inflammatory response in Ebola patients and thereby provide protection from mortality. We underline the importance of developing combinational therapy for better treatment outcomes for Ebola patients. Topics: Amides; Amidines; Androstenes; Animals; Anti-Inflammatory Agents; Antibodies, Monoclonal; Antiviral Agents; Benzofurans; Cytosine; Disease Models, Animal; Disease Outbreaks; Ebolavirus; Hemorrhagic Fever, Ebola; Humans; Immune Sera; Organophosphonates; Pyrazines; RNA, Small Interfering; Stilbenes; Virus Replication | 2015 |
Functional foods as potential therapeutic options for metabolic syndrome.
Obesity as part of metabolic syndrome is a major lifestyle disorder throughout the world. Current drug treatments for obesity produce small and usually unsustainable decreases in body weight with the risk of major adverse effects. Surgery has been the only treatment producing successful long-term weight loss. As a different but complementary approach, lifestyle modification including the use of functional foods could produce a reliable decrease in obesity with decreased comorbidities. Functional foods may include fruits such as berries, vegetables, fibre-enriched grains and beverages such as tea and coffee. Although health improvements continue to be reported for these functional foods in rodent studies, further evidence showing the translation of these results into humans is required. Thus, the concept that these fruits and vegetables will act as functional foods in humans to reduce obesity and thereby improve health remains intuitive and possible rather than proven. Topics: Animals; Anthocyanins; Antioxidants; Caffeine; Dietary Fiber; Disease Models, Animal; Ellagic Acid; Fatty Acids; Feeding Behavior; Fruit; Functional Food; Humans; Metabolic Syndrome; Nutritional Physiological Phenomena; Obesity; Olive Oil; Prebiotics; Probiotics; Quercetin; Rats; Rutin; Stilbenes; Thermogenesis; Vegetables; Vitamins | 2015 |
Turn up the power - pharmacological activation of mitochondrial biogenesis in mouse models.
The oxidative phosphorylation (OXPHOS) system in mitochondria is responsible for the generation of the majority of cellular energy in the form of ATP. Patients with genetic OXPHOS disorders form the largest group of inborn errors of metabolism. Unfortunately, there is still a lack of efficient therapies for these disorders other than management of symptoms. Developing therapies has been complicated because, although the total group of OXPHOS patients is relatively large, there is enormous clinical and genetic heterogeneity within this patient population. Thus there has been a lot of interest in generating relevant mouse models for the different kinds of OXPHOS disorders. The most common treatment strategies tested in these mouse models have aimed to up-regulate mitochondrial biogenesis, in order to increase the residual OXPHOS activity present in affected animals and thereby to ameliorate the energy deficiency. Drugs such as bezafibrate, resveratrol and AICAR target the master regulator of mitochondrial biogenesis PGC-1α either directly or indirectly to manipulate mitochondrial metabolism. This review will summarize the outcome of preclinical treatment trials with these drugs in mouse models of OXPHOS disorders and discuss similar treatments in a number of mouse models of common diseases in which pathology is closely linked to mitochondrial dysfunction. In the majority of these studies the pharmacological activation of the PGC-1α axis shows true potential as therapy; however, other effects besides mitochondrial biogenesis may be contributing to this as well. Topics: Aminoimidazole Carboxamide; AMP-Activated Protein Kinases; Animals; Bezafibrate; Disease Models, Animal; Energy Metabolism; Mitochondria; Mitochondrial Diseases; Mitochondrial Turnover; Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha; Resveratrol; Ribonucleotides; Sirtuin 1; Stilbenes; Transcription Factors; Up-Regulation | 2014 |
Small-molecule allosteric activators of sirtuins.
The mammalian sirtuins (SIRT1-7) are NAD(+)-dependent lysine deacylases that play central roles in cell survival, inflammation, energy metabolism, and aging. Members of this family of enzymes are considered promising pharmaceutical targets for the treatment of age-related diseases including cancer, type 2 diabetes, inflammatory disorders, and Alzheimer's disease. SIRT1-activating compounds (STACs), which have been identified from a variety of chemical classes, provide health benefits in animal disease models. Recent data point to a common mechanism of allosteric activation by natural and synthetic STACs that involves the binding of STACs to a conserved N-terminal domain in SIRT1. Compared with polyphenols such as resveratrol, the synthetic STACs show greater potency, solubility, and target selectivity. Although considerable progress has been made regarding SIRT1 allosteric activation, key questions remain, including how the molecular contacts facilitate SIRT1 activation, whether other sirtuin family members will be amenable to activation, and whether STACs will ultimately prove safe and efficacious in humans. Topics: Allosteric Regulation; Animals; Benzimidazoles; Disease Models, Animal; Humans; Inflammation; Molecular Targeted Therapy; Resveratrol; Sirtuins; Stilbenes | 2014 |
Resveratrol in epilepsy: preventive or treatment opportunities?
Resveratrol has been extensively investigated and has been demonstrated to have antioxidant properties, cancer chemopreventive activity, and the capacity to modulate the hepatic synthesis of triglycerides and cholesterol, among others well established actions. A noteworthy feature of resveratrol is its ability to cross the blood-brain barrier and to exhibit neuroprotective actions, mainly by their capacity to regulate redox pathways as well as the Sirtuin (SIRT) system, which in turn modulates gene transcription, controlling inflammation and apoptosis in the brain. Lately, evidence is accumulating with respect to the synergic effect of resveratrol with antiepileptic drugs and also its antiepileptic activity in various models of seizures. We discuss here recent evidence that strongly suggests that resveratrol acts as an anticonvulsant agent and could be a very effective method for reducing damage in neural tissue and even for preventing seizure development in coadjuvant antiepileptic therapy. Topics: Animals; Anticonvulsants; Antioxidants; Disease Models, Animal; Epilepsy; Humans; Neuroprotective Agents; Resveratrol; Stilbenes | 2014 |
Diabetic complications in pregnancy: is resveratrol a solution?
Diabetes is a metabolic disorder that, during pregnancy, may affect fetal development. Fetal outcome depends on the type of diabetes present, the concentration of blood glucose and the extent of fetal exposure to elevated or frequently fluctuating glucose concentrations. The result of some diabetic pregnancies will be embryonic developmental abnormalities, a condition referred to as diabetic embryopathy. Tight glycemic control in type 1 diabetes during pregnancy using insulin therapy together with folic acid supplementation are partially able to prevent diabetic embryopathy; however, the protection is not complete and additional interventions are needed. Resveratrol, a polyphenol found largely in the skins of red grapes, is known to have antidiabetic action and is in clinical trials for the treatment of diabetes, insulin resistance, obesity and metabolic syndrome. Studies of resveratrol in a rodent model of diabetic embryopathy reveal that it significantly improves the embryonic outcome in terms of diminishing developmental abnormalities. Improvements in maternal and embryonic outcomes observed in rodent models may arise from resveratrol's antioxidative potential, antidiabetic action and antidyslipidemic nature. Whether resveratrol will have similar actions in human diabetic pregnancy is unknown. Here, we review the potential therapeutic use of resveratrol in diabetes and diabetic pregnancy. Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Diabetes Complications; Diabetes Mellitus, Type 1; Disease Models, Animal; Female; Humans; Hypoglycemic Agents; Pregnancy; Pregnancy in Diabetics; Resveratrol; Stilbenes | 2013 |
Resveratrol and clinical trials: the crossroad from in vitro studies to human evidence.
Resveratrol (3,5,4'-trihydroxy-trans-stilbene) is a non-flavonoid polyphenol that may be present in a limited number of foodstuffs such as grapes and red wine. Resveratrol has been reported to exert a plethora of health benefits through many different mechanisms of action. This versatility and presence in the human diet have drawn the worldwide attention of many research groups over the past twenty years, which has resulted in a huge output of in vitro and animal (preclinical) studies. In line with this expectation, many resveratrol- based nutraceuticals are consumed all over the world with questionable clinical/scientific support. In fact, the confirmation of these benefits in humans through randomized clinical trials is still very limited. The vast majority of preclinical studies have been performed using assay conditions with a questionable extrapolation to humans, i.e. too high concentrations with potential safety concerns (adverse effects and drug interactions), short-term exposures, in vitro tests carried out with non-physiological metabolites and/or concentrations, etc. Unfortunately, all these hypothesis-generating studies have contributed to increased the number of 'potential' benefits and mechanisms of resveratrol but confirmation in humans is very limited. Therefore, there are many issues that should be addressed to avoid an apparent endless loop in resveratrol research. The so-called 'Resveratrol Paradox', i.e., low bioavailability but high bioactivity, is a conundrum not yet solved in which the final responsible actor (if any) for the exerted effects has not yet been unequivocally identified. It is becoming evident that resveratrol exerts cardioprotective benefits through the improvement of inflammatory markers, atherogenic profile, glucose metabolism and endothelial function. However, safety concerns remain unsolved regarding chronic consumption of high RES doses, specially in medicated people. This review will focus on the currently available evidence regarding resveratrol's effects on humans obtained from randomized clinical trials. In addition, we will provide a critical outlook for further research on this molecule that is evolving from a minor dietary compound to a possible multi-target therapeutic drug. Topics: Animals; Anticarcinogenic Agents; Cardiovascular Agents; Disease Models, Animal; Drug Evaluation, Preclinical; Evidence-Based Medicine; Humans; Randomized Controlled Trials as Topic; Resveratrol; Stilbenes; Tissue Distribution; Treatment Outcome | 2013 |
Neuroprotective properties and mechanisms of resveratrol in in vitro and in vivo experimental cerebral stroke models.
Resveratrol, a natural stilbene present at relatively high concentrations in grape skin and seeds and red wine, is known for its purported antioxidant activity in the vascular and nervous systems. In contrast to its direct antioxidant role within the central nervous system, recent research supports a protective mechanism through increasing endogenous cellular antioxidant defenses, which triggers a cascade of parallel neuroprotective pathways. A growing body of in vitro and in vivo evidence indicates that resveratrol acts through multiple pathways and reduces ischemic damage in vital organs, such as the heart and the brain, in various rodent models. Most of the protective biological actions of resveratrol have been associated with its antioxidative, anti-inflammatory, and antiapoptotic properties and other indirect pathways. Continued public interest and increasing resveratrol supplements on the market warrant a review of the available in vitro and in vivo science reported in the stroke-related literature. Rigorous clinical trials evaluating the effects of resveratrol in stroke are absent, though the general population consumption appears to be relatively safe. Resveratrol has shown potential for treating stroke in laboratory animals and in vitro human cell studies, yet there is still a need for human research in preclinical settings. This review summarizes many of the findings on the neuroprotective potential of resveratrol in cerebral stroke, focusing on both the in vitro and in vivo experimental models and some proposed mechanisms of action. Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Apoptosis; Biological Availability; Brain; Disease Models, Animal; Drug Evaluation, Preclinical; Gerbillinae; Humans; Mice; Neuroprotective Agents; Oxidative Stress; Rats; Resveratrol; Stilbenes; Stroke | 2013 |
The pig as a valuable model for testing the effect of resveratrol to prevent cardiovascular disease.
Resveratrol is a naturally occurring polyphenol found in the skin of red grapes, peanuts, and red wine that has been shown to modify many cardiovascular risk factors. Small animal models have been extensively used to investigate cardiovascular disease, but the results often fail to translate in clinical trials. Disease-specific pig models are emerging as clinically useful tools that may offer insight into cardiovascular disease and the effect of drugs such as resveratrol on cardiovascular health. In this paper, we discuss the advantage of using clinically relevant pig models of diabetes, hypercholesterolemia, and myocardial ischemia to investigate the role of resveratrol in cardiovascular disease prevention. Topics: Animals; Cardiotonic Agents; Cardiovascular Diseases; Disease Models, Animal; Humans; Resveratrol; Species Specificity; Stilbenes; Swine; Treatment Outcome | 2013 |
Polyphenols: benefits to the cardiovascular system in health and in aging.
Numerous studies have demonstrated the importance of naturally occurring dietary polyphenols in promoting cardiovascular health and emphasized the significant role these compounds play in limiting the effects of cellular aging. Polyphenols such as resveratrol, epigallocatechin gallate (EGCG), and curcumin have been acknowledged for having beneficial effects on cardiovascular health, while some have also been shown to be protective in aging. This review highlights the literature surrounding this topic on the prominently studied and documented polyphenols as pertaining to cardiovascular health and aging. Topics: Aging; Animals; Cardiovascular System; Catechin; Curcumin; Diet; Disease Models, Animal; Fruit; Heart Diseases; Humans; Olive Oil; Plant Oils; Polyphenols; Quercetin; Randomized Controlled Trials as Topic; Reactive Oxygen Species; Resveratrol; Stilbenes | 2013 |
Toxicological and pharmacological concerns on oxidative stress and related diseases.
Although reactive oxygen species (ROS) such as superoxide, hydrogen peroxide and hydroxyl radical are generated as the natural byproduct of normal oxygen metabolism, they can create oxidative damage via interaction with bio-molecules. The role of oxidative stress as a remarkable upstream part is frequently reported in the signaling cascade of inflammation as well as chemo attractant production. Even though hydrogen peroxide can control cell signaling and stimulate cell proliferation at low levels, in higher concentrations it can initiate apoptosis and in very high levels may create necrosis. So far, the role of ROS in cellular damage and death is well documented with implicating in a broad range of degenerative alterations e.g. carcinogenesis, aging and other oxidative stress related diseases (OSRDs). Reversely, it is cleared that antioxidants are potentially able to suppress (at least in part) the immune system and to enhance the normal cellular protective responses to tissue damage. In this review, we aimed to provide insights on diverse OSRDs, which are correlated with the concept of oxidative stress as well as its cellular effects that can be inhibited by antioxidants. Resveratrol, angiotensin converting enzyme inhibitors, angiotensin receptor blockers, statins, nebivolol and carvedilol, pentaerythritol tetranitrate, mitochondria-targeted antioxidants, and plant-derived drugs (alone or combined) are the potential medicines that can be used to control OSRD. Topics: Angiotensin Receptor Antagonists; Angiotensin-Converting Enzyme Inhibitors; Animals; Antioxidants; Benzopyrans; Carbazoles; Carvedilol; Diabetes Mellitus; Disease Models, Animal; Ethanolamines; Humans; Hydrogen Peroxide; Inflammatory Bowel Diseases; Nebivolol; Neoplasms; Neurodegenerative Diseases; Osteoporosis; Oxidative Stress; Propanolamines; Reactive Oxygen Species; Resveratrol; Stilbenes; Vascular Diseases | 2013 |
Resveratrol, a neuroprotective supplement for Alzheimer's disease.
The polyphenolic compound resveratrol (3,4',5-trihydroxystilbene) is a naturally occurring phytochemical which has been found in more than 70 plant species, including herbs and human food products such as grapes, berries, and peanuts. Resveratrol was first isolated in 1940; however, little attention was paid to it until its benefits in coronary heart disease were studied in 1992. Since then, increasing evidence has indicated that resveratrol may be useful in treating cardiovascular diseases, cancers, pain, inflammation, tissue injury, and in reducing the risk of neurodegenerative disorders, especially Alzheimer's disease (AD). AD is characterized by a progressive dementia, and is one of the most common neurodegenerative disorders in the elderly. It has been reported that resveratrol exhibits neuroprotective benefits in animal models of AD. Resveratrol promotes the non-amyloidogenic cleavage of the amyloid precursor protein, enhances clearance of amyloid beta-peptides, and reduces neuronal damage. Despite the effort spent trying to understand the mechanisms by which resveratrol functions, the research work in this field is still incomplete. Many concerns such as bioavailability, biotransformation, synergism with other dietary factors, and risks inherent to its possible pro-oxidant activities still need to be addressed. This review summarizes and discusses the neuroprotective effects of resveratrol on AD, and their potential mechanisms. Topics: Alzheimer Disease; Amyloid beta-Peptides; Amyloid beta-Protein Precursor; Animals; Disease Models, Animal; Humans; Neurons; Neuroprotective Agents; Resveratrol; Stilbenes | 2012 |
Colorectal cancer chemoprevention by trans-resveratrol.
trans-Resveratrol (trans-3,4',5-trihydroxystilbene) is a natural phytoalexin present in grapes, red wine, berries and peanuts with health protecting properties. The low oral bioavailability indicated for this polyphenol, with the intestine as a bottleneck to its absorption, has promoted the large intestine as a potential target site for its chemopreventive activity. This review recapitulates the current evidence of the effects of trans-resveratrol on colon cancer. First, we describe the studies conducted in vitro which show that the protective activity takes place by inhibition of proliferation and induction of apoptosis. Secondly, the chemopreventive activity in animal models of colon carcinogenesis is revised. trans-Resveratrol not only reduces the number of preneoplastic lesions but also the incidence and multiplicity of tumors. Lastly, the article also reviews the available data on clinical trials. Altogether, the present findings support the hypothesis that the oral administration of trans-resveratrol might contribute to the prevention of colon carcinogenesis. Topics: Administration, Oral; Animals; Anticarcinogenic Agents; Apoptosis; Cell Line, Tumor; Cell Proliferation; Colorectal Neoplasms; Disease Models, Animal; Genetic Predisposition to Disease; Humans; Precancerous Conditions; Resveratrol; Stilbenes | 2012 |
Resveratrol role in cardiovascular and metabolic health and potential mechanisms of action.
Resveratrol is a polyphenolic flavonoid found in a diversity of plants, especially berry fruits and is a popular nutritional supplement. It is known to have antioxidant, anti-inflammatory, and anticarcinogenic properties. Recently, additional evidence has been found that resveratrol is beneficial to metabolic and cardiovascular health and may increase the life expectancy of various organisms. These biological effects are widely believed to be due to the ability of resveratrol to activate silent mating-type information regulation 2 homolog 1, a nicotinamide adenine dinucleotide-dependent deacetylase. However, other research has shown that 5'-adenosine monophosphate-activated kinase and not silent mating-type information regulation 2 homolog 1 may be the target of resveratrol. A recent study reported that resveratrol directly inhibits cyclic adenosine monophosphate-specific phosphodiesterases and then activates 5'-adenosine monophosphate-activated kinase. Therefore, the mechanism underlying the diverse nutritional and therapeutic activities of resveratrol needs to be further explored. Furthermore, the optimal dose and possible adverse effects of resveratrol in humans are completely clear. The purpose of this review is to present some of the newly discovered biological effects of resveratrol, including autophagy and stem cell regulation, and research opportunities for the application of resveratrol in cardiovascular and metabolic health. Described herein is the recent understanding of the mechanism of action of resveratrol and future research directions to ascertain the potential of this flavonoid that is present in food. Topics: AMP-Activated Protein Kinases; Animals; Anti-Inflammatory Agents; Antioxidants; Apoptosis; Autophagy; Cardiovascular Diseases; Disease Models, Animal; Humans; Metabolic Diseases; Resveratrol; Signal Transduction; Sirtuin 1; Stilbenes | 2012 |
Chemoprevention in experimental animals.
The potential cancer-preventive effects of resveratrol, evident from the data obtained by various studies, are summarized in this review. Resveratrol (trans-3,5,4'-trihydroxystilbene), a naturally occurring polyphenolic compound, was first isolated in 1940 as a constituent of the roots of white Hellebore (Veratrum grandiflorum O. Loes), and is now found to be present in various plants including grapes, berries, peanuts, and red wine. This review first briefly describes the current evidence on the link between resveratrol and cancer occurrence, based on epidemiological studies. Subsequently, investigations with resveratrol in animal models of colon carcinogenesis are presented, followed by a comprehensive compilation of resveratrol on cancer. In the second part, the article focuses on results from investigations on cancer-preventive mechanisms of resveratrol. Biological activities including antioxidant effects, modulation of carcinogen metabolism, anti-inflammatory potential, antioxidant properties, antiproliferative mechanisms by induction of apoptosis, and cell differentiation are discussed. Some novel information on its modulating effects on cell signaling pathway, metabolism studies, bioavailability, and cancer-preventive efficacy is also provided. Based on these findings, resveratrol may be used as a promising candidate for cancer chemoprevention. Topics: Animals; Antineoplastic Agents, Phytogenic; Chemoprevention; Clinical Trials as Topic; Disease Models, Animal; Humans; Neoplasms; Resveratrol; Stilbenes | 2011 |
Targeting cell signaling and apoptotic pathways by dietary agents: role in the prevention and treatment of cancer.
Cancer is one of the leading causes of death in the United States and around the world. Most modern drug-targeted therapies, besides being enormously expensive, are associated with serious side effects and morbidity. Still, the search continues for an ideal treatment that has minimal side effects and is cost-effective. Indeed, the design and development of chemopreventive agents that act on specific and/or multiple molecular and cellular targets is gaining support as a rational approach to prevent and treat cancer. We present evidence on numerous dietary agents identified from fruits and vegetables that act on multiple signal transduction and apoptotic cascades in various tumor cells and animal models. Some of the most interesting and well documented are turmeric (curcumin), resveratrol, silymarin, EGCG, and genistein. This review will provide an insight on the cellular and molecular mechanism(s) by which dietary agents modulate multiple signaling and apoptotic pathways in tumor cells and elucidate the role of these agents in both prevention and treatment of cancer. Topics: Animals; Anticarcinogenic Agents; Antineoplastic Agents, Phytogenic; Apoptosis; Catechin; Clinical Trials as Topic; Curcuma; Curcumin; Diet; Disease Models, Animal; Fruit; Genistein; Humans; Neoplasms; Resveratrol; Signal Transduction; Silymarin; Stilbenes; United States; Vegetables | 2011 |
Cancer chemoprevention and mitochondria: targeting apoptosis in transformed cells via the disruption of mitochondrial bioenergetics/redox state.
Cancer chemoprevention employs agents that block, hinder, or reverse tumorigenesis to prevent malignancy. Several putative cancer chemopreventive agents promote apoptosis in transformed cells initiated in animal carcinogenesis models or identified in human subjects, and/or in tumor cells cultured in vitro. Consequently, apoptosis induction is increasingly valued as a biologically significant anticancer mechanism in the arena of chemoprevention. In vitro studies suggest that the permeabilization of mitochondrial membranes is an important mechanistic determinant associated with the apoptosis induced by these agents. Mitochondrial membrane permeabilization (MMP) may occur via the control of proapoptotic Bcl-2 family members, and/or by the induction of the mitochondrial permeability transition. Both of these cell death-inducing regulatory mechanisms are ultimately responsive to the bioenergetic status/redox state of mitochondria. Interestingly, in addition to inducing MMP, various chemopreventive agents can directly modulate mitochondrial bioenergetics and/or redox tone in transformed cells. This review will examine prospective mechanisms associated with the disruption of mitochondrial function by chemopreventive agents that affect MMP and apoptosis. In doing so, we will construct a paradigm supporting the notion that the bioenergetic and/or redox characteristics of the mitochondria in transformed cells are important targets in the chemoprevention of cancer. Topics: Animals; Apoptosis; Capsaicin; Catechin; Chemoprevention; Disease Models, Animal; Humans; Mitochondrial Membranes; Neoplasms; Permeability; Reactive Oxygen Species; Resveratrol; Stilbenes; Tea | 2009 |
Metabolic benefits from Sirt1 and Sirt1 activators.
To evaluate the role of mammalian Sirt1 and Sirt1 activators in the protection from metabolic disorders such as diet-induced obesity, diabetes type 2, or nonalcoholic fatty liver disease.. Sirtuins are highly conserved nicotinamide adenine dinucleotide (NAD+)-dependent deacetylases that are activated by NAD+ and inhibited by NAD in its reduced form (NADH). Sirtuins act as cellular energy sensors that deacetylate numerous proteins involved in energy and glucose homeostasis, which in turn induce a wide range of physiological changes that counteract detrimental effects of metabolic stressors.. Sirt1 targets numerous proteins, including peroxisome proliferator-activated receptor (PPAR)-gamma, PPAR-gamma coactivator (PGC)-1alpha, uncoupling protein 2 (UCP2), and nuclear factor-kappa B, which play key roles in various metabolic disorders. This review summarizes these key targets of Sirt1 and the physiological relevance of those interactions. Also, new results on Sirt1-knockout and overexpressor mouse models are presented to substantiate metabolic benefits from Sirt1 activation. Finally, this review gives an overview on recent efforts to activate Sirt1 pharmacologically by using resveratrol or small-molecule Sirt1 activators with improved biopotency. Topics: AMP-Activated Protein Kinases; Animals; Caloric Restriction; Diabetes Mellitus, Type 2; Diet; Disease Models, Animal; Energy Metabolism; Humans; Mice; Mice, Transgenic; NAD; Resveratrol; Sirtuin 1; Sirtuins; Stilbenes; Trans-Activators; Transcription, Genetic | 2009 |
Cellular mechanisms of cardioprotection by calorie restriction: state of the science and future perspectives.
Evidence from animal models and preliminary studies in humans indicates that calorie restriction (CR) delays cardiac aging and can prevent cardiovascular disease. These effects are mediated by a wide spectrum of biochemical and cellular adaptations, including redox homeostasis, mitochondrial function, inflammation, apoptosis, and autophagy. Despite the beneficial effects of CR, its large-scale implementation is challenged by applicability issues as well as health concerns. However, preclinical studies indicate that specific compounds, such as resveratrol, may mimic many of the effects of CR, thus potentially obviating the need for drastic food intake reductions. Results from ongoing clinical trials will reveal whether the intriguing alternative of CR mimetics represents a safe and effective strategy to promote cardiovascular health and delay cardiac aging in humans. Topics: Aged; Animals; Antioxidants; Apoptosis; Autophagy; Caloric Restriction; Cardiovascular Diseases; Disease Models, Animal; Forecasting; Heart Diseases; Homeostasis; Humans; Inflammation; Inflammation Mediators; Mitochondria, Heart; Mitochondrial Diseases; Obesity; Oxidation-Reduction; Oxidative Stress; Resveratrol; Stilbenes | 2009 |
Beneficial drugs for liver diseases.
Liver diseases are a major problem of worldwide proportions. However, the number of drugs actually used successfully in humans is very small. In this review some of the most promising/studied drugs utilized for liver diseases were chosen and analysed critically from the basic to the clinical point of view. Antiviral agents are not discussed because excellent reviews have appeared on this topic. The compounds/preparations described herein are, alphabetically: colchicine, corticosteroids, curcumin, glycyrrhizin, interferons (for their antifibrotic properties), Liv 52, nitric oxide, resveratrol, silymarin, sulfoadenosylmethionine, and thalidomide. Colchicine and corticosteroids have been studied extensively in animals and humans; most clinical studies suggest that these compounds are not useful in the treatment of liver diseases. Glycyrrhizin is an herbal medicine with several components that has interesting hepatoprotective properties in patients with subacute liver failure but deserves more prospective controlled trials. Interferon has shown interesting antifibrotic properties in animals and humans; prospective studies on their antifibrotic/fibrolytic activity are required. Curcumin, resveratrol and thalidomide are very attractive newly discovered protective and curative compounds on experimental hepatic diseases. Their mechanism of action is associated with the ability to down-regulate NF-kappaB and to decrease pronecrotic and profibrotic cytokines. Unfortunately, clinical studies are lacking. Sulfoadenosylmethionine and silymarin are also promising drugs utilized mainly in cholestasis but the benefits can be expanded if more controlled trials are performed. The future is to carry out controlled prospective double-blind multicenter studies with the newly discovered drugs with proven beneficial effects on animals. Fundamental hepatobiology should also be encouraged. Topics: Adrenal Cortex Hormones; Animals; Colchicine; Curcumin; Disease Models, Animal; Drug Combinations; Glycyrrhizic Acid; Humans; Interferons; Liver Diseases; Nitric Oxide; Plant Extracts; Resveratrol; S-Adenosylmethionine; Silymarin; Stilbenes; Thalidomide | 2008 |
Effect of non-alcoholic compounds of alcoholic drinks on the pancreas.
Over the past 30 years the role of alcohol (ethanol) in the development of acute and chronic pancreatitis has been intensively investigated. However, ethanol is generally consumed in form of alcoholic beverages which contain numerous non-alcoholic compounds. At least on gastric acid secretion it has been convincingly demonstrated that alcohol and alcoholic beverages have markedly different effects. In the present article, we provide an overview about the effect of different non-alcoholic constituents of alcoholic beverages on the pancreas and their possible interaction with molecular mechanisms leading to 'alcoholic' pancreatitis. The present data indicate that pancreatic enzyme secretion in humans is stimulated by non-alcoholic constituents of beer which are generated by alcoholic fermentation of glucose. In addition, it has been shown that natural phenolic compounds (e.g. quercetin, resveratrol) of alcoholic beverages exert different effects on the pancreasin vitro, such as inhibition of pancreatic enzyme output, of pancreatic stellate cell activation and of pancreatic cancer growth as well as protective effects against oxidative stress and on experimental induced acute pancreatitis in rats. However, it should be pointed out that alcoholic beverages contain much more non-alcoholic ingredients. Since the effects of these are still unknown, caution is required in attempting to define alcoholic etiology of pancreatitis without considering the effect of non-alcoholic compounds of alcoholic beverages. Topics: Alcoholic Beverages; Animals; Camellia sinensis; Disease Models, Animal; Ellagic Acid; Ethanol; Humans; Pancreas; Pancreatitis, Alcoholic; Plant Extracts; Quercetin; Rats; Resveratrol; Stilbenes | 2007 |
Current development status of small-molecule vascular disrupting agents.
There is increasing interest in small-molecule drugs that can selectively disrupt the abnormal vasculature associated with disease processes such as cancer and macular degeneration. These agents are distinct from anti-angiogenic strategies, which do not target existing vessels but prevent additional vessel growth, althouglh they may potentially be complimentary with these antiangiogenic strategies. Several vascular disrupting agents (VDAs) are now undergoing clinical evaluation. The main focus of research has been on two drug classes: the first is comprised of agents that bind reversibly with tubulin and prevent microtubule assembly; the second are the flavanoids, which can induce intratumor cytokine release. Data from phase I studies have established that these agents can selectively reduce tumor blood flow at well-tolerated doses. Preclinical data indicate that VDAs can improve the tumor response to cytotoxic chemotherapy, radiation and antiangiogenic treatments. This activity has been attributed to the ability of these agents to selectively destroy the central regions of tumors, areas widely believed to contain cell populations resistant to cytotoxic therapies. The VDA compounds combretastatin A4 phosphate (CA4P) and 5,6-dimethylxantlenone-4-acetic acid (DMXAA) are being evaluated in phase II clinical trials in combination with conventional cytotoxic therapies for the potential treatment of cancer. This review discusses the small-molecule VDAs in clinical development. In addition, the potential for combination therapy with VDAs and traditional anticancer therapies, such as radiation, chemotherapy and anti-angiogenics is described. Topics: Angiogenesis Inhibitors; Animals; Antineoplastic Agents; Clinical Trials as Topic; Combined Modality Therapy; Disease Models, Animal; Drug Therapy, Combination; Humans; Neoplasms; Neovascularization, Pathologic; Regional Blood Flow; Stilbenes; Tubulin Modulators; Xanthones | 2006 |
Signal transduction pathways: targets for chemoprevention of skin cancer.
Chemoprevention can be defined as the use of substances to interfere with the process of cancer development. Although substantial progress has been made in elucidating the basis of carcinogenesis, further advances are needed to identify molecular and cellular targets for effective use of chemopreventive agents. Hundreds of compounds have been identified as potential chemopreventive agents. However, the safety and efficacy of each substance must be thoroughly investigated. Carcinogenesis is a multistage process in which numerous genes are affected. Many of these genes regulate important cellular functions, so they are prime targets for chemopreventive agents. A major focus of our work has been the elucidation of mechanism(s) explaining the anticancer actions attributed to several chemopreventive compounds, especially 'natural compounds' that are considered safe because they are present in commonly consumed foods and beverages. Of particular interest are selected drugs (eg aspirin) and certain dietary factors (eg green and black tea, resveratrol) and their influence on cell-signalling events coinciding with skin cancer promotion. This overview describes recent work from our laboratory and others focusing on molecular mechanisms of selected chemopreventive compounds in growth-related signal transduction pathways and skin cancer. Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Anticarcinogenic Agents; Aspirin; Cell Transformation, Neoplastic; Disease Models, Animal; Humans; Isothiocyanates; NF-kappa B; Phytic Acid; Resveratrol; Signal Transduction; Skin Neoplasms; Stilbenes; Tea; Transcription Factor AP-1 | 2000 |
712 other study(ies) available for stilbenes and Disease-Models--Animal
Article | Year |
---|---|
Resveratrol ameliorates the behavioural and molecular changes in rats exposed to uninephrectomy: role of hippocampal SIRT1, BDNF and AChE.
Subtle memory and cognitive changes may occur in uninephrectomized (Unix) patients long before the development of chronic kidney disease, such changes may be unnoticed. The dietary polyphenol, Resveratrol, displayed various neuroprotective effects, its role in chronic kidney disease is an area of intense studies. This work was designed to investigate the behavioural and molecular changes that may occur following 7 months of Unix in rats, and to determine whether Resveratrol intake can improve such pathology. Male Wistar rats were divided into three groups: sham operated, Unix and Unix group treated with Resveratrol (20 mg/kg/day). Rats were subjected to series of behavioural testing, different biochemical parameters along with RT-PCR and immunohistochemistry of the hippocampal tissue to track the development of functional or structural brain changes. Anxiety behaviour and reduced spatial memory performance were observed in rats 7 months post-nephrectomy; these deficits were remarkably reversed with Resveratrol. Among the species typical behaviour, burrowing was assessed; it showed significant impairment post-nephrectomy. Resveratrol intake was almost able to increase the burrowing behaviour. Decreased SIRT1 in immune-stained sections, oxidative stress, inflammatory changes, and increased AChE activity in hippocampal homogenates were found in Unix rats, and Resveratrol once more was capable to reverse such pathological changes. This work has investigated the occurrence of behavioural and structural brain changes 7 months following Unix and underlined the importance of Resveratrol to counterbalance the behavioural impairment, biochemical and brain pathological changes after uninephrectomy. These findings may raise the possible protective effects of Resveratrol intake in decreased kidney function. Topics: Animals; Brain-Derived Neurotrophic Factor; Disease Models, Animal; Hippocampus; Male; Rats; Rats, Wistar; Renal Insufficiency, Chronic; Resveratrol; Sirtuin 1; Stilbenes | 2023 |
Inhibition of influenza a virus infection by natural stilbene piceatannol targeting virus hemagglutinin.
Given the magnitude of influenza pandemics as a threat to the global population, it is crucial to have as many prevention and treatment options as possible. Piceatannol (PIC) is a tetrahydroxylated stilbenoid (trans-3,4,3',5'-tetrahydroxystilbene), also known as 3'- hydroxy resveratrol, which has demonstrated many different biological activities such as anti-inflammatory and antiviral activities.. In this study, the anti-influenza A virus (IAV) activities and mechanisms of PIC in vitro and in vivo were investigated in order to provide reference for the development of novel plant-derived anti-IAV drugs.. The viral plaque assay, RT-PCR and western blot assay were used to evaluate the anti-IAV effects of PIC in vitro. The anti-IAV mechanism of PIC was determined by HA syncytium assay, DARTS assay and Surface Plasmon Resonance assay. The mouse pneumonia model combined with HE staining were used to study the anti-IAV effects of PIC in vivo.. PIC shows inhibition on the multiplication of both H1N1 and H3N2 viruses, and blocks the infection of H5N1 pseudovirus with low toxicity. PIC may directly act on the envelope of IAV to induce the rupture and inactivation of IAV particles. PIC can also block membrane fusion via binding to HA2 rather than HA1 and cleavage site of HA0. PIC may interact with the two residues (HA2-T68 and HA2-I75) of HA2 to block the conformational change of HA so as to inhibit membrane fusion. Importantly, oral therapy of PIC also markedly improved survival and reduced viral titers in IAV-infected mice.. PIC possesses significant anti-IAV effects both in vitro and in vivo and may block IAV infection mainly through interaction with HA to block membrane fusion. Thus, PIC has the potential to be developed into a new broad-spectrum anti-influenza drug for the prevention and treatment of influenza. Topics: Animals; Disease Models, Animal; Hemagglutinins; Humans; Influenza A virus; Influenza A Virus, H1N1 Subtype; Influenza A Virus, H3N2 Subtype; Influenza A Virus, H5N1 Subtype; Influenza, Human; Mice; Stilbenes | 2023 |
Pterostilbene alleviates liver ischemia/reperfusion injury via PINK1-mediated mitophagy.
Hepatic ischemia/reperfusion (I/R) injury contributes to morbidity and mortality during liver resection or transplantation, with limited effective treatments available. Here, we investigated the potential benefits and underlying mechanisms of pterostilbene (Pt), a natural component of blueberries and grapes, in preventing hepatic I/R injury. Male C57BL/6 mice subjected to partial warm hepatic I/R and human hepatocyte cell line L02 cells exposed to anoxia/reoxygenation (A/R) were used as in vivo and in vitro models, respectively. Our findings showed that pretreatment with Pt ameliorated hepatic I/R injury by improving liver histology, decreasing hepatocyte apoptosis, and reducing plasma ALT and AST levels. Likewise, cell apoptosis, mitochondrial membrane dysfunction, and mitochondrial ROS overproduction in L02 cells triggered by the A/R challenge in vitro were reduced due to Pt administration. Mechanistically, Pt treatment efficiently enhanced mitophagy and upregulated PINK1, Parkin, and LC3B expression. Notably, the protective effect of Pt was largely abrogated after cells were transfected with PINK1 siRNA. Moreover, Pt pretreatment promoted hepatocyte proliferation and liver regeneration in the late phase of hepatic I/R. In conclusion, our findings provide evidence that Pt exerts hepatoprotective effects in hepatic I/R injury by upregulating PINK1-mediated mitophagy. Topics: Animals; Cell Proliferation; Cells, Cultured; Disease Models, Animal; Gene Expression Regulation; Hepatic Infarction; Hepatocytes; Humans; Liver Regeneration; Male; Mice, Inbred C57BL; Mitophagy; Protein Kinases; Reperfusion Injury; Stilbenes; Up-Regulation | 2022 |
Pterostilbene pre-treatment reduces LPS-induced acute lung injury through activating NR4A1.
Pterostilbene (PTE), a common polyphenol compound, exerts an anti-inflammatory effect in many diseases, including acute lung injury (ALI).. This study explores the potential mechanism of PTE pre-treatment against lipopolysaccharide (LPS)-induced ALI.. Sixty Sprague-Dawley rats were divided into control, ALI, 10 mg/kg PTE + LPS, 20 mg/kg PTE + LPS, and 40 mg/kg PTE + LPS groups. At 24 h before LPS instillation, PTE was administered orally. At 2 h before LPS instillation, PTE was again administered orally. After 24 h of LPS treatment, the rats were euthanized. The levels of inflammatory cells and inflammatory factors in the bronchoalveolar lavage fluid (BALF), the expression of nuclear receptor subfamily 4 group A member 1 (NR4A1), and the nuclear factor (NF)-κB pathway-related protein levels were detected. NR4A1 agonist was used to further investigate the mechanism of PTE pre-treatment.. After PTE pre-treatment, the LPS induced inflammation was controlled and the survival rate was increased to 100% from 70% after LPS treatment 24 h. For lung injury score, it decreased to 1.5 from 3.5 after treating 40 mg/kg PTE. Compared with the control group, the expression of NR4A1 in the ALI group was decreased by 20-40%. However, the 40 mg/kg PTE pre-treatment increased the NR4A1 expression by 20-40% in the lung tissue. The results obtained with pre-treatment NR4A1 agonist were similar to those obtained by pre-treatment 40 mg/kg PTE.. PTE pre-treatment might represent an appropriate therapeutic target and strategy for preventing ALI induced by LPS. Topics: Acute Lung Injury; Animals; Anti-Inflammatory Agents; Disease Models, Animal; Dose-Response Relationship, Drug; Inflammation; Lipopolysaccharides; Male; Nuclear Receptor Subfamily 4, Group A, Member 1; Rats; Rats, Sprague-Dawley; Stilbenes | 2022 |
Targeting glycolysis in Th2 cells by pterostilbene attenuates clinical severities in an asthmatic mouse model and IL-4 production in peripheral blood from asthmatic patients.
Topics: Animals; Asthma; Cytokines; Disease Models, Animal; Glucose; Glycolysis; Histones; Humans; Interleukin-4; Leukocytes, Mononuclear; Mice; Pyroglyphidae; Stilbenes; Th2 Cells; TOR Serine-Threonine Kinases | 2022 |
Protective effect of pterostilbene in a streptozotocin-induced mouse model of Alzheimer's disease by targeting monoamine oxidase B.
Alzheimer's disease (AD) is a neurodegenerative disease in elderly population. Pterostilbene (PTS) is a resveratrol analog with neuroprotective activity. However, the biological mechanisms of PTS in AD progression are largely uncertain. An animal model of AD was established using streptozotocin (STZ)-treated C57BL/6J mice. Monoamine oxidase B (MAOB) expression was analyzed by bioinformatics analysis and detected by western blotting assay. The memory impairment was investigated by Morris water maze test. The levels of Tau hyperphosphorylation and death-related proteins were detected by western blotting analysis. The levels of amyloid β (Aβ) Topics: Aged; Alzheimer Disease; Amyloid beta-Peptides; Animals; bcl-2-Associated X Protein; Caspase 3; Disease Models, Animal; Humans; Inflammation; Interleukin-6; Mice; Mice, Inbred C57BL; Monoamine Oxidase; Neurodegenerative Diseases; NF-kappa B; Reactive Oxygen Species; Resveratrol; Stilbenes; Streptozocin; Superoxide Dismutase; Tumor Necrosis Factor-alpha | 2022 |
Polydatin alleviates DSS- and TNBS-induced colitis by suppressing Th17 cell differentiation via directly inhibiting STAT3.
Inflammatory bowel disease (IBD) is a non-specific chronic intestinal inflammatory disease, often presenting with abdominal pain, diarrhea, bloody stool, anorexia, and body loss. It is difficult to cure completely and a promising treatment is urgently needed. Natural compounds can offer promising chemical agents for treatment of diseases. Polydatin is a natural ingredient extracted from the dried rhizome of Polygonum cuspidatum, which has anti-inflammatory, anti-tumor, and dementia protection activities. The purpose of this study was to evaluate the therapeutic effect of polydatin on IBD and explore its possible mechanism. We found that polydatin could effectively suppress the differentiation of Th17 cells in vitro, but had no effect on the differentiation of Treg cells. Polydatin significantly alleviated colitis induced by dextran sulfate sodium (DSS) and 2, 4, 6-trinitrobenzenesulfonic acid (TNBS) in mice, and dramatically decreased the proportion of Th17 cells in spleen and mesenteric lymph nodes. Mechanism investigations revealed that polydatin specifically inhibited signal transducer and activator of transcription 3 (STAT3) phosphorylation by directly binding to STAT3, leading to Th17 cell reduction and thereby alleviating colitis. These findings provide novel insights into the anti-colitis effect of polydatin, which may be a promising drug candidate for the treatment of IBD. Topics: Animals; Cell Differentiation; Colitis; Colon; Dextran Sulfate; Disease Models, Animal; Glucosides; Inflammatory Bowel Diseases; Mice; Mice, Inbred C57BL; STAT3 Transcription Factor; Stilbenes; T-Lymphocytes, Regulatory; Th17 Cells; Trinitrobenzenesulfonic Acid | 2022 |
Pterostilbene Fails to Rescue Insulin Secretion and Sensitivity in Multiple Murine Models of Diabetes.
Diabetes incidence is rising globally at an accelerating rate causing issues at both the individual and societal levels. However, partly inspired by Ayurvedic medicine, a naturally occurring compound called pterostilbene has been demonstrated to protect against diabetes symptoms, though mainly in rats. The purpose of this study was to investigate the putative protective effect of pterostilbene on the two main aspects of diabetes, namely insulin resistance and decreased insulin secretion, in mice. To accomplish this, we employed diet-induced obese as well as streptozotocin-induced diabetic C57BL/6NTac mice for fasting glucose homeostasis assessment, tolerance tests and pancreas perfusions. In addition, we used the polygenic model of diabetes TALLYHO/JngJ to assess for prevention of β-cell burnout. We found that the diet-induced obese C57BL/6NTac mice were insulin resistant, but that pterostilbene had no impact on this or on overall glucose regulation. We further found that the reported protective effect of pterostilbene against streptozotocin-induced diabetes was absent in C57BL/6NTac mice, despite a promising pilot experiment. Lastly, we observed that pterostilbene does not prevent or delay onset of β-cell burnout in TALLYHO/JngJ mice. In conjunction with the literature, our findings suggest variations in the response to pterostilbene between species or between strains of species. Topics: Animals; Blood Glucose; Diabetes Mellitus, Experimental; Disease Models, Animal; Glucose; Insulin; Insulin Secretion; Mice; Mice, Inbred C57BL; Mice, Obese; Obesity; Rats; Stilbenes; Streptozocin | 2022 |
Isorhapontigenin prevents β‑amyloid‑associated cognitive impairments through activation of the PI3K/AKT/GSK‑3β pathway.
Alzheimer's disease (AD) is a chronic and progressive neurodegenerative disease that is the most common cause of dementia in the elderly. Aβ1‑42 is significantly associated with memory deficits and it can increase the level of acetylcholine, promote the activity of acetylcholinesterase (AChE), and cause cognitive dysfunction. Isorhapontigenin (ISO) is a stilbene derivative that has antioxidant, anti‑tumor, and anti‑inflammatory effects. However, it is still unclear whether ISO can affect β‑amyloid‑associated cognitive impairments. In this study, we found that ISO improved cognitive dysfunction induced by Aβ1‑42 in rats. It inhibited the Aβ‑induced activation of M1 microglia and reduced the release of inflammatory cytokines. It alleviated amyloid beta‑induced oxidative stress and led to an overall improvement in AD symptoms. Cellularly, we found that ISO alleviated Aβ‑induced inflammation and oxidative stress by activating the PI3K/AKT/GSK‑3β pathway and ultimately improved cognitive dysfunction in AD rats. Topics: Acetylcholine; Acetylcholinesterase; Alzheimer Disease; Amyloid beta-Peptides; Animals; Anti-Inflammatory Agents; Antioxidants; Cognitive Dysfunction; Cytokines; Disease Models, Animal; Glycogen Synthase Kinase 3 beta; Neurodegenerative Diseases; Oxidative Stress; Phosphatidylinositol 3-Kinases; Proto-Oncogene Proteins c-akt; Rats; Signal Transduction; Stilbenes | 2022 |
Renovation of Intestinal Barrier by Polydatin in Experimentally Induced Ulcerative Colitis: Comparative Ultrastructural Study with L-Carnosine.
Ulcerative colitis (UC) is a chronic inflammatory bowel disease associated with intestinal epithelial barrier impairment. Polydatin (PD), a natural product isolated from Polygonum cuspidatum, is known to have an anti-inflammatory, antioxidant, and antiapoptotic effect. We attempted to compare the protective impact of PD pretreatment on alterations to the intestinal epithelial barrier and the colonic wall's ultrastructure accompanying ulcerative colitis to other conventional drugs in practice, primarily L-carnosine, which has not been addressed before. The rats were divided into 5 groups; 3 of them were treated with sulphasalazine (500 mg/kg), L-carnosine (30 mg/kg), and PD (45 mg/kg). All groups were administered their respective drugs 3 days before the UC was induced by acetic acid intra-rectally, and the treatment was continued until the 11th day. The disease activity index (DAI) was estimated, and a macroscopic scoring was established for the harvested colonic tissue. The tissues were extracted and processed for hematoxylin and eosin staining, caspase-3 immunohistochemical staining, electron microscopy, and biochemical analysis evaluating proinflammatory markers (IL-1β, TNF-α, and IL-6), myeloperoxidase (MPO), oxidative stress, and lipid peroxidation. Histopathological examination of colonic tissue showed that PD pretreatment effectively restored mucosal epithelial cells, intercellular tight junctions, goblet cells, and maintained the intestinal epithelial and endothelial barriers. PD suppressed MPO, proinflammatory markers, and malondialdehyde but enhanced superoxide dismutase and glutathione levels. It also hampered apoptosis, as evidenced by a reduction in caspase-3 expression. PD showed a significantly better response in preserving the intestinal epithelial barrier against acetic acid-induced colitis as compared to sulphasalazine and L-carnosine. These findings demonstrate the therapeutic role of PD for patients with UC. Topics: Animals; Carnosine; Colitis, Ulcerative; Colon; Disease Models, Animal; Glucosides; Humans; Rats; Stilbenes | 2021 |
Combination of Trans-Resveratrol and ε-Viniferin Induces a Hepatoprotective Effect in Rats with Severe Acute Liver Failure via Reduction of Oxidative Stress and MMP-9 Expression.
Stilbenes are a major grapevine class of phenolic compounds, known for their biological activities, including anti-inflammatory and antioxidant, but never studied in combination. We aimed to evaluate the effect of trans-resveratrol + ε-viniferin as an antioxidant mixture and its role in inflammatory development an in vivo model of severe acute liver failure induced with TAA. Trans-resveratrol + trans-ε-viniferin (5 mg/kg each) was administered to Wistar rats. Resveratrol + ε-viniferin significantly decreased TBARS and SOD activity and restored CAT and GST activities in the treated group. This stilbene combination reduced the expression of TNFα, iNOS, and COX-2, and inhibited MMP-9. The combination of resveratrol + ε-viniferin had a hepatoprotective effect, reducing DNA damage, exhibiting a protective role on the antioxidant pathway by altering SOD, CAT, and GST activities; by downregulating TNFα, COX-2, and iNOS; and upregulating IL-10. Our results suggested that adding viniferin to resveratrol may be more effective in hepatoprotection than resveratrol alone, opening a new perspective on using this stilbene combination in functional diets. Topics: Animals; Benzofurans; Disease Models, Animal; Liver; Liver Failure, Acute; Matrix Metalloproteinase 9; Oxidative Stress; Protective Agents; Rats; Rats, Wistar; Resveratrol; Stilbenes | 2021 |
Design and Evaluation of Rhein-Based MRI Contrast Agents for Visualization of Tumor Necrosis Induced by Combretastatin A-4 Disodium Phosphate.
Visualization of tumor necrosis can determine tumor response to therapy. Our previous study showed that the rhein-based magnetic resonance imaging (MRI) contrast agent with alkane linker (GdL. Three rhein-based MRI agents were synthesized with a tetracarbon ether (GdP1), a hexacarbon ether (GdP2), and a lysine (GdP3) linker, respectively. Their octanol-water partition coefficients (log P) and cytotoxicity were determined. Necrosis avidity of the leading agent was explored on HepG2 cells and ischemia reperfusion-induced liver necrosis (IRLN) rats by MRI. The effect of visualization of tumor necrosis was tested on nude mice with W256 tumor treated by combretastatin-A4 phosphate (CA4P). DNA binding assays were applied to evaluate the possible necrosis-avidity mechanism of the leading agent.. The log P of three agents (- 1.66 ± 0.09, - 1.74 ± 0.01, - 1.95 ± 0.01) decreased when compared with GdL. GdP1 may serve as a potential candidate for early evaluation of tumor response to CA4P treatment. Topics: Animals; Anthraquinones; Antineoplastic Agents, Phytogenic; Cell Line, Tumor; Contrast Media; Disease Models, Animal; Drug Design; Humans; Liver Neoplasms, Experimental; Magnetic Resonance Imaging; Male; Mice; Mice, Nude; Necrosis; Rats; Rats, Sprague-Dawley; Stilbenes; Tissue Distribution | 2021 |
Pterostilbene Alleviates Aβ
In the present study, effect of pterostilbene on β-amyloid 1-42 (Aβ. The behavior results show that pterostilbene alleviated Aβ. The present study reports that pterostilbene alleviated Aβ Topics: Alzheimer Disease; Amyloid beta-Peptides; Animals; Behavior, Animal; Brain; Cell Line; Cognitive Dysfunction; Disease Models, Animal; Humans; Male; Memory, Short-Term; Mice; Neurons; Neuroprotective Agents; NF-E2-Related Factor 2; Oxidative Stress; Peptide Fragments; Signal Transduction; Stilbenes | 2021 |
CCL4-mediated targeting of spleen tyrosine kinase (Syk) inhibitor using nanoparticles alleviates inflammatory bowel disease.
Inflammatory bowel disease (IBD) has emerged a global disease and the ascending incidence and prevalence is accompanied by elevated morbidity, mortality, and substantial healthcare system costs. However, the current typical one-size-fits-all therapeutic approach is suboptimal for a substantial proportion of patients due to the variability in the course of IBD and a considerable number of patients do not have positive response to the clinically approved drugs, so there is still a great, unmet demand for novel alternative therapeutic approaches. Spleen tyrosine kinase (Syk), a cytoplasmic nonreceptor protein tyrosine kinase, plays crucial roles in signal transduction and there are emerging data implicating that Syk participates in pathogenesis of several gut disorders, such as IBD. In this study, we observed the Syk expression in IBD patients and explored the effects of therapeutic Syk inhibition using small-molecule Syk inhibitor piceatannol in bone marrow-derived macrophages (BMDMs). In addition, due to the poor bioavailability and pharmacokinetics of small-molecule tyrosine kinase inhibitors and superiority of targeting nanoparticles-based drug delivery system, we herein prepared piceatannol-encapsulated poly(lactic-co-glycolic acid) nanoparticles that conjugated with chemokine C-C motif ligand 4 (P-NPs-C) and studied its therapeutic effects in vitro in BMDMs and in vivo in experimental colitis model. Our results indicated that in addition to alleviating colitis, oral administration of P-NPs-C promoted the restoration of intestinal barrier function and improved intestinal microflora dysbiosis, which represents a promising treatment for IBD. Topics: Animals; Caco-2 Cells; Chemokine CCL4; Disease Models, Animal; Humans; Inflammatory Bowel Diseases; Intestinal Mucosa; Ligands; Male; Mice; Mice, Inbred C57BL; Nanoparticle Drug Delivery System; Stilbenes; Syk Kinase; THP-1 Cells | 2021 |
SIRT1 attenuates sepsis-induced acute kidney injury via Beclin1 deacetylation-mediated autophagy activation.
Our previous studies showed that silent mating-type information regulation 2 homologue-1 (SIRT1, a deacetylase) upregulation could attenuate sepsis-induced acute kidney injury (SAKI). Upregulated SIRT1 can deacetylate certain autophagy-related proteins (Beclin1, Atg5, Atg7 and LC3) in vitro. However, it remains unclear whether the beneficial effect of SIRT1 is related to autophagy induction and the underlying mechanism of this effect is also unknown. In the present study, caecal ligation and puncture (CLP)-induced mice, and an LPS-challenged HK-2 cell line were established to mimic a SAKI animal model and a SAKI cell model, respectively. Our results demonstrated that SIRT1 activation promoted autophagy and attenuated SAKI. SIRT1 deacetylated only Beclin1 but not the other autophagy-related proteins in SAKI. SIRT1-induced autophagy and its protective effect against SAKI were mediated by the deacetylation of Beclin1 at K430 and K437. Moreover, two SIRT1 activators, resveratrol and polydatin, attenuated SAKI in CLP-induced septic mice. Our study was the first to demonstrate the important role of SIRT1-induced Beclin1 deacetylation in autophagy and its protective effect against SAKI. These findings suggest that pharmacologic induction of autophagy via SIRT1-mediated Beclin1 deacetylation may be a promising therapeutic approach for future SAKI treatment. Topics: Acetylation; Acute Kidney Injury; Animals; Autophagy; Beclin-1; Cell Line; Disease Models, Animal; Enzyme Activation; Enzyme Activators; Glucosides; Humans; Kidney Tubules, Proximal; Male; Mice, Inbred C57BL; Resveratrol; Sepsis; Signal Transduction; Sirtuin 1; Stilbenes; Time Factors | 2021 |
Polydatin alleviates traumatic brain injury: Role of inhibiting ferroptosis.
Secondary injury is the main cause of high mortality and poor prognosis of TBI, which has recently been suggested to be related to ferroptosis. Polydatin, a monocrystalline compound extracted from the rhizome of Polygonum, has been shown to exert potential neuroprotective effects. However, its role and mechanism in the secondary injury of TBI has not been elucidated. In this study, the inhibition of Polydatin on ferroptosis was observed both in the hemoglobin treated Neuro2A cells in vitro and in TBI mouse model in vivo, characterized by reversion of accumulation or deposition of free Fe Topics: Animals; Brain; Brain Injuries, Traumatic; Cell Line; Cell Survival; Disease Models, Animal; Ferroptosis; Glucosides; Hemin; Iron; Male; Mice; Mice, Inbred C57BL; Neurons; Neuroprotection; Neuroprotective Agents; Phospholipid Hydroperoxide Glutathione Peroxidase; Stilbenes | 2021 |
Pterostilbene modifies triglyceride metabolism in hepatic steatosis induced by high-fat high-fructose feeding: a comparison with its analog resveratrol.
The use of phenolic compounds as a new therapeutic approach against NAFLD has emerged recently. In the present study, we aim to study the effect of pterostilbene in the prevention of liver steatosis developed as a consequence of high-fat (saturated) high-fructose feeding, by analysing the changes induced in metabolic pathways involved in triglyceride accumulation. Interestingly, a comparison with the anti-steatotic effect of its parent compound resveratrol will be made for the first time. Rats were distributed into 5 experimental groups and fed either a standard laboratory diet or a high-fat high-fructose diet supplemented with or without pterostilbene (15 or 30 mg per kg per d) or resveratrol (30 mg per kg per d) for 8 weeks. Serum triglyceride, cholesterol, NEFA and transaminase levels were quantified. Liver histological analysis was carried out by haematoxylin-eosin staining. Different pathways involved in liver triglyceride metabolism, including fatty acid synthesis, uptake and oxidation, triglyceride assembly and triglyceride release, were studied. Pterostilbene was shown to partially prevent high-fat high-fructose feeding induced liver steatosis in rats, demonstrating a dose-response pattern. In this dietary model, it acts mainly by reducing de novo lipogenesis and increasing triglyceride assembly and release. Improvement in mitochondrial functionality was also appreciated. At the same dose, the magnitude of pterostilbene and resveratrol induced effects, as well as the involved mechanisms of action, were similar. Topics: Adipose Tissue; Animals; Diet, High-Fat; Disease Models, Animal; Fatty Liver; Fructose; Lipids; Lipogenesis; Liver; Male; Rats; Rats, Wistar; Resveratrol; Stilbenes; Triglycerides | 2021 |
Co-administration of combretastatin A4 nanoparticles and anti-PD-L1 for synergistic therapy of hepatocellular carcinoma.
According to data estimated by the WHO, primary liver cancer is currently the fourth most common malignant tumor and the second leading cause of death around the world. Hepatocellular carcinoma (HCC) is one of the most common primary liver malignancies, so effective therapy is highly desired for HCC.. In this study, the use of poly(L-Aspartic acid)-poly(ethylene glycol)/combretastatin A4 (CA4-NPs) was aimed to significantly disrupt new blood vessels in tumor tissues for targeted hepatic tumor therapy. Here, PEG-b-PAsp-g-CA4 showed significantly prolonged retention in plasma and tumor tissue. Most importantly, CA4-NPs were mainly distributed at the tumor site because of the triple target effects-enhanced permeability and retention (EPR) effect, acid-sensitive (pH = 5.5) effect to the tumor microenvironment (TME), and good selectivity of CA4 for central tumor blood vessel. Considering that CA4-NPs might induce severe hypoxic conditions resulting in high expression of HIF-1α in tumor tissues, which could induce the overexpression of PD-L1, herein we also used a programmed death-ligand 1 antibody (aPD-L1) to prevent immunosuppression. This way of complementary combination is able to achieve an ideal treatment effect in tumor site where CA4-NPs and aPD-L1 could respond to the inner area and peripheral area, respectively. As a result, a significant decrease in tumor volume and weight was observed in the combination group of CA4-NPs plus aPD-L1 compared with CA4-NPs or aPD-L1 monotherapy in subcutaneous Hepa1-6 hepatic tumor models.. We presented a new idea that co-administration of CA4-NPs and aPD-L1 possessed notable anti-tumor efficacy for HCC treatment. Topics: Animals; Antibodies, Monoclonal, Humanized; Antineoplastic Agents; B7-H1 Antigen; Carcinoma, Hepatocellular; Disease Models, Animal; Drug Synergism; Female; Humans; Liver Neoplasms; Mice; Mice, Inbred C57BL; Nanoparticles; Polyethylene Glycols; Stilbenes; Tumor Microenvironment | 2021 |
Oxyresveratrol Ameliorates Dextran Sulfate Sodium-Induced Colitis in Rats by Suppressing Inflammation.
Topics: Animals; Anti-Inflammatory Agents; Biomarkers; Colitis; Colon; Cytokines; Dextran Sulfate; Disease Models, Animal; Dose-Response Relationship, Drug; Gene Expression; Humans; Inflammation Mediators; Intestinal Mucosa; Nitric Oxide Synthase Type II; Organ Size; Plant Extracts; Rats; Spleen; Stilbenes | 2021 |
Longitudinal evaluation of a novel BChE PET tracer as an early
Topics: Alzheimer Disease; Amyloid beta-Peptides; Aniline Compounds; Animals; Biomarkers; Butyrylcholinesterase; Carbon Radioisotopes; Cholinesterase Inhibitors; Disease Models, Animal; Disease Progression; Female; Fluorine Radioisotopes; Mice; Mice, Inbred C57BL; Mice, Transgenic; Molecular Structure; Nerve Tissue Proteins; Neuroimaging; Plaque, Amyloid; Positron Emission Tomography Computed Tomography; Radiopharmaceuticals; Stilbenes; Tissue Distribution | 2021 |
Systemic metastasis-targeted nanotherapeutic reinforces tumor surgical resection and chemotherapy.
Failure of conventional clinical therapies such as tumor resection and chemotherapy are mainly due to the ineffective control of tumor metastasis. Metastasis consists of three steps: (i) tumor cells extravasate from the primary sites into the circulation system via epithelial-mesenchymal transition (EMT), (ii) the circulating tumor cells (CTCs) form "micro-thrombi" with platelets to evade the immune surveillance in circulation, and (iii) the CTCs colonize in the pre-metastatic niche. Here, we design a systemic metastasis-targeted nanotherapeutic (H@CaPP) composed of an anti-inflammatory agent, piceatannol, and an anti-thrombotic agent, low molecular weight heparin, to hinder the multiple steps of tumor metastasis. H@CaPP is found efficiently impeded EMT, inhibited the formation of "micro-thrombi", and prevented the development of pre-metastatic niche. When combined with surgical resection or chemotherapy, H@CaPP efficiently inhibits tumor metastasis and prolonged overall survival of tumor-bearing mice. Collectively, we provide a simple and effective systemic metastasis-targeted nanotherapeutic for combating tumor metastasis. Topics: Animals; Anti-Inflammatory Agents; Anticoagulants; Antineoplastic Combined Chemotherapy Protocols; Cell Line, Tumor; Chemotherapy, Adjuvant; Disease Models, Animal; Drug Carriers; Epithelial-Mesenchymal Transition; Female; Heparin, Low-Molecular-Weight; Human Umbilical Vein Endothelial Cells; Humans; Male; Mammary Glands, Animal; Mammary Neoplasms, Experimental; Mice; Nanoparticles; Neoplasm Metastasis; Neoplastic Cells, Circulating; Paclitaxel; Proof of Concept Study; Rats; Stilbenes; Theranostic Nanomedicine | 2021 |
Polydatin alleviates severe traumatic brain injury induced acute lung injury by inhibiting S100B mediated NETs formation.
Severe traumatic brain injury (sTBI)-induced acute lung injury (sTBI-ALI) is regarded as the most common complication of sTBI that is an independent predictor of poor outcomes in patients with sTBI and strongly increases sTBI mortality. Polydatin (PD) has been shown to have a potential therapeutic effect on sTBI-induced neurons injury and sepsis-induced acute lung injury (ALI), therefore, it is reasonable to believe that PD has a protective effect on sTBI-ALI. Here, to clarify the PD protective effect following sTBI-ALI, a rat brain injury model of lateral fluid percussion was established to mimic sTBI. As a result, sTBI induced ALI, and caused an increasing of wet/dry weight ratio and lung vascular permeability, as well as sTBI promoted oxidative stress response in the lung; sTBI caused inflammatory cytokines release, such as IL-6, IL-1β, TNF-α and MCP-1; and sTBI promoted NETs formation, mainly including an increasing expression of MPO, NE and CitH3. Simultaneously, sTBI induced a significant increase in the level of S100B; however, when inhibition of S100B, the expression of MPO, NE and CITH3 were significantly inhibited following sTBI. Inhibition of S100B also promoted lung vascular permeability recovery and alleviated oxidative stress response. Furthermore, PD treatmentreduced the pathological lung damage, promoted lung vascular permeability recovery, alleviated oxidative stress response and inflammatory cytokines release; more importantly, PD inhibited the expression of S100B, and NETs formation in the lung following sTBI. These results indicate that PD alleviates sTBI-ALI by inhibiting S100B mediated NETs formation. Thus, PD may be valuable in sTBI-ALI treatment. Topics: Acute Lung Injury; Animals; Brain Injuries, Traumatic; Disease Models, Animal; Extracellular Traps; Glucosides; Humans; Lung; Male; Oxidative Stress; Rats; S100 Calcium Binding Protein beta Subunit; Stilbenes | 2021 |
Pterostilbene Attenuates High-Fat Diet and Dextran Sulfate Sodium-Induced Colitis via Suppressing Inflammation and Intestinal Fibrosis in Mice.
The worldwide prevalence of obesity has significantly increased over the past few decades. It is currently believed that obesity is a risk factor for developing inflammatory bowel disease. Pterostilbene (PTS), a naturally occurring stilbene from blueberries, is known to have anticancer, anti-inflammation, antifibrosis, and antiobesity effects. The preventive effect of PTS on the susceptibility of high-fat diet (HFD) to dextran sulfate sodium (DSS)-induced colitis in mice was investigated. Beginning at 5 weeks of age, C57BL/6J mice were fed a normal diet, 50% HFD alone, or containing PTS, and DSS (2.5%, w/v) was given in drinking water at week 9 and week 11. The results demonstrated that PTS significantly attenuated HFD and DSS-induced plasma interleukin-6 accumulation. Moreover, PTS suppressed HFD/DSS-induced formation of aberrant crypt foci and reduced the colon weight-to-length ratio in HFD/DSS-induced colitis mice. Furthermore, PTS inhibited interleukin-1β (IL-1β), the C/EBP homologous protein (CHOP), cyclooxygenase-2, and transforming growth factor beta-1 (TGF-β1)/mothers against decapentaplegic homolog 2 expression and maintained mucin2 (Muc2) and E-cadherin expressions. In addition, post-treatment with PTS also decreased the colon weight-to-length ratio and loss of Muc2. Moreover, the CHOP, IL-1β, matrix metalloproteinase-2, and TGF-β1 expressions were significantly decreased in HFD/DSS-induced colitis mice after post-treatment with PTS. In conclusion, the results of the present study suggest that PTS is of significant interest for the prevention of HFD/DSS-induced colitis in C57BL/6J mice. Topics: Animals; Colitis; Colon; Dextran Sulfate; Diet, High-Fat; Disease Models, Animal; Fibrosis; Inflammation; Matrix Metalloproteinase 2; Mice; Mice, Inbred C57BL; Stilbenes | 2021 |
Piceatannol protects against sepsis-induced myocardial dysfunction via direct inhibition of JAK2.
Sepsis-induced myocardial dysfunction (SIMD) represents one of the serious complications secondary to sepsis, which is a leading cause of the high mortality rate among septic cases. Subsequent cardiomyocyte apoptosis, together with the uncontrolled inflammatory response, has been suggested to be closely related to SIMD. Piceatannol (PIC) is verified with potent anti-apoptotic and anti-inflammatory effects, but its function and molecular mechanism in SIMD remain unknown so far. This study aimed to explore the potential role and mechanism of action of PIC in resisting SIMD. The interaction of PIC with JAK2 proteins was evaluated by molecular docking, molecular dynamics (MD) simulation and surface plasmon resonance imaging (SPRi). The cecal ligation and puncture-induced septicemia mice and the LPS-stimulated H9C2 cardiomyocytes were prepared as the models in vivo and in vitro, separately. Molecular docking showed that JAK2-PIC complex had the -8.279 kcal/mol binding energy. MD simulations showed that JAK2-PIC binding was stable. SPRi analysis also showed that PIC has a strong binding affinity to JAK2. PIC treatment significantly ameliorated the cardiac function, attenuated the sepsis-induced myocardial loss, and suppressed the myocardial inflammatory responses both in vivo and in vitro. Further detection revealed that PIC inhibited the activation of the JAK2/STAT3 signaling, which was tightly associated with apoptosis and inflammation. Importantly, pre-incubation with a JAK2 inhibitor (AG490) partially blocked the cardioprotective effects of PIC. Collectively, the findings demonstrated that PIC restored the impaired cardiac function by attenuating the sepsis-induced apoptosis and inflammation via suppressing the JAK2/STAT3 pathway both in septic mice and H9C2 cardiomyocytes. Topics: Animals; Apoptosis; Cardiomyopathies; Cardiotonic Agents; Cell Line; Disease Models, Animal; Inflammation; Janus Kinase 2; Male; Mice, Inbred C57BL; Molecular Docking Simulation; Molecular Dynamics Simulation; Myocytes, Cardiac; Rats; Sepsis; Signal Transduction; STAT3 Transcription Factor; Stilbenes; Tyrphostins | 2021 |
Synthetic cajaninstilbene acid derivatives eradicate methicillin-resistant Staphylococcus aureus persisters and biofilms.
The Staphylococcus aureus can switch to a transient genotype-invariant dormancy, known as a persister, to survive treatment with high doses of antibiotics. This transient persister is an important reason underlying its resistance. There is an urgent need to find new antibacterial agents capable of eradicating methicillin-resistant S. aureus (MRSA) persisters. In this study, 37 new derivatives of cajaninstilbene acid (CSA) were designed and synthesized, and their biological activity against MRSA persisters was evaluated. Most of the newly synthesized derivatives exhibit more potent antimicrobial properties against S. aureus and MRSA than CSA itself, and 23 of the 37 derivatives show a tendency to eradicate MRSA persisters. A representative compound (A6) was demonstrated to target bacterial cell membranes. It eradicated the adherent biofilm of MRSA in a concentration dependent manner, and showed a synergistic antibacterial effect with piperacilin. In a model mouse abscess caused by MRSA persisters, A6 effectively reduced the bacterial load in vivo. These results indicate that A6 is a potential candidate for treatment of MRSA persister infections. Topics: Animals; Anti-Bacterial Agents; Biofilms; Cell Survival; Cell Wall; Disease Models, Animal; Methicillin-Resistant Staphylococcus aureus; Mice; Microbial Sensitivity Tests; RAW 264.7 Cells; Salicylates; Skin Diseases; Staphylococcal Infections; Staphylococcus aureus; Stilbenes; Structure-Activity Relationship | 2021 |
Chemopreventive effects of pterostilbene through p53 and cell cycle in mouse lung of squamous cell carcinoma model.
Cell proliferation and cell death abnormalities are strongly linked to the development of cancer, including lung cancer. The purpose of this study was to investigate the effect of pterostilbene on cell proliferation and cell death via cell cycle arrest during the transition from G1 to S phase and the p53 pathway. A total of 24 female Balb/C mice were randomly categorized into four groups (n = 6): N-nitroso-tris-chloroethyl urea (NTCU) induced SCC of the lungs, vehicle control, low dose of 10 mg/kg PS + NTCU (PS10), and high dose of 50 mg/kg PS + NTCU (PS50). At week 26, all lungs were harvested for immunohistochemistry and Western blotting analysis. Ki-67 expression is significantly lower, while caspase-3 expression is significantly higher in PS10 and PS50 as compared to the NTCU (p < 0.05). There was a significant decrease in cyclin D1 and cyclin E2 protein expression in PS10 and PS50 when compared to the NTCU (p < 0.05). PS50 significantly increased p53, p21, and p27 protein expression when compared to NTCU (p < 0.05). Pterostilbene is a potential chemoprevention agent for lung SCC as it has the ability to upregulate the p53/p21 pathway, causing cell cycle arrest. Topics: Animals; Anticarcinogenic Agents; Apoptosis; Carcinoma, Squamous Cell; Cell Cycle Checkpoints; Cell Proliferation; Cyclin D1; Cyclins; Disease Models, Animal; Down-Regulation; Female; G1 Phase Cell Cycle Checkpoints; Gene Expression Regulation, Neoplastic; Lung Neoplasms; Mice, Inbred BALB C; Stilbenes; Tumor Suppressor Protein p53; Up-Regulation | 2021 |
Polydatin gold nanoparticles potentiate antitumor effect of doxorubicin in Ehrlich ascites carcinoma-bearing mice.
Breast cancer is a leading cause of death. Anticancer treatment such as gold nanoparticles (AuNP) seems highly promising in this regard. Therefore, this study aimed to assess the beneficial effect of doxorubicin (Dox) and polydatin (PD) AuNP in Ehrlich ascites carcinoma (EAC) and the ability of PD-AuNP to protect the heart from Dox's deteriorating effects. EAC was induced in mice. The mice were divided into nine groups: normal, EAC, PD: received PD (20 mg/kg), Dox: received Dox (2 mg/kg), PD-AuNPH: received 10 ppm AuNP of PD, PD-AuNPL: received 5 ppm AuNP of PD, Dox-AuNP: received Dox-AuNP, PD-Dox-AuNP: received PD-Dox-AuNP, AuNP: received AuNP. On the 21st day from tumor inoculation, the mice were sacrificed and tumor and heart tissues were removed. Tumor β-catenin/Cyclin D1 and p53 were assessed by immunohistochemistry. IL-6 was determined by enzyme-linked immunosorbent assay. PD-AuNP and Dox-AuNP showed a significant reduction in tumor volume and weight more than their free forms. Also, PD-AuNP and Dox-AuNP showed markedly less dense tumor cells. β-catenin and Cyclin D1 were markedly decreased and p53 was highly upregulated by PD-AuNP and Dox-AuNP. Moreover, PD-AuNP and Dox-AuNP have the ability to decrease IL-6 production. PD-AuNP protected the heart from Dox-induced severe degeneration. Therefore, PD-AuNP could be a tool to decelerate the progression of breast cancer. Topics: Animals; Antineoplastic Agents; Carcinoma, Ehrlich Tumor; Disease Models, Animal; Doxorubicin; Drug Synergism; Drugs, Chinese Herbal; Fallopia japonica; Female; Glucosides; Gold; Heart; Metal Nanoparticles; Mice; Nanoparticle Drug Delivery System; Phytochemicals; Phytotherapy; Protective Agents; Stilbenes; Treatment Outcome; Tumor Burden | 2021 |
Anticholinesterase activity and metabolite profiling of
The purpose of this study is to provide a complete metabolic profile of the hydroalcoholic extracts of the leaves and fruits of Topics: Acetylcholine; Alzheimer Disease; Animals; Arecaceae; Brain; Cholinesterase Inhibitors; Disease Models, Animal; Fatty Acids; Flavonoids; Fruit; Lignans; Plant Extracts; Plant Leaves; Rats; Stilbenes | 2021 |
Inflammation inhibition and gut microbiota regulation by TSG to combat atherosclerosis in ApoE
2,3,5,4'-Tetrahydroxy-stilbene-2-O-β-D-glucoside (TSG) is the main active component of Polygoni Multiflori Radix, a root of the homonymous plant widely used in traditional Chinese medicine. TSG has protective effects on the liver, reduces cholesterol and possesses anti-oxidant, anti-tumor, and anti-atherosclerotic properties. However, the pharmacological effects and mechanisms of action of Polygonum multiflorum on atherosclerosis (AS) have not been studied yet.. The aim of this research was to study the effects of Polygoni Multiflori Radix Praeparata (PMRP) and its major active chemical constituent TSG on AS in ApoE-deficient (ApoE. High fat diet induced AS in ApoE. TSG markedly inhibited AS plaque formation in ApoE. PMRP and TSG improved lipid accumulation and inflammation, and regulated the intestinal microbial imbalance in ApoE Topics: Administration, Oral; Animals; Aorta; Atherosclerosis; Chemokine CCL2; Diet, High-Fat; Disease Models, Animal; Drugs, Chinese Herbal; Gastrointestinal Microbiome; Glucosides; Humans; Inflammation; Intercellular Adhesion Molecule-1; Lipoproteins, LDL; Male; Mice; Mice, Knockout, ApoE; Polygonum; Stilbenes; Triglycerides; Tumor Necrosis Factor-alpha; Vascular Cell Adhesion Molecule-1 | 2020 |
Chondroprotective and anti-inflammatory effects of amurensin H by regulating TLR4/Syk/NF-κB signals.
The low-grade, chronic inflammation initiated by TLR4-triggered innate immune responses has a central role on early osteoarthritis. Amurensin H is a resveratrol dimer with anti-inflammatory and anti-apoptotic effects, while its effects on TLR-4 signals to inhibit osteoarthritis are still unclear. In the present study, treatment with amurensin H for 2 weeks in monosodium iodoacetate-induced mice significantly slows down cartilage degeneration and inflammation using macroscopic evaluation, haematoxylin and eosin (HE) staining and micro-magnetic resonance imaging. In IL-1β-stimulated rat chondrocytes, amurensin H suppresses the production of inflammatory mediators including nitric oxide, IL-6, IL-17, PGE2 and TNF-α using Greiss and ELISA assay. Amurensin H inhibits matrix degradation via decreasing levels of MMP-9 and MMP-13 using Western blot assay, promotes synthesis of type II collagen and glycosaminoglycan using immunostaining and safranin O staining, respectively. Amurensin H inhibits intracellular and mitochondrial reactive oxygen species (ROS) generation, and mitochondrial membrane depolarization using DCFH-DA, MitoSOX Red and JC-1 assay as well. IL-1β stimulates TLR4 activation and Syk phosphorylation in chondrocytes, while amurensin H inhibits TLR4/Syk signals and downstream p65 phosphorylation and translocation in a time and dose-dependent manner. Together, these results suggest that amurensin H exerts chondroprotective effects by attenuating oxidative stress, inflammation and matrix degradation via the TLR4/Syk/NF-κB pathway. Topics: Animals; Anti-Inflammatory Agents; Benzofurans; Chondrocytes; Disease Models, Animal; Disease Progression; Extracellular Matrix; Inflammation Mediators; Interleukin-1beta; Iodoacetates; Mice; Models, Biological; NF-kappa B; Osteoarthritis; Oxidative Stress; Phosphorylation; Protective Agents; Protein Transport; Rats, Sprague-Dawley; Reactive Oxygen Species; Signal Transduction; Stilbenes; Syk Kinase; Toll-Like Receptor 4; Transcription Factor RelA | 2020 |
Isorhapontigenin alleviates cerebral ischemia/reperfusion injuries in rats and modulated the PI3K/Akt signaling pathway.
Isorhapontigenin (ISO) is one of the main bioactive components of Gnetum cleistostachyum and was shown to possess antioxidant and antitumor functions. Herein, we hope to examine the neuroprotection impacts of ISO in rats subjected to transient middle cerebral artery occlusion/reperfusion (MCAO/R, 2/24 h) injuries. ISO was injected intraperitoneally into the rats immediately after cerebral ischemia. After 24 h of the reperfusion, infarct volume, brain water contents, neurological deficit, and cerebral blood flow were assessed. Hippocampus histopathology change was detected by H&E and TUNEL staining. The expressions of cleaved caspase-3, Bax and Bcl-2, and phospho-Akt (p-Akt) were investigated by real-time RT-PCR or western blot analysis. We found that ISO significantly suppressed the infarct volumes, brain water contents, and neurological deficit, increased CBF, and relieved histopathologic change in a dose-dependent manner. Reduced malondialdehyde (MDA) and elevated activities of superoxide dismutase (SOD) and GSH and glutathione peroxidase (GSH-PX) were observed in ISO group. ISO remarkably decreased caspase-3 and Bax and increased levels of Bcl-2. Additionally, ISO upregulated p-Akt expression. Blocking of PI3K activities by wortmannin can abolish the ISO-caused decrease in infarct volumes and neurologic deficit scores and abrogate the promotion of p-Akt. The data indicated that ISO played neuroprotective impacts against focal I/R injuries, possibly related to the activating of PI3K/Akt signaling. Topics: Animals; Antioxidants; Apoptosis; Apoptosis Regulatory Proteins; Disease Models, Animal; Hippocampus; Infarction, Middle Cerebral Artery; Male; Neuroprotective Agents; Oxidative Stress; Phosphatidylinositol 3-Kinase; Phosphorylation; Proto-Oncogene Proteins c-akt; Rats, Sprague-Dawley; Reperfusion Injury; Signal Transduction; Stilbenes | 2020 |
Tetrahydroxystilbene Glucoside Ameliorates Infrasound-Induced Central Nervous System (CNS) Injury by Improving Antioxidant and Anti-Inflammatory Capacity.
Infrasound is a major threat to global health by causing injuries of the central nervous system (CNS). However, there remains no effective therapeutic agent for preventing infrasound-caused CNS injury. 2,3,5,4'-Tetrahydroxystilbene-2-O-. A mouse model with CNS (oxidative stress-induced inflammation and neuronal apoptosis) injuries was established when the mouse was exposed to the infrasound of 16 Hz at 130 dB for 2 h each day and the duration of treatment was 8 d. The mice were divided into the control (CG, healthy mice), the model (MG, model mice), and the THSG (EG, experimental group, model mice treated with THSG) groups. The learning and memory impairments caused by infrasound were examined using a Morris water maze test. Lipid profiles, antioxidant biomarkers, and inflammatory cytokines in hippocampus tissue were measured by using corresponding ELISA kits. Meanwhile, BCL-2/BAX/caspase-3 signaling pathway was measured in the hippocampi and prefrontal cortex of the mouse brain using real-time qPCR and Western blot. Nissl's stain was used to measure neuronal necrosis in the hippocampi and prefrontal cortex of the mouse brain.. THSG significantly ameliorated the learning and memory impairments caused by infrasound. On the other hand, THSG improved lipid profiles, increased antioxidant properties by affecting the levels of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT), and malondialdehyde (MDA), and displayed anti-inflammatory action via the downregulation of IL- (interleukin-) 6, IL-8, IL-10, TNF- (tumor necrosis factor-). THSG may be an effective anti-infrasound drug against CNS injury by improving antioxidant, anti-inflammatory, antiapoptosis, and antinecrosis capacities. Further research is still needed to confirm the exact molecular mechanism. Topics: Animals; Anti-Inflammatory Agents; Antioxidants; Central Nervous System; Cytokines; Disease Models, Animal; Glucosides; Inflammation; Male; Mice; Stilbenes; Ultrasonic Waves | 2020 |
3'-Hydroxypterostilbene Potently Alleviates Obesity Exacerbated Colitis in Mice.
Epidemiological surveys show that obesity and the western diet increase the risk of colitis. Studies have also confirmed that the high-fat-diet (HFD) promoted the deterioration of colitis-related indicators in mice. Compared with stilbenoids, the results showed that 3'-hydroxypterostilbene (HPSB) was found to be the most effective inhibitor for the antiadipogenesis and anti-inflammation. However, its role in ameliorating obesity-promoted colitis is still unknown. We intend to investigate the protective effect and related molecular mechanisms of HPSB on HFD promoted dextran sodium sulfate (DSS)-induced colitis in mice. The results indicate that colitis in the HFD+DSS group tends to be more apparent in the DSS-only group, while feeding 0.025% of HPSB at different stages can improve the colitis induced by HFD+DSS. HPSB significantly reduced the levels of interleukin-6 (IL-6) and monocyte chemoattractant protein-1 (MCP-1) induced by HFD+DSS in mice. Furthermore, the Western blotting revealed that the administration of HPSB significantly downregulated cyclooxygenase-2 (COX-2), plasmalemma vesicle-associated protein-1 (PV-1), and phospho-signal transducer and activator of transcription 3 (p-STAT3) expressions in HFD+DSS treated mice. Presented results reveal that HPSB is a novel functional agent capable of preventing HFD exacerbated colitis. Topics: Animals; Anti-Inflammatory Agents; Chemokine CCL2; Colitis; Dextran Sulfate; Diet, High-Fat; Disease Models, Animal; Humans; Interleukin-6; Male; Mice; Mice, Inbred C57BL; Obesity; STAT3 Transcription Factor; Stilbenes | 2020 |
Tetrahydroxy stilbene glycoside alleviated inflammatory damage by mitophagy via AMPK related PINK1/Parkin signaling pathway.
Topics: Alzheimer Disease; AMP-Activated Protein Kinases; Amyloid beta-Peptides; Amyloid beta-Protein Precursor; Animals; Anti-Inflammatory Agents; Cell Line, Tumor; Cognitive Dysfunction; Disease Models, Animal; Gene Expression Regulation; Glucosides; Humans; Inflammasomes; Male; Mice; Mice, Inbred C57BL; Mice, Transgenic; Microglia; Mitochondria; Mitophagy; Neurons; Neuroprotective Agents; NLR Family, Pyrin Domain-Containing 3 Protein; Primary Cell Culture; Protein Kinases; RNA, Small Interfering; Signal Transduction; Stilbenes; Ubiquitin-Protein Ligases | 2020 |
Pterostilbene prevents LPS-induced early pulmonary fibrosis by suppressing oxidative stress, inflammation and apoptosis in vivo.
Early pulmonary fibrosis after acute lung injury leads to poor prognosis and high mortality. Pterostilbene (Pts), a bioactive component in blueberries, possesses anti-inflammatory, antioxidative and antifibrotic properties. However, the effects of Pts on lipopolysaccharide (LPS)-induced pulmonary fibrosis are still unknown. In our study, the Pts group showed lower lung injury and fibrosis scores, and lower levels of hydroxyproline and protein (collagen I and transforming growth factor-β) than the scores and levels in mice treated with LPS. MMP-1 was the degrading enzyme of collagen I and LPS caused the inhibition of MMP-1, disturbing the degradation of collagen. Additionally, Pts remarkably reversed the LPS-induced inhibition of interleukin-10 and the release of tumor necrosis factor-α, interleukin-6 and interleukin-1β. In terms of cellular pathways, Pts treatment ameliorated LPS-activated nuclear factor kappa B (NF-κB) and NOD-like receptor NLRP3 signaling. Besides, LPS-induced low levels of A20 could be activated by Pts. In addition, Pts treatment reversed the high levels of Caspase-3, poly ADP-ribose polymerase (PARP) and Bcl2-associated X protein (Bax) expression and the low levels of B cell lymphoma/lewkmia-2 (Bcl2) that had been induced by LPS. Moreover, oxidative stress is also involved in the pathogenesis of fibrosis. Our findings indicate that LPS injection triggered the production of myeloperoxidase (MPO) and malondialdehyde (MDA) and the depletion of superoxide dismutase (SOD) and glutathione (GSH), and that these effects were notably reversed by treatment with Pts. In addition, Pts induced the dissociation of Kelch-like epichlorohydrin-associated protein-1 (Keap-1) and NF-E2 related factor-2 (Nrf2) and the activation of downstream genes (heme oxygenase-1, NAD(P)H:quinine oxidoreductase, glutamate-cysteine ligase catalytic subunit and glutamate-cysteine ligase modifier). In conclusion, oxidative stress, apoptosis and inflammation are involved in early pulmonary fibrosis and Pts exerts a protective effect by activating Keap-1/Nrf2, inhibiting caspase-dependent A20/NF-κB and NLRP3 signaling pathways. Topics: Animals; Antioxidants; Apoptosis; Blueberry Plants; Disease Models, Animal; Inflammation; Lipopolysaccharides; Mice; Mice, Inbred Strains; Oxidative Stress; Phytotherapy; Pulmonary Fibrosis; Rabbits; Random Allocation; Stilbenes | 2020 |
2,3,5,4'-tetrahydroxystilbence-2-O-β-D-glucoside attenuates hepatic steatosis via IKKβ/NF-κB and Keap1-Nrf2 pathways in larval zebrafish.
With the improvement of people's living standards and the change of dietary habits, Non-alcoholic fatty liver disease (NAFLD) has gradually become one of the liver diseases that endanger human health around the world. However, there are no particularly effective drugs for NAFLD in the current market. Therefore, new drug candidates which could provide high efficacy and low toxicity are needed valuable for the prevention and treatment of NAFLD. 2,3,5,4'-tetrahydroxystilbence-2-O-β-D-glucoside (TSG) is extracted from Polygonum multiflorum Thunb., and has been widely used to treat a variety of chronic diseases in China. Recently, TSG has been reported to exert various biological activities in many studies, such as lipid-lowering, anti-inflammatory and anti-oxidant activities, which indicate that TSG may have the effect of improving NAFLD. After feeding 5% high cholesterol diet to 5 days post fertilization larval zebrafish for 10 days, hepatic steatosis larval zebrafish model was established successfully. Then the effect of TSG on the improvement of hepatic steatosis larval zebrafish was studied. Moreover, the potential mechanism of TSG on anti-NAFLD effect were studied using RT-qPCR methods from multiple pathogenesis aspects of lipogenesis, lipid-lowering, inflammation, and oxidant stress. To conclude, TSG attenuates hepatic steatosis via regulating lipid metabolism related pathway, IKKβ/NF-κB anti-inflammatory pathway and Keap1-Nrf2 anti-oxidant pathway. Topics: Animals; Cholesterol, Dietary; Disease Models, Animal; Glucosides; I-kappa B Kinase; Kelch-Like ECH-Associated Protein 1; Lipid Metabolism; NF-E2-Related Factor 2; NF-kappa B; Non-alcoholic Fatty Liver Disease; Oxidative Stress; Signal Transduction; Stilbenes; Zebrafish; Zebrafish Proteins | 2020 |
Pterostilbene alleviates cerebral ischemia and reperfusion injury in rats by modulating microglial activation.
Ischemic stroke is a severe neurological disease without known effective therapy. Microglia-mediated neuroinflammation plays an important role in ischemic stroke. Therefore, finding a safe and effective microglial activation inhibitor might lead to an effective therapeutic strategy against ischemic stroke. In this project, our goal was to explore both the mechanism and effect of pterostilbene in MCAO/R rats. The potential effect of pterostilbene on ischemic stroke was tested using MCAO/R rats and its effect on microglial activation was tested in LPS-stimulated BV-2 cells. In vivo, pterostilbene decreased the neurological scores, brain water content and infarct volume in MCAO/R rats. Pterostilbene increased the number of mature neurons, decreased the number of activated microglia, and reduced iNOS and IL-1β mRNA expression. Pterostilbene inhibited phosphorylated-IκBα expression, thus promoting IκBα expression and inhibiting ROS overexpression. In vitro, pterostilbene inhibited the expression of inflammatory cytokines and suppressed NAPDH activity as well as activation of both the NF-κB pathway and ROS production. To our knowledge, our study is the first to demonstrate that pterostilbene-mediated alleviation of cerebral ischemia and reperfusion injury in rats may be correlated with the inhibition of the ROS/NF-κB-mediated inflammatory pathway in microglia, indicating the potential for the use of pterostilbene as a candidate therapeutic compound for ischemic stroke. Topics: Animals; Brain; Brain Ischemia; Cell Line; Disease Models, Animal; Gene Expression Regulation; Inflammation; Interleukin-1beta; Macrophage Activation; Male; Microglia; NF-kappa B; NF-KappaB Inhibitor alpha; Rats; Rats, Sprague-Dawley; Reperfusion Injury; RNA, Messenger; Stilbenes; Stroke | 2020 |
NMR-Based Metabonomic Study Reveals Intervention Effects of Polydatin on Potassium Oxonate-Induced Hyperuricemia in Rats.
Previous studies have disclosed the antihyperuricemic effect of polydatin, a natural precursor of resveratrol; however, the mechanisms of action still remain elusive. The present study was undertaken to evaluate the therapeutic effects and the underlying mechanisms of polydatin on potassium oxonate-induced hyperuricemia in rats through metabonomic technology from a holistic view. Nuclear magnetic resonance (NMR) spectroscopy was applied to capture the metabolic changes in sera and urine collected from rats induced by hyperuricemia and polydatin treatment. With multivariate data analysis, significant metabolic perturbations were observed in hyperuricemic rats compared with the healthy controls. A total of eleven and six metabolites were identified as differential metabolites related to hyperuricemia in serum and urine of rats, respectively. The proposed pathways primarily included branched-chain amino acid (BCAA) metabolism, glycolysis, the tricarboxylic acid cycle, synthesis and degradation of ketone bodies, purine metabolism, and intestinal microflora metabolism. Additionally, some metabolites indicated the risk of renal injury induced by hyperuricemia. Polydatin significantly lowered the levels of serum uric acid, creatinine, and blood urea nitrogen and alleviated the abnormal metabolic status in hyperuricemic rats by partially restoring the balance of the perturbed metabolic pathways. Our findings shed light on the understanding of the pathophysiological process of hyperuricemia and provided a reference for revealing the metabolic mechanism produced by polydatin in the treatment of hyperuricemia. Topics: Animals; Blood Urea Nitrogen; Creatinine; Disease Models, Animal; Drugs, Chinese Herbal; Glucosides; Humans; Hyperuricemia; Kidney; Male; Metabolomics; Oxonic Acid; Rats; Rats, Sprague-Dawley; Stilbenes; Uric Acid | 2020 |
Histopathological effect of pterostilbene as chemoprevention in N-nitroso-tri-chloroethylurea (NTCU)-induced lung squamous cell carcinoma (SCC) mouse model.
Lung cancer is the leading cause of cancer-related deaths, and squamous cell carcinoma (SCC) is one of the most common types of lung cancer. Chemoprevention of lung cancer has gained increasing popularity as an alternative to treatment in reducing the burden of lung cancer. Pterostilbene (PS) may be developed as a chemopreventive agent due to its pharmacological activities, such as anti-proliferative, anti-inflammatory and antioxidant properties. This study aimed to investigate the effect of PS on the development of lung SCC in the mouse model.. A total of 24 seven-week-old female Balb/C mice were randomly categorised into four groups, including two control groups comprising the N-nitroso-trischloroethylurea (NTCU)-induced lung SCC and vehicle control (VC) groups and two treatment groups comprising the 10mg/kg PS (PS10) and 50mg/kg PS (PS50) groups. All lung organs were harvested at week 26 for histopathological analysis.. All PS treatment groups showed chemopreventive activity by inhibiting the progression of lung SCC formation with PS10, resulting in mild hyperplasia, and PS50 was completely reversed in the normal bronchial epithelium layer compared with the VC group. PS treatment also reduced the expression of cytokeratin 5/6 in the bronchial epithelium layer. Both PS10 and PS50 significantly reduced the epithelium thickness compared to the NTCU group (p<0.05). PS is a potential chemopreventive agent against lung SCC growth by suppressing the progression of pre-malignant lesions and reducing the thickness of the bronchial epithelium.. The underlying molecular mechanisms of PS in lung SCC should be further studied. Topics: Animals; Anticarcinogenic Agents; Carcinoma, Squamous Cell; Carmustine; Disease Models, Animal; Female; Keratin-15; Keratin-6; Lung; Lung Neoplasms; Mice, Inbred BALB C; Stilbenes | 2020 |
Two resveratrol analogs, pinosylvin and 4,4'-dihydroxystilbene, improve oligoasthenospermia in a mouse model by attenuating oxidative stress via the Nrf2-ARE pathway.
Two synthesized resveratrol analogs from our laboratory, namely pinosylvin (3,5-dihydroxy-trans-stilbene, PIN) and 4,4'-dihydroxystilbene (DHS), have been carefully evaluated for treatment of oligoasthenospermia. Recent studies have demonstrated that PIN and DHS improved sperm quality in the mouse. However, the mechanism of action of PIN and DHS on oligoasthenospermia remains unknown. Herein, we investigated the mechanistic basis for improvements in sperm parameters by PIN and DHS in a mouse model of oligoasthenospermia induced by treatment with busulfan (BUS) at 6 mg/kg b.w.. Two weeks following busulfan treatment, mice were administered different concentrations of PIN or DHS daily for 2 consecutive weeks. Thereafter, epididymal sperm concentration and motility were determined, and histopathology of the testes was performed. Serum hormone levels including testosterone (T), luteinizing hormone (LH), and follicle stimulating hormone (FSH) were measured using corresponding specific enzyme-linked immunosorbent assay (ELISA) kits. Testicular mRNA expression profiles were determined by RNA sequencing analysis. These findings were validated by quantitative real-time PCR, western blotting and ELISA. Both PIN and DHS improved the epididymal sperm concentration and motility, enhanced testosterone levels, and promoted testicular morphological recovery following BUS treatment. PIN treatment was found to significantly reduce oxidative stress via the nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE)-dependent antioxidant, glutathione peroxidase 3. DHS treatment significantly reduced oxidative stress via the Nrf2-ARE-dependent antioxidants glutathione S-transferase theta 2 and glutathione S-transferase omega 2. In summary, PIN and DHS ameliorated oligoasthenospermia in this mouse model by attenuating oxidative stress via the Nrf2-ARE pathway. Topics: Animals; Antioxidant Response Elements; Disease Models, Animal; Dose-Response Relationship, Drug; Male; Mice; Mice, Inbred ICR; Molecular Structure; NF-E2-Related Factor 2; Oligospermia; Oxidative Stress; Stilbenes; Structure-Activity Relationship | 2020 |
Piceatannol reduces resistance to statins in hypercholesterolemia by reducing PCSK9 expression through p300 acetyltransferase inhibition.
The purpose of this study was to investigate the role of piceatannol (PT) in statin (rosuvastatin and simvastatin) resistance and tolerance and its association with PCSK9 expression via its p300 inhibitory (p300i) activity. An in vitro study was performed using HepG2 cells that were exposed to statins (rosuvastatin or simvastatin) with or without PT in delipidated serum (DLPS) medium. In the statin exposed conditions, PCSK9 expression was reduced following PT treatment when compared to HepG2 cells w/o PT treatment. Furthermore, no significant difference was observed in the expression of the transcription factors SREBP2 and HNF1α, which regulate PCSK9 expression. This resulted in low density lipoprotein receptor (LDLR) stabilization and reduced cellular cholesterol levels. This indicates that PT epigenetically controls statin-induced PCSK9 expression. Interestingly, PT attenuated p300 histone acetyltransferase (HAT) activity. Moreover, simulation of PT-p300 binding suggested that PT inhibits p300 as PT could be docked in the p300 HAT domain. Furthermore, inhibition of p300 HAT activity using C-646, a selective p300 inhibitor, or through an siRNA system effectively reduced PCSK9 induction upon statin exposure in HepG2 cells. The chromatin immunoprecipitation (ChIP) assays revealed that PT blocked the recruitment of p300 to the PCSK9 promoter region. In summary, PT attenuated statin-induced PCSK9 expression by inhibiting p300 HAT activity. Finally, co-administration of simvastatin and PT for 10 weeks further reduced plasma low-density lipoprotein-cholesterol (LDL-C) levels and stabilized the hepatic LDLR protein level compared with those resulting from single treatment of simvastatin in a high-fat diet-induced hypercholesterolemia mouse model. Our findings indicate that PT is a new nutraceutical candidate to reduce the statin resistance and tolerance that occurs in patients with hypercholesterolemia. Topics: Animals; Cholesterol, LDL; Disease Models, Animal; Down-Regulation; Drug Resistance; Hep G2 Cells; Hepatocytes; Humans; Hydroxymethylglutaryl-CoA Reductase Inhibitors; Hypercholesterolemia; Male; Mice, Inbred C57BL; p300-CBP Transcription Factors; Proprotein Convertase 9; Protein Stability; Receptors, LDL; Rosuvastatin Calcium; Simvastatin; Stilbenes | 2020 |
Pterostilbene, a Bioactive Component of Blueberries, Alleviates Renal Interstitial Fibrosis by Inhibiting Macrophage-Myofibroblast Transition.
Pterostilbene (PTB) is a derivative of resveratrol present in grapes and blueberries. PTB is structurally similar to resveratrol, possessing properties such as being analgesic, anti-aging, antidiabetic, anti-inflammatory, anti-obesity, anti-oxidation, cholesterol-reductive, and neuroprotective. However, there have not been reports on the effect of PTB on macrophage-myofibroblast transition (MMT) induced fibrosis in kidney. In this study, we investigated the antifibrotic effects of PTB on the Topics: Animals; Blueberry Plants; Disease Models, Animal; Fibrosis; Kidney; Macrophages; Mice, Inbred C57BL; Myofibroblasts; Phytotherapy; Stilbenes; Ureteral Obstruction | 2020 |
Activity of Pterostilbene Metabolites against Liver Steatosis in Cultured Hepatocytes.
Pterostilbene is a dimethyl ether derivative of resveratrol, less metabolized than its analogue, due to the substitution of two hydroxyl groups with methoxyl groups. Nevertheless, the amounts of pterostilbene phase II metabolites found in plasma and tissues are higher than those of the parent compound. The first aim of this study was to assess whether pterostilbene-4'- Topics: Animals; Biomarkers; Biopsy; Cell Line; Cell Survival; Disease Models, Animal; Fatty Acids; Fatty Liver; Hepatocytes; Immunohistochemistry; Lipid Metabolism; Lipogenesis; Mice; Stilbenes; Triglycerides | 2020 |
Therapeutic Potential of Gnetin C in Prostate Cancer: A Pre-Clinical Study.
Natural stilbenes have gained significant attention in the scientific community owing to their potential anticancer effects against prostate cancer. We recently reported that Gnetin C, a resveratrol (Res) dimer, demonstrated more potent inhibition of metastasis-associated protein 1/v-ets avian erythroblastosis virus E26 oncogene homolog 2 (MTA1/ETS2) axis in prostate cancer cell lines than other stilbenes. In this study, we investigated in vivo antitumor effects of Gnetin C in two doses (50 and 25 mg/kg, i.p.) using PC3M-Luc subcutaneous xenografts and compared these to Res and pterostilbene (Pter). We found that while vehicle-treated mice revealed rapid tumor progression, compounds-treated mice showed noticeable delay in tumor growth. Gnetin C in 50 mg/kg dose demonstrated the most potent tumor inhibitory effects. Gnetin C in 25 mg/kg dose exhibited tumor inhibitory effects comparable with Pter in 50 mg/kg dose. Consistent with the effective antitumor effects, Gnetin C-treated tumors showed reduced mitotic activity and angiogenesis and a significant increase in apoptosis compared to all the other groups. The data suggest that Gnetin C is more potent in slowing tumor progression in prostate cancer xenografts than Res or Pter. Taken together, we demonstrated, for the first time, that Gnetin C is a lead compound among stilbenes for effectively blocking prostate cancer progression in vivo. Topics: Animals; Anticarcinogenic Agents; Benzofurans; Disease Models, Animal; Humans; Male; Mice; Prostatic Neoplasms; Stilbenes | 2020 |
Polydatin attenuates hepatic stellate cell proliferation and liver fibrosis by suppressing sphingosine kinase 1.
Sphingosine kinase 1 (SphK1) plays critical roles in the activation of hepatic stellate cells (HSCs) and liver fibrosis. Our previous study found that polydatin ameliorates chronic liver injury and fibrosis by inhibiting oxidative stress. However, whether polydatin exerts an anti-fibrotic effect on liver fibrosis dependent on SphK1 signaling is unknown. We aimed to investigate the role of polydatin in SphK1, which mediates HSC activation and liver fibrosis. C57BL/6 mice were induced using CCl Topics: Animals; Apoptosis; Biomarkers; Cell Line, Transformed; Cell Proliferation; Disease Models, Animal; Enzyme Inhibitors; Glucosides; Hepatic Stellate Cells; Humans; Liver Cirrhosis; Mice; Phosphotransferases (Alcohol Group Acceptor); Signal Transduction; Stilbenes | 2020 |
Synthesis and Evaluation of Diindole-Based MRI Contrast Agent for In Vivo Visualization of Necrosis.
Noninvasive imaging of cell necrosis can provide an early evaluation of tumor response to treatments. Here, we aimed to design and synthesize a novel diindole-based magnetic resonance imaging (MRI) contrast agent (Gd-bis-DOTA-diindolylmethane, Gd-DIM) for assessment of tumor response to therapy at an early stage.. The oil-water partition coefficient (Log P) and relaxivity of Gd-DIM were determined in vitro. Then, its necrosis avidity was examined in necrotic cells in vitro and in rat models with microwave ablation-induced muscle necrosis (MAMN) and ischemia reperfusion-induced liver necrosis (IRLN) by MRI. Visualization of tumor necrosis induced by combretastatin A-4 disodium phosphate (CA4P) was evaluated in rats bearing W256 orthotopic liver tumor by MRI. Finally, DNA binding assay was performed to explore the possible necrosis-avidity mechanism of Gd-DIM.. The Log P value and T1 relaxivity of Gd-DIM is - 2.15 ± 0.01 and 6.61 mM. Gd-DIM may serve as a promising necrosis-avid MRI contrast agent for early assessment of tumor response to therapy. Topics: Animals; Antineoplastic Agents, Phytogenic; Cell Line, Tumor; Contrast Media; Disease Models, Animal; Liver Neoplasms; Lung Neoplasms; Magnetic Resonance Imaging; Male; Necrosis; Rats; Rats, Sprague-Dawley; Stilbenes | 2020 |
Polydatin prevents LPS-induced acute kidney injury through inhibiting inflammatory and oxidative responses.
The anti-inflammatory property of polydatin, a natural active ingredient found in the rhizome of Polygonum cuspidatum, has been verified. Although a variety of physiological functions have been uncovered, the protective effects and mechanism of polydatin on LPS-induced acute kidney injury remain unclear. Kidney histological change, MDA content, MPO activity, TNF-α, IL-1β, and IL-6 production were measured in this study. Furthermore, NF-κB and Nrf2 were tested by western blotting. In this study, polydatin not only significantly attenuated serum creatinine and BUN levels, but also remarkably inhibited TNF-α, IL-1β, and IL-6 production, MPO activity, and MDA content. Polydatin significantly inhibited LPS-induced NF-κB activation. Also, polydatin significantly increased Nrf2 and HO-1 expression. Taken together, all the above results indicate that polydatin had protective effects against LPS-induced AKI by blocking inflammatory and oxidative responses. Topics: Acute Kidney Injury; Animals; Anti-Inflammatory Agents; Cytokines; Disease Models, Animal; Glucosides; Heme Oxygenase-1; Interleukin-1beta; Interleukin-6; Kidney; Lipopolysaccharides; Membrane Proteins; Mice; Mice, Inbred C57BL; NF-E2-Related Factor 2; NF-kappa B; Oxidative Stress; Peptide Fragments; Signal Transduction; Stilbenes; Tumor Necrosis Factor-alpha | 2019 |
Protective effects of polydatin on LPS-induced endometritis in mice.
Endometritis, a common inflammation of the uterus, often causes severe damage to human and animal reproductive health. Polydatin is a polyphenol extracted from the rhizome of Polygonum cuspidatum that has anti-inflammatory and anti-oxidative effects. The purpose of this study was to investigate the underlying protective effects and mechanisms of polydatin against lipopolysaccharide (LPS)-induced endometritis in mice. The mouse model of endometritis was established by injection of LPS through the vagina. The uterine tissues of each group were gathered to analyze histopathological changes, inflammatory cytokine production, and the degree of activation of the NF-κB and Nrf2 signaling pathways. The myeloperoxidase (MPO) activity assay indicated that polydatin treatment significantly alleviated inflammatory cell infiltration in LPS-induced endometritis mice. Furthermore, polydatin treatment remarkably impeded the expression of TNF-α, IL-1β, and IL-6 by ELISA assay. Hematoxylin-eosin staining (H&E) showed that polydatin significantly decreased impairment of the uterus. In addition, polydatin was also found to suppress LPS-induced NF-κB activation in a dose-dependent manner. The expression of Nrf2 and HO-1 was enhanced by polydatin treatment. All the results suggest that polydatin helpfully alleviates LPS-induced endometritis by suppressing the NF-ĸB signaling pathway and activating the Nrf2 signaling pathway. Topics: Animals; Anti-Inflammatory Agents; Cytokines; Disease Models, Animal; Endometritis; Female; Glucosides; Heme Oxygenase-1; Interleukin-1beta; Interleukin-6; Lipopolysaccharides; Membrane Proteins; Mice; Mice, Inbred BALB C; NF-E2-Related Factor 2; NF-kappa B; Peroxidase; Protective Agents; Signal Transduction; Stilbenes; Tumor Necrosis Factor-alpha; Uterus; Vagina | 2019 |
Enhancing intratumoral biodistribution and antitumor activity of nab-paclitaxel through combination with a vascular disrupting agent, combretastatin A-4-phosphate.
Nanomedicines can generally only reach cancer cells at the edges of tumors, leaving most tumor cells in the central regions untreated. Previous studies showed that treatment with the vascular disrupting agent combretastatin-A4-phosphate (CA4P) can disrupt tumor vasculature, causing vascular shutdown and leading to massive necrosis in the tumor core. In this research, we explored the effect of co-administration of CA4P on the antitumor activity of nanoparticle albumin-bound paclitaxel (nab-paclitaxel) in Walker 256 tumor-bearing rats. The iodine 131 isotope was used for tracing and biodistribution analysis of nab-paclitaxel uptake. Liquid chromatography coupled with tandem mass spectrometry was performed to detect the intratumoral concentration of paclitaxel. Magnetic resonance imaging (MRI) was used to evaluate the effect of tumor treatment. Biodistribution results demonstrated that the tumor accumulations of both nab-paclitaxel and paclitaxel in the Topics: Albumins; Animals; Antineoplastic Agents, Phytogenic; Antineoplastic Combined Chemotherapy Protocols; Breast Neoplasms; Cell Line, Tumor; Disease Models, Animal; Drug Synergism; Female; Humans; Iodine Radioisotopes; Magnetic Resonance Imaging; Paclitaxel; Rats; Stilbenes; Tissue Distribution | 2019 |
Browning Effects of a Chronic Pterostilbene Supplementation in Mice Fed a High-Fat Diet.
Obesity and related comorbidities are a major health concern. The drugs used to treat these conditions are largely inadequate or dangerous, and a well-researched approach based on nutraceuticals would be highly useful. Pterostilbene (Pt), i.e., 3,5-dimethylresveratrol, has been reported to be effective in animal models of obesity, acting on different metabolic pathways. We investigate here its ability to induce browning of white adipose tissue. Pt (5 µM) was first tested on 3T3-L1 mature adipocytes, and then it was administered (352 µmol/kg/day) to mice fed an obesogenic high-fat diet (HFD) for 30 weeks, starting at weaning. In the cultured adipocytes, the treatment elicited a significant increase of the levels of Uncoupling Protein 1 (UCP1) protein-a key component of thermogenic, energy-dissipating beige/brown adipocytes. In vivo administration antagonized weight increase, more so in males than in females. Analysis of inguinal White Adipose Tissue (WAT) revealed a trend towards browning, with significantly increased transcription of several marker genes ( Topics: 3T3-L1 Cells; Adipocytes, Brown; Adipose Tissue, Brown; Adipose Tissue, White; Animals; Apoptosis Regulatory Proteins; Basic Helix-Loop-Helix Transcription Factors; Body Weight; Diet, High-Fat; Dietary Supplements; Disease Models, Animal; Female; Gene Expression Regulation; Male; Mice; Mice, Inbred C57BL; Obesity; Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha; PPAR gamma; Sirtuin 1; Stilbenes; T-Box Domain Proteins; Thermogenesis; Uncoupling Protein 1 | 2019 |
Polydatin Inhibits NLRP3 Inflammasome in Dry Eye Disease by Attenuating Oxidative Stress and Inhibiting the NF-κB Pathway.
Polydatin (also named pieceid, (E)-piceid, (E)-polydatin, trans-polydatin, or 3,5,4'-trihydroxystilbene-3-b-D-glucoside) is a monocrystalline compound isolated from the root and rhizome of Topics: Animals; Disease Models, Animal; Dry Eye Syndromes; Fallopia japonica; Glucosides; Inflammasomes; NF-kappa B; NLR Family, Pyrin Domain-Containing 3 Protein; Oxidative Stress; Plant Roots; Rats; Signal Transduction; Stilbenes | 2019 |
Pterostilbene Prevents Early Diabetic Retinopathy Alterations in a Rabbit Experimental Model.
Oxidative stress generated by diabetes plays a key role in the development of diabetic retinopathy (DR), a common diabetic complication. DR remains asymptomatic until it reaches advanced stages, which complicate its treatment. Although it is known that good metabolic control is essential for preventing DR, knowledge of the disease is incomplete and an effective treatment with no side effects is lacking. Pterostilbene (Pter), a natural stilbene with good antioxidant activity, has proved to beneficially affect different pathologies, including diabetes. Therefore, our study aimed to analyse the protective and/or therapeutic capacity of Pter against oxidant damage by characterising early retinal alterations induced by hyperglycaemia, and its possible mechanism of action in a rabbit model of type 1 diabetes mellitus. Pter reduced lipid and protein oxidative damage, and recovered redox status and the main activities of antioxidant enzymes. Moreover, the redox regulation by Pter was associated with activation of the PI3K/AKT/GSK3β/NRF2 pathway. Our results show that Pter is a powerful protective agent that may delay early DR development. Topics: Animals; Antioxidants; Diabetic Retinopathy; Disease Models, Animal; Enzyme Activation; Glycogen Synthase Kinase 3 beta; Hyperglycemia; Male; NF-E2-Related Factor 2; Oxidative Stress; Phosphatidylinositol 3-Kinases; Proto-Oncogene Proteins c-akt; Rabbits; Signal Transduction; Stilbenes | 2019 |
Polydatin attenuates reactive oxygen species-induced airway remodeling by promoting Nrf2-mediated antioxidant signaling in asthma mouse model.
Reactive oxygen species (ROS) and epithelial-mesenchymal transition (EMT) play a critical role in transforming growth factor (TGF)-β1-mediated fibrotic airway remodeling in asthma. Polydatin (PD) is a small natural molecule in Chinese medicine; it is isolated from Polygonum cuspidatum and has antioxidative properties. In this study, we aimed to determine whether PD was protective against ROS-induced pulmonary fibrosis in asthma. Ovalbumin (OVA) was used to induce asthma in a mouse model that was treated with or without PD. We also created nuclear factor erythroid 2-related factor 2 (Nrf2) knockdown BEAS-2B cells and investigated whether PD reversed TGF-β1-induced pulmonary epithelial cell EMT by promotion of Nrf2-mediated antioxidation. Immunofluorescence showed that ROS and TGF-β1 expression was significantly increased in lung tissue from the OVA-induced asthma model. PD treatment inhibited activity of ROS and TGF-β1. Immunohistochemistry showed that PD treatment decreased OVA-induced lung ROS, TGF-β1 expression and fibroblasts. Western blotting showed that PD treatment reversed OVA-induced NADPH oxidase (NOX)1/4 expression by promoting Nrf2-mediated heme oxygenase-1 and NADPH dehydrogenase (quinone)-1 expression. PD treatment suppressed OVA-induced EMT and lung fibroblast protein expression in lung tissue. Nrf2 downregulation suppressed the protective effect of PD by promoting TGF-β1-induced ROS and EMT and accumulation of extracellular-matrix-related protein. All these data indicate that PD has potential therapeutic effects in asthma by promoting Nrf2-mediated antioxidation. Topics: Airway Remodeling; Animals; Antioxidants; Asthma; Cells, Cultured; Disease Models, Animal; Epithelial Cells; Epithelial-Mesenchymal Transition; Glucosides; Humans; Lung; Male; Mice; Mice, Inbred BALB C; Mice, Nude; NF-E2-Related Factor 2; Ovalbumin; Reactive Oxygen Species; Signal Transduction; Stilbenes; Transforming Growth Factor beta1 | 2019 |
[
Both, APPswe/PS1dE9 and wild type mice at an age of 12 months were investigated by smallanimal PET/CT after intravenous injection of [ Topics: Alzheimer Disease; Amyloid beta-Protein Precursor; Aniline Compounds; Animals; Brain; Disease Models, Animal; Female; Humans; Immunohistochemistry; Magnetic Resonance Imaging; Mice, Inbred C3H; Mice, Inbred C57BL; Mice, Transgenic; Plaque, Amyloid; Positron Emission Tomography Computed Tomography; Presenilin-1; Radiopharmaceuticals; Stilbenes | 2019 |
Albumin nano-encapsulation of caffeic acid phenethyl ester and piceatannol potentiated its ability to modulate HIF and NF-kB pathways and improves therapeutic outcome in experimental colitis.
Hypoxia inducible factor and nuclear factor-kappa beta pathways have been proposed as therapeutic targets for several inflammatory diseases. Caffeic acid phenethyl ester (CAPE) and piceatannol (PIC) are natural anti-inflammatory compounds; however, poor bioavailability and limited understanding of biomolecular mechanistic limits its clinical use. The aims of this study are to enhance bioavailability and investigate their impact on nuclear p65 and HIF-1α for the first time in experimental colitis.Dextran sulphate sodium was used to induce colitis in mice and effect of either free CAPE/PIC or CAPE/PIC loaded albumin nanoparticles treatment was observed on disease development and levels of cellular p65 and HIF-1α.Our results indicate that albumin nano-encapsulation of CAPE/PIC not only enhances its anti-inflammatory potential but also potentiates its ability to effectively modulate inflammation related biomolecular pathways. Hence, combining nanotechnology with natural compounds could result in development of new therapeutic options for IBD. Topics: Albumins; Animals; Biological Availability; Caffeic Acids; Colitis; Dextran Sulfate; Disease Models, Animal; Drug Combinations; Drug Compounding; Drug Synergism; Gene Expression Regulation; Hypoxia-Inducible Factor 1, alpha Subunit; Mice; Nanoparticles; Particle Size; Phenylethyl Alcohol; Signal Transduction; Stilbenes; Transcription Factor RelA | 2019 |
Topical delivery of 3,5,4'-trimethoxy-trans-stilbene-loaded microemulsion-based hydrogel for the treatment of osteoarthritis in a rabbit model.
The aim of this study was to develop a microemulsion-based hydrogel (MBH) formulation of 3,5,4'-trimethoxy-trans-stilbene (BTM) as topical delivery system for the treatment of osteoarthritis (OA). The pseudo-ternary phase diagrams were constructed to optimize the microemulsion (ME) formulation. The ME formulation containing 18.8% Cremopher EL35 (surfactant), 9.4% Transcutol HP (co-surfactant), 3.1% LABRAFIL M 1944 CS (oil), and 68.7% water was selected. The obtained BTM-loaded ME (BTM-ME) had a spherical morphology (17.5 ± 1.4 nm), with polydispersity index (PDI) value of 0.068 ± 0.016 and zeta potential of - 11.8 ± 0.5 mV, and was converted into BTM-loaded MBH (BTM-MBH) using Carbopol 940. Ex vivo skin permeation study showed that both ME and MBH formulations significantly enhanced the amount of BTM permeated. The cumulative amount of BTM permeated after 12 h (Q Topics: Acrylic Resins; Administration, Cutaneous; Administration, Oral; Animals; Cytokines; Disease Models, Animal; Emulsions; Gene Expression Regulation; Hydrogels; Male; Osteoarthritis; Papain; Rabbits; Stilbenes | 2019 |
Pharmacokinetic studies unveiled the drug-drug interaction between trans-2,3,5,4'-tetrahydroxystilbene-2-O-β-d-glucopyranoside and emodin that may contribute to the idiosyncratic hepatotoxicity of Polygoni Multiflori Radix.
Polygoni Multiflori Radix (PMR) has been a reputable tonifying traditional Chinese medicine for a long history. However, clinical side effects regarding its idiosyncratic hepatotoxicity are occasionally reported. The containing anthraquinones, particularly emodin, could cause liver injury in both in vitro and in vivo experiments. It is well-known that some compounds could influence other compounds' pharmacokinetic parameters significantly. In this work, the influence of trans-2,3,5,4'-tetrahydroxystilbene-2-O-β-d-glucopyranoside (TSG) on the pharmacokinetic behavior of emodin in rats was evaluated by an ultra-high performance liquid chromatography/triple quadrupole mass spectrometry (UHPLC/MS-MS) approach. Pharmacokinetic parameters of emodin, PMR extract, and TSG-free PMR extract (prepared by a component "knock-out" strategy with TSG eliminated), in rats after one-day and seven-day administration were determined and compared. We found that, after seven-day administration of the whole PMR extract (rather than TSG-free extract), emodin in rats was accumulated. And accordingly, the exposure of emodin in rats pre-treated with single TSG for seven days could be significantly enhanced. The results indicate that TSG was able to accelerate the exposure and metabolism of emodin. The effect of TSG on the metabolic activities of cytochrome P450 enzymes was further assessed by an LC-MS cocktail method. The accelerated exposure and metabolism of emodin could result from the up-regulation activity of CYP450s, in particular CYP1A2 isozyme. The findings obtained in this work firstly unveiled DDI between TSG and emodin in the administration of PMR, thus may provide a basis for unveiling the underlying mechanism of PMR-induced liver injury. Topics: Administration, Oral; Animals; Chemical and Drug Induced Liver Injury; Chromatography, High Pressure Liquid; Cytochrome P-450 CYP1A2; Disease Models, Animal; Drug Interactions; Drugs, Chinese Herbal; Emodin; Glucosides; Humans; Male; Plant Roots; Polygonum; Rats; Rats, Sprague-Dawley; Stilbenes; Tandem Mass Spectrometry | 2019 |
Pterostilbene, a bioactive component of blueberries, alleviates renal fibrosis in a severe mouse model of hyperuricemic nephropathy.
Accumulating evidences indicated that hyperuricemia was an independent risk factor for kidney diseases and contributed to kidney fibrosis. Preventing and treating renal fibrosis was an optimal treatment for hyperuricemia-induced kidney diseases. In the study, pterostilbene (PTE) as a bioactive component of blueberries was confirmed to possess lowering serum uric acid and renal protective functions by the decrease of serum creatinine, BUN, urine albumin, and urine albumin-to-creatinine ratio (uACR) in a mouse model of hyperuricemic nephropathy (HN). Importantly, PTE treatment remarkably alleviated renal fibrosis of HN mice indicated by the downregulation of fibronectin, collagen I and α-SMA production. Furthermore, PTE could suppress the fibrosis-related protein expressions of TGF-β1/Smad3, Src and STAT3 in the kidneys of HN mice. In conclusion, PTE suppressed the activation of TGF-β1/Smad3, Src and STAT3 signaling pathway to alleviate renal fibrosis of HN mice, highlighting that PTE was a potential antifibrotic strategy for hyperuricemic nephropathy. Topics: Animals; Blueberry Plants; Creatinine; Disease Models, Animal; Drugs, Chinese Herbal; Fibronectins; Fibrosis; Hyperuricemia; Kidney; Kidney Diseases; Kidney Function Tests; Male; Mice; Mice, Inbred C57BL; Signal Transduction; Smad3 Protein; Stilbenes; Transforming Growth Factor beta1; Uric Acid | 2019 |
Myofibroblasts acquire retinoic acid-producing ability during fibroblast-to-myofibroblast transition following kidney injury.
Tubular injury and interstitial fibrosis are the hallmarks of chronic kidney disease. While recent studies have verified that proximal tubular injury triggers interstitial fibrosis, the impact of fibrosis on tubular injury and regeneration remains poorly understood. We generated a novel mouse model expressing diphtheria toxin receptor on renal fibroblasts to allow for the selective disruption of renal fibroblast function. Administration of diphtheria toxin induced upregulation of the tubular injury marker Ngal and caused tubular proliferation in healthy kidneys, whereas administration of diphtheria toxin attenuated tubular regeneration in fibrotic kidneys. Microarray analysis revealed down-regulation of the retinol biosynthesis pathway in diphtheria toxin-treated kidneys. Healthy proximal tubules expressed retinaldehyde dehydrogenase 2 (RALDH2), a rate-limiting enzyme in retinoic acid biosynthesis. After injury, proximal tubules lost RALDH2 expression, whereas renal fibroblasts acquired strong expression of RALDH2 during the transition to myofibroblasts in several models of kidney injury. The retinoic acid receptor (RAR) RARγ was expressed in proximal tubules both with and without injury, and αB-crystallin, the product of an RAR target gene, was strongly expressed in proximal tubules after injury. Furthermore, BMS493, an inverse agonist of RARs, significantly attenuated tubular proliferation in vitro. In human biopsy tissue from patients with IgA nephropathy, detection of RALDH2 in the interstitium correlated with older age and lower kidney function. These results suggest a role of retinoic acid signaling and cross-talk between fibroblasts and tubular epithelial cells during tubular injury and regeneration, and may suggest a beneficial effect of fibrosis in the early response to injury. Topics: Aldehyde Dehydrogenase 1 Family; Aldehyde Oxidoreductases; Animals; Benzoates; Biomarkers; Biopsy; Cell Line; Cell Proliferation; Diphtheria Toxin; Disease Models, Animal; Epithelial Cells; Fibrosis; Glomerulonephritis, IGA; Humans; Kidney Tubules, Proximal; Lipocalin-2; Mice; Myofibroblasts; Receptors, Retinoic Acid; Regeneration; Renal Insufficiency, Chronic; Retinal Dehydrogenase; Retinoic Acid Receptor gamma; Stilbenes; Tretinoin; Up-Regulation | 2019 |
Anticonvulsant Activity of Pterostilbene in Zebrafish and Mouse Acute Seizure Tests.
Pterostilbene (PTE), a natural dimethylated analog of resveratrol, possesses numerous health-beneficial properties. The ability of PTE to cross the blood-brain barrier raised the possibility that this compound may modulate central nervous system functions, including seizure activity. The aim of our study was to investigate the activity of PTE in the larval zebrafish pentylenetetrazole (PTZ) seizure assay and three acute seizure tests in mice, i.e., in the maximal electroshock seizure threshold (MEST), 6 Hz-induced psychomotor seizure threshold and intravenous (iv) PTZ tests. Additionally, potential antidepressant activity of PTE was estimated in the forced swim test in mice. The chimney test was used to determine the influence of PTE on motor coordination in mice, while its influence on neuromuscular strength was assessed in the grip strength test in mice. Locomotor activity was determined to verify the results from the forced swim test. PTE revealed an evident anticonvulsant effect both in zebrafish larvae (10 µM; 2 h-incubation) and mice (at doses of 100 and 200 mg/kg, intraperitoneally) but it did not exhibit antidepressant potential in the forced swim test. Furthermore, it did not cause any statistically significant changes in motor coordination, neuromuscular strength and locomotor activity in mice. In conclusion, our present findings demonstrate for the first time the anticonvulsant potential of PTE. The aforementioned results suggest that it might be employed in epilepsy treatment, however, further precise studies are required to verify its activity in other experimental seizure and epilepsy models and its precise mechanism of action should be determined. Topics: Animals; Anticonvulsants; Antidepressive Agents; Disease Models, Animal; Dose-Response Relationship, Drug; Electroshock; Mice; Muscle Strength; Pentylenetetrazole; Seizures; Stilbenes; Zebrafish | 2019 |
Trans ε viniferin decreases amyloid deposits and inflammation in a mouse transgenic Alzheimer model.
As Alzheimer's disease (AD) induces several cellular and molecular damages, it could be interesting to use multi-target molecules for therapeutics. We previously published that trans ε-viniferin induced the disaggregation of Aβ42 peptide and inhibited the inflammatory response in primary cellular model of AD. Here, effects of this stilbenoid were evaluated in transgenic APPswePS1dE9 mice. We report that trans ε-viniferin could go through the blood brain barrier, reduces size and density of amyloid deposits and decreases reactivity of astrocytes and microglia, after a weekly intraperitoneal injection at 10 mg/kg from 3 to 6 months of age. Topics: Alzheimer Disease; Animals; Astrocytes; Benzofurans; Disease Models, Animal; Female; Inflammation; Male; Mice; Mice, Transgenic; Microglia; Plaque, Amyloid; Stilbenes | 2019 |
Cardioprotective Effect of Rhapontigenin in Isoproterenol-Induced Myocardial Infarction in a Rat Model.
Rhapontigenin (RPG) is a stilben derivative and is known to bear several effects such as antiallergic, anticoagulative, hypoglycemic, antiangiogenic, and purgative. The investigation was conducted to evaluate the cardioprotective efficacy of RPG in rats having acute myocardial infarction (MI) induced by isoproterenol (ISO).. Animals were divided into 6 groups: group I (control group), group II (ISO-treated), group III (1.0 mg/kg/day RPG and ISO-treated), group IV (2.5 mg/kg/day RPG and ISO-treated), group V (5.0 mg/kg/day RPG and ISO-treated), and group VI (treated with RPG 5.0 mg/kg/day). Various cardiac stress markers, including infarct size and heart/body weight index, were investigated in animals with ISO-induced MI, such as inducible nitric oxide synthase (iNOS), creatinine kinase (CK), lactate dehydrogenase (LD), cardiac troponin-T (CTT), superoxide dismutase (SOD), and malondialdehyde. INOS, p38, caspase-3, and connexin 43 expressions were analyzed in animals. Inflammatory mediators, tissue necrosis factor-α (TNF-α) and interleukin-6 (IL-6), were detected in serum of experimental animals.. Group I animals indicated normal levels of biochemical parameters, whereas group II animals indicated high levels of these parameters and successful induction of MI. Pretreatment of animal groups III, IV, and V with RPG revealed amelioration of infarct size, heart/body weight index, CK, LD, CTT in rats, whereas group VI animals were treated only with RPG (5.0 mg/kg/day) and not with ISO. Levels of TNF-α, IL-6, MD, SOD, p38, and iNOS expressions were significantly downregulated by RPG administration (5.0 mg/kg/day).. RPG ameliorates MI caused by ISO in rats and provides cardioprotective effect, via anti-inflammatory, antioxidant, and antiapoptotic effect. Topics: Animals; Anti-Inflammatory Agents; Antioxidants; Apoptosis; Cardiotonic Agents; Disease Models, Animal; Dose-Response Relationship, Drug; Isoproterenol; Male; Myocardial Infarction; Oxidative Stress; Rats; Rats, Sprague-Dawley; Stilbenes | 2019 |
Dental Pulp Stem Cell Transplantation with 2,3,5,4'-Tetrahydroxystilbene-2-O-β-D-glucoside Accelerates Alveolar Bone Regeneration in Rats.
Although the therapeutic potential of human dental pulp stem cells (hDPSCs) has been studied for bone regeneration, the therapeutic efficiency needs further consideration and examinations for clinical applications. Thus, the aims of this study were to evaluate the effect of 2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucoside (THSG) on the osteogenic differentiation of hDPSCs and to examine the therapeutic efficiency of the THSG-enhanced osseous potential of hDPSCs in alveolar bony defects of rats.. Expressions of osteogenic messenger RNAs (including ALP, RUNX2, BGLAP, and AMBN) were examined by quantitative real-time polymerase chain reaction. Alizarin red S staining was conducted to analyze THSG-induced mineralization of hDPSCs. To investigate the regenerative effects of THSG-treated hDPSCs on dental alveolar bone, bony defects were created in male Sprague-Dawley rats. Defects were treated with Matrigel (Corning Inc, Corning, NY), hDPSCs, or hDPSCs + THSG. After 2 weeks, defect healing was evaluated by micro-computed tomographic and histologic analyses.. In the cell model, THSG induced osteogenesis-associated genes (ALP, RUNX2, and BGLAP) and an enamel-related gene (AMBN), resulting in mineralization as detected by alizarin red S staining after 2 weeks of treatment. In the animal model, THSG increased all parameters of bone formation (the relative bone volume, trabecular thickness, trabecular number, and trabecular separation) in alveolar bony defects of rats. THSG not only improved the quality of newly formed bone but also the quantity of new bone.. These results showed important findings in revealing the THSG-enhanced osteogenic differentiation of hDPSCs and THSG-facilitated bone regeneration, which may provide an alternative option for cell-based regenerative therapy. Topics: Adolescent; Adult; Alveolar Bone Loss; Alveolar Process; Animals; Bone Regeneration; Cell Differentiation; Dental Pulp; Disease Models, Animal; Female; Glucosides; Humans; Male; Osteogenesis; Rats, Sprague-Dawley; Regenerative Medicine; Stem Cell Transplantation; Stem Cells; Stilbenes; Stimulation, Chemical; Young Adult | 2019 |
The phytochemical polydatin ameliorates non-alcoholic steatohepatitis by restoring lysosomal function and autophagic flux.
Impaired autophagic degradation of intracellular lipids is causally linked to the development of non-alcoholic steatohepatitis (NASH). Pharmacological agents that can restore hepatic autophagic flux could therefore have therapeutic potentials for this increasingly prevalent disease. Herein, we investigated the effects of polydatin, a natural precursor of resveratrol, in a murine nutritional model of NASH and a cell line model of steatosis. Results showed that oral administration of polydatin protected against hepatic lipid accumulation and alleviated inflammation and hepatocyte damage in db/db mice fed methionine-choline deficient diet. Polydatin also alleviated palmitic acid-induced lipid accumulation in cultured hepatocytes. In both models, polydatin restored lysosomal function and autophagic flux that were impaired by NASH or steatosis. Mechanistically, polydatin inhibited mTOR signalling and up-regulated the expression and activity of TFEB, a known master regulator of lysosomal function. In conclusion, polydatin ameliorated NASH through restoring autophagic flux. The polydatin-regulated autophagy was associated with inhibition of mTOR pathway and restoration of lysosomal function by TFEB. Our study provided affirmative preclinical evidence to inform future clinical trials for examining the potential anti-NASH effect of polydatin in humans. Topics: Animals; Autophagy; Disease Models, Animal; Glucosides; Humans; Lysosomes; Mice; Mice, Inbred C57BL; Non-alcoholic Fatty Liver Disease; Protective Agents; Signal Transduction; Stilbenes | 2019 |
Maternal consumption of piceatannol: A nutritional neuroprotective strategy against hypoxia-ischemia in rat neonates.
Hypoxia-ischemia (HI) remains a major cause of perinatal mortality and chronic disability in newborns worldwide (1-6 for 1000 births) with a high risk of future motor, behavioral and neurological deficits. Keeping newborns under moderate hypothermia is the unique therapeutic approach but is not sufficiently successful as nearly 50% of infants do not respond to it. In a 7-day post-natal rat model of HI, we used pregnant and breastfeeding female nutritional supplementation with piceatannol (PIC), a polyphenol naturally found in berries, grapes and passion fruit, as a neuroprotective strategy. Maternal supplementation led to neuroprotection against neonate brain damage and reversed their sensorimotor deficits as well as cognitive impairments. Neuroprotection of per os maternal supplementation with PIC is a preventive strategy to counteract brain damage in pups induced by HI. This nutritional approach could easily be adopted as a preventive strategy in humans. Topics: Animals; Animals, Newborn; Behavior, Animal; Brain; Brain Injuries; Cognitive Dysfunction; Dietary Supplements; Disease Models, Animal; Female; Hypoxia; Hypoxia-Ischemia, Brain; Ischemia; Maternal Nutritional Physiological Phenomena; Neurons; Neuroprotection; Neuroprotective Agents; Pregnancy; Rats; Stilbenes | 2019 |
Grape Peel Extract and Resveratrol Inhibit Wrinkle Formation in Mice Model Through Activation of Nrf2/HO-1 Signaling Pathway.
Considering the anti-photoaging effect of antioxidant compounds, we investigated the protective capacity of grape peel extract (GPE) and resveratrol on ultraviolet (UV)-induced skin wrinkle formation. Total phenolic, total anthocyanin, and total flavonoid content in GPE prepared from peel of Campbell Early variety were 23.96 ± 0.09, 3.27 ± 0.40, and 1.24 ± 0.09 mg/g dry weight, respectively. Additionally, trans-resveratrol and piceid content of the resulting GPE were 117.14 ± 19.97 and 85.23 ± 8.89 µg/g dry weight, respectively. Oral administration of either 2 g GPE or 2 mg resveratrol per kg body weight in mice attenuated UVB-induced epidermal thickening (the thickness was reduced by about 63% and 55% with GPE and resveratrol consumption prior to exposure to UVB, respectively, compared to only UVB-treated condition) and had marginally protective effect on wrinkle formation of skin exposed to UVB. As introduction of either GPE or resveratrol induced Nrf2-dependent antioxidant enzymes including heme oxygenase-1 (HO-1) in liver and skin as well as inhibited metalloproteinases, it is highly probable that the extract or resveratrol mitigated UVB-induced photoaging through activation of Nrf2/HO-1 signaling pathway. PRACTICAL APPLICATION: This study proved that resveratrol and the extract of grape peel, a common by-product of grape juice processing, provide effective protection from UV-induced skin wrinkle formation. Therefore, grape peel extract, which contains an appreciable amount of bioactive compound resveratrol, can be utilized as functional food ingredient for the manufacture of inner beauty products. Topics: Animals; Antioxidants; Disease Models, Animal; Female; Flavonoids; Fruit; Glucosides; Heme Oxygenase-1; Humans; Mice; Mice, Hairless; NF-E2-Related Factor 2; Plant Extracts; Resveratrol; Signal Transduction; Skin Aging; Stilbenes; Ultraviolet Rays; Vitis | 2019 |
Resveratrol promotes hUC-MSCs engraftment and neural repair in a mouse model of Alzheimer's disease.
Mesenchymal stem cell transplantation is a promising therapeutic approach for Alzheimer's disease (AD). However, poor engraftment and limited survival rates are major obstacles for its clinical application. Resveratrol, an activator of silent information regulator 2, homolog 1 (SIRT1), regulates cell destiny and is beneficial for neurodegenerative disorders. The present study is designed to explore whether resveratrol regulates the fate of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) and whether hUC-MSCs combined with resveratrol would be efficacious in the treatment of neurodegeneration in a mouse model of AD through SIRT1 signaling. Herein, we report that resveratrol facilitates hUC-MSCs engraftment in the hippocampus of AD mice and resveratrol enhances the therapeutic effects of hUC-MSCs in this model as demonstrated by improved learning and memory in the Morris water maze, enhanced neurogenesis and alleviated neural apoptosis in the hippocampus of the AD mice. Moreover, hUC-MSCs and resveratrol jointly regulate expression of hippocampal SIRT1, PCNA, p53, ac-p53, p21, and p16. These data strongly suggests that hUC-MSCs transplantation combined with resveratrol may be an effective therapy for AD. Topics: Alzheimer Disease; Animals; Cell Differentiation; Disease Models, Animal; Hippocampus; Humans; Memory; Mesenchymal Stem Cell Transplantation; Mesenchymal Stem Cells; Mice, Transgenic; Neurogenesis; Neurons; Resveratrol; Stilbenes; Umbilical Cord | 2018 |
Resveratrol prevents osteoporosis by upregulating FoxO1 transcriptional activity.
Resveratrol (3,5,4-trihydroxystilbene, RES), a natural antioxidant, prevents bone loss by attenuating damage caused by oxidative stress. Our previous research revealed that the forkhead box O1 (FoxO1)/β-catenin signaling pathway affected the proliferation and differentiation of osteoblasts through its regulation of redox balance, and RES regulated the expression of FoxO1 to control white adipose tissue and then ameliorate an overweight condition. Based on previous research, we hypothesized that RES regulates FoxO1 transcriptional activity through the phosphatidylinositol-3-kinase (PI3K)/AKT signaling pathway to achieve an antioxidative effect on osteoporosis and then we confirmed this hypothesis in the present study. An ovariectomized (OVX) rat model of osteoporosis and a H2O2‑induced oxidative cell injury model in RAW 264.7 cells were established to explore the underlying molecular mechanisms of how RES confers an antioxidant effect and prevents bone loss. The obtained results demonstrated that RES strongly prevented bone loss induced by oxidative stress in vivo. More specifically, RES effectively decreased the receptor activator of nuclear factor-κB ligand (RANKL) together with the tartrate-resistant acid phosphatase‑5b (TRAP‑5b) level, but elevated the osteoproprotegrin (OPG) level and attenuated bone microarchitecture damage. Notably, RES, due to its antioxidant effect, suppressed RANKL production and then inhibited osteoclastogenesis in the OVX rats. In vitro, RES improved the oxidative stress status of cells and thus inhibited the mRNA expression of osteoclast-specific enzymes. These data indicate that RES has a significant bone protective effect by antagonizing oxidative stress to suppress osteoclast activity, function and formation both in vivo and in vitro. Moreover, at the molecular level, we confirmed, for the first time, that RES upregulated FoxO1 transcriptional activity by inhibiting the PI3K/AKT signaling pathway, and hence promoted resistance to oxidative damage and restrained osteoclastogenesis. Inhibition of the PI3K/AKT signaling pathway may be induced by RANKL. FoxO1 is a major action target of RES to confer anti-osteoporosis function, and whose effect stems from its power to improve redox balance. Topics: Animals; Cell Differentiation; Disease Models, Animal; Female; Forkhead Box Protein O1; Gene Expression Regulation; Humans; Hydrogen Peroxide; Mice; Osteoclasts; Osteoporosis; Osteoprotegerin; Oxidative Stress; Phosphatidylinositol 3-Kinases; Proto-Oncogene Proteins c-akt; RANK Ligand; RAW 264.7 Cells; Resveratrol; Signal Transduction; Stilbenes | 2018 |
Resveratrol improves prostate fibrosis during progression of urinary dysfunction in chronic prostatitis by mast cell suppression.
Voiding dysfunction is the primary clinical manifestation of chronic prostatitis (CP), which is a common urological disease. The present study investigated whether prostate fibrosis was associated with urinary dysfunction in CP and if resveratrol improved urinary dysfunction, and the underlying molecular mechanism. A rat model of CP was established via subcutaneous injections of the pertussis‑diphtheria‑tetanus vaccine, which was followed by treatment with resveratrol. Bladder pressure and volume tests were performed to investigate the effect of resveratrol on urinary dysfunction in CP rats. Western blotting and immunohistochemical staining examined the expression levels of tryptase, chymase, transforming growth factor (TGF)‑β, Wnt and α‑smooth muscle actin (α‑SMA). The results demonstrated that the maximum capacity of the bladder, residual urine volume and maximum voiding pressure were increased significantly in the CP group compared with the control group. Mast cell (MC) activation, the activity of TGF‑β/Wnt/β‑catenin pathways, and the expression levels of tryptase and α‑SMA in the CP group were increased significantly compared with the control group. Resveratrol treatment significantly reversed these factors. Therefore, the results indicate that MC infiltration may induce prostate fibrosis, which exhibits a close association with urinary dysfunction in CP. Resveratrol may improve fibrosis via the suppression of MC activation and TGF‑β/Wnt/β‑catenin pathway activities. Topics: Animals; Biomarkers; Chronic Disease; Disease Models, Animal; Fibrosis; Humans; Male; Mast Cells; Prostatic Diseases; Prostatitis; Resveratrol; Stilbenes; Transforming Growth Factor beta; Tryptases; Urologic Diseases; Wnt Signaling Pathway | 2018 |
Cognitive enhancing and antioxidant effects of tetrahydroxystilbene glucoside in Aβ1-42-induced neurodegeneration in mice.
Polyhydroxy stilbenes have been reported to possess various biological activities, and have potential in the treatment of Alzheimer's disease (AD). Tetrahydroxystilbene glucoside is one of the major polyhydroxy stilbenes, which provides underlying therapeutic activities for neuroprotective actions in various experimental conditions. This study intends to investigate the impact of tetrahydroxystilbene glucoside remedy for cognitive disorder and oxidative stress in Aβ1-42-induced AD mice and to clarify the mechanisms of action through Keap1/Nrf2 pathway. It was found that The swimming time of Aβ1-42-induced mice which were treated by tetrahydroxystilbene glucoside (30, 60 and 120 mg/kg) was significantly increased in the target quadrant through the Morris water maze experiment and the number of avoidances was increased through the passive avoidance experiment. Moreover, tetrahydroxystilbene glucoside attenuated Aβ1-42-induced memory impairment, however, the locomotor and exploratory activity of the mice were not affected. Tetrahydroxystilbene glucoside obviously decreased the levels of MDA and GSSG in both hippocampus and cortex compared with the Aβ1-42-treated group, and obviously increased the level of GSH and activities of CAT and SOD in above tissues. The results of this study also demonstrated that tetrahydroxystilbene glucoside increased Nrf2 and HO-1 protein expression and decreased Keap1 protein expression in a concentration-dependent manner in Aβ1-42-treated mice, which involved in the Keap1/Nrf2 antioxidant pathway in hippocampus and cerebral cortex tissue. These results demonstrated that tetrahydroxystilbene glucoside as a natural drug might provide potential treatment for AD. Topics: Alzheimer Disease; Amyloid beta-Peptides; Animals; Antioxidants; Cerebral Cortex; Disease Models, Animal; Donepezil; Dose-Response Relationship, Drug; Kelch-Like ECH-Associated Protein 1; Learning; Male; Memory; Mice, Inbred ICR; NF-E2-Related Factor 2; Nootropic Agents; Peptide Fragments; Random Allocation; Stilbenes | 2018 |
Resveratrol pretreatment enhanced homing of SDF-1α-preconditioned bone marrow-derived mesenchymal stem cells in a rat model of liver cirrhosis.
Stromal cell-derived factor-1α (SDF-1α) has been known to implicate in homing of MSCs, and resveratrol has been reported to have a positive influence on SDF-1 level in the site of injury. In this study, a combined strategy was applied to evaluate bone marrow-derived MSCs (BMSCs) homing to the rat model of liver cirrhosis induced by common bile duct ligation (CBDL): (1) pretreatment delivery of resveratrol into the cirrhotic liver, and (2) transplantation of ex vivo BMSC preconditioning with SDF-1α. BMSCs were preconditioned with 10 ng/µL SDF-1α for 1 h and then labeled with the CM-Dil. Cirrhosis was induced by CBDL. Animals received intraperitoneal injection of resveratrol for 7 days, started on day 28 of CBDL post-operative. On day 36 post-operative, 1 × 10 Topics: Animals; Bone Marrow Cells; Chemokine CXCL12; Disease Models, Animal; Graft Enhancement, Immunologic; Liver Cirrhosis; Male; Mesenchymal Stem Cell Transplantation; Mesenchymal Stem Cells; Rats; Rats, Sprague-Dawley; Resveratrol; Stilbenes | 2018 |
Advanced iron-overload cardiomyopathy in a genetic murine model is rescued by resveratrol therapy.
Iron-overload cardiomyopathy is prevalent on a worldwide basis and is a major comorbidity in patients with genetic hemochromatosis and secondary iron overload. Therapies are limited in part due to lack of a valid preclinical model, which recapitulates advanced iron-overload cardiomyopathy. Male hemojuvelin (HJV) knockout (HJVKO) mice, which lack HJV, a bone morphogenetic co-receptor protein required for hepcidin expression and systemic iron homeostasis, were fed a high-iron diet starting at 4 weeks of age for a duration of 1 year. Aged HJVKO mice in response to iron overload showed increased myocardial iron deposition and mortality coupled with oxidative stress and myocardial fibrosis culminating in advanced iron-overload cardiomyopathy. In a parallel group, iron-overloaded HJVKO mice received resveratrol (240 mg/day) at 9 months of age until 1 year of age. Echocardiography and invasive pressure-volume (PV) loop analyses revealed a complete normalization of iron-overload mediated diastolic and systolic dysfunction in response to resveratrol therapy. In addition, myocardial sarcoplasmic reticulum Ca Topics: AMP-Activated Protein Kinase Kinases; Animals; Cardiomyopathies; Disease Models, Animal; GPI-Linked Proteins; Heart; Hemochromatosis Protein; Hepcidins; Humans; Iron; Iron Overload; Membrane Proteins; Mice; Myocardium; Oxidative Stress; Protein Kinases; Resveratrol; Sarcoplasmic Reticulum Calcium-Transporting ATPases; Sodium-Calcium Exchanger; Stilbenes | 2018 |
Piceatannol attenuates behavioral disorder and neurological deficits in aging mice via activating the Nrf2 pathway.
Aging is a complex process that is accompanied by neurological damage. Chronic injection of d-galactose (d-gal) can accelerate the aging process similar to natural aging and is commonly used to build an aging model to investigate aging. In the present study, the effects of piceatannol on d-gal-induced aging in mice were evaluated. Piceatannol treatment showed an observable anti-aging effect. Results obtained in vivo showed that piceatannol retained spontaneous motor activity and enhanced spatial learning and memory abilities in mice in which aging was induced by d-gal. Morphometric analysis displayed that piceatannol prevented d-gal-induced neuronal loss, increased the number of Nissl bodies, and promoted cell proliferation in the hippocampus and cortex. Piceatannol also significantly decreased the level of MDA and elevated SOD and CAT activity in the hippocampal and cortical tissues. Furthermore, western blotting results revealed that piceatannol treatment noticeably reversed the suppression of Nrf2 nuclear translocation and increased the expressions of HO-1 and NOQ1 in mice with aging induced by d-gal. Furthermore, piceatannol activated the Nrf2 pathway in natural aging mice, whereas treatment with the Nrf2 inhibitor brusatol reversed the increased expressions of Nrf2, HO-1, and NOQ1. In conclusion, treatment with piceatannol ameliorates behavioral disorder and brain injury in an aging mouse model; this suggests that piceatannol is a promising pharmaceutical candidate for the treatment of age-associated diseases. Topics: Aging; Animals; Disease Models, Animal; Hippocampus; Humans; Male; Maze Learning; Memory; Mice; Nervous System Diseases; Neuroprotective Agents; NF-E2-Related Factor 2; Oxidative Stress; Stilbenes | 2018 |
Trans ε-viniferin is an amyloid-β disaggregating and anti-inflammatory drug in a mouse primary cellular model of Alzheimer's disease.
Alzheimer's disease (AD) is marked by several cellular and molecular damage. Therefore, the therapeutic interest of multi-target molecules is increasingly justified. Polyphenols presenting multiple pharmacological effects would be more efficient. In this study, beneficial effects of trans ε-viniferin, a natural polyphenol were thus evaluated. This study reported that this stilbenoid (1) induced the disaggregation of amyloid β (Aβ) peptide and (2) rescued inflammation in murine primary neuronal cultures. These both effects are higher than those of resveratrol, and so, trans ε-viniferin could be a good therapeutic multi-target candidate. Topics: Alzheimer Disease; Amyloid beta-Peptides; Animals; Anti-Inflammatory Agents; Benzofurans; Cells, Cultured; Disease Models, Animal; Mice; Neurons; Stilbenes | 2018 |
The effects of oxyresveratrol abrogates inflammation and oxidative stress in rat model of spinal cord injury.
Oxyresveratrol and its glycoside are important natural active materials. As an effective tyrosine kinase inhibitor, oxyresveratrol may prevent herpes virus infection, inflammation and oxidative stress, as well as protect nerves. In addition, it is known to inhibit cell apoptosis following cerebral ischemia. In recent years, oxyresveratrol and its glycoside have been widely investigated, and their useful biological activities have been explored, indicating that they may be worthy of further comprehensive research. The aim of the present study was to evaluate the photoprotective effects of oxyresveratrol and its ability to abrogate inflammation and oxidative stress in a rat model of spinal cord injury (SCI). The authors identified that oxyresveratrol significantly reversed the SCI‑induced inhibition of Basso, Beattie, and Bresnahan scores, inhibited the SCI‑mediated increase in spinal cord water content, significantly suppressed SCI‑induced nuclear factor‑κB/p65, tumor necrosis factor‑α, interleukin (IL)‑1β and IL‑6 activities and reversed the malondialdehyde, superoxide dismutase, glutathione (GSH) and GSH peroxidase activities in SCI rats. SCI‑induced granulocyte‑macrophage colony‑stimulating factor (GM‑CSF), inducible nitric oxide synthase (iNOS) and cyclo‑oxygenase‑2 (COX‑2) protein expression was significantly suppressed by oxyresveratrol, and SCI‑mediated inhibition of nuclear factor (erythroid‑derived 2)‑like 2 (Nrf2) protein expression was significantly increased by oxyresveratrol. In conclusion, these results suggest that the effects of oxyresveratrol restores SCI, and abrogates inflammation and oxidative stress in rat model of SCI via the GM‑CSF, iNOS, COX‑2 and Nrf2 signaling pathway. Topics: Animals; Antioxidants; Disease Models, Animal; Drug Administration Schedule; Female; Gene Expression Regulation; Glutathione Peroxidase; Granulocyte-Macrophage Colony-Stimulating Factor; Inflammation; Injections, Intraperitoneal; Interleukin-1beta; Interleukin-6; Locomotion; Malondialdehyde; Neuroprotective Agents; Nitric Oxide Synthase Type II; Oxidative Stress; Plant Extracts; Rats; Rats, Sprague-Dawley; Spinal Cord; Spinal Cord Injuries; Stilbenes; Superoxide Dismutase; Transcription Factor RelA; Tumor Necrosis Factor-alpha | 2018 |
Synergistic Association of Valproate and Resveratrol Reduces Brain Injury in Ischemic Stroke.
Topics: Acetylation; Animals; Bcl-2-Like Protein 11; Disease Models, Animal; Drug Synergism; Histone Deacetylase Inhibitors; Histones; Male; Mice; Mice, Inbred C57BL; Neurons; Neuroprotective Agents; Promoter Regions, Genetic; Protein Binding; Resveratrol; Stilbenes; Stroke; Transcription Factor RelA; Valproic Acid | 2018 |
Resveratrol ameliorates depressive disorder through the NETRIN1-mediated extracellular signal-regulated kinase/cAMP signal transduction pathway.
Depressive disorder is a mental health disorder caused by the dysfunction of nerve regeneration, neuroendocrine and neurobiochemistry, which frequently results in cognitive impairments and disorder. Evidence has shown that resveratrol offers benefits for the treatment of depressive disorder. In the present study, the therapeutic effects of resveratrol were investigated and the potential mechanisms mediated by resveratrol were analyzed in hippocampal neuron cells. The anti‑oxidative stress and anti‑inflammatory properties of resveratrol were also examined in vitro and in vivo. The results revealed that resveratrol administration inhibited the inflammation in hippocampal neuron cells induced by ouabain. Oxidative stress in the hippocampal neuron cells was ameliorated by resveratrol treatment in vitro and in vivo. In addition, the apoptosis of hippocampal neuron cells was inhibited by the upregulation of anti‑apoptotic genes, including P53, B‑cell lymphoma‑2 (Bcl‑2) and Bcl‑2‑associated death promoter, and the downregulation of the cleaved caspase‑3 and caspase‑9. The analysis of the mechanism revealed that that resveratrol treatment suppressed the apoptosis of hippocampal neuron cells through the NETRIN1‑mediated extracellular signal‑regulated kinase/cAMP signal transduction pathway. The results of the in vivo assay showed that resveratrol treatment led to improvements in cognitive competence, learning memory ability and anxiety in a mouse model of depressive disorder induced by ouabain. In conclusion, these results indicated that resveratrol treatment had protective effects against oxidative stress and neuroinflammatory pathogenesis through the NETRIN1‑mediated extracellular signal‑regulated kinase/cAMP signal transduction pathway, suggesting that resveratrol treatment may be a potential antidepressant agent for the treatment of depressive disorder. Topics: Animals; Antioxidants; Cells, Cultured; Cyclic AMP; Depressive Disorder; Disease Models, Animal; Extracellular Signal-Regulated MAP Kinases; Female; Hippocampus; Interleukin-17; Interleukin-1beta; Mice; Netrin-1; Neurons; Oxidative Stress; Resveratrol; RNA Interference; RNA, Small Interfering; Signal Transduction; Stilbenes; Tumor Necrosis Factor-alpha | 2018 |
Dietary Total Prenylflavonoids from the Fruits of Psoralea corylifolia L. Prevents Age-Related Cognitive Deficits and Down-Regulates Alzheimer's Markers in SAMP8 Mice.
Topics: Aging; Alzheimer Disease; Amyloid beta-Peptides; Animal Feed; Animals; Biomarkers; Brain; Cognitive Dysfunction; Cytokines; Disease Models, Animal; Flavonoids; Fruit; Glycogen Synthase Kinase 3 beta; Male; Mice; Molecular Structure; Peptide Fragments; Phosphorylation; Protein Aggregates; Psoralea; Resveratrol; Stilbenes; tau Proteins | 2018 |
Liposomal TriCurin, A Synergistic Combination of Curcumin, Epicatechin Gallate and Resveratrol, Repolarizes Tumor-Associated Microglia/Macrophages, and Eliminates Glioblastoma (GBM) and GBM Stem Cells.
Glioblastoma (GBM) is a deadly brain tumor with a current mean survival of 12-15 months. Despite being a potent anti-cancer agent, the turmeric ingredient curcumin (C) has limited anti-tumor efficacy in vivo due to its low bioavailability. We have reported earlier a strategy involving the use two other polyphenols, epicatechin gallate (E) from green tea and resveratrol (R) from red grapes at a unique, synergistic molar ratio with C (C:E:R: 4:1:12.5, termed TriCurin) to achieve superior potency against HPV+ tumors than C alone at C:E:R (μM): 32:8:100 (termed 32 μM+ TriCurin). We have now prepared liposomal TriCurin (TrLp) and demonstrated that TrLp boosts activated p53 in cultured GL261 mouse GBM cells to trigger apoptosis of GBM and GBM stem cells in vitro. TrLp administration into mice yielded a stable plasma concentration of 210 nM C for 60 min, which, though sub-lethal for cultured GL261 cells, was able to cause repolarization of M2-like tumor (GBM)-associated microglia/macrophages to the tumoricidal M1-like phenotype and intra-GBM recruitment of activated natural killer cells. The intratumor presence of such tumoricidal immune cells was associated with concomitant suppression of tumor-load, and apoptosis of GBM and GBM stem cells. Thus, TrLp is a potential onco-immunotherapeutic agent against GBM tumors. Topics: Animals; Biomarkers, Tumor; Catechin; Cell Line, Tumor; Curcumin; Disease Models, Animal; Drug Combinations; Drug Synergism; Glioblastoma; Humans; Immunophenotyping; Killer Cells, Natural; Liposomes; Lymphocytes, Tumor-Infiltrating; Macrophages; Mice; Microglia; Neoplastic Stem Cells; Resveratrol; Stilbenes; Tumor Suppressor Protein p53; Xenograft Model Antitumor Assays | 2018 |
trans-Resveratrol ameliorates anxiety-like behaviors and fear memory deficits in a rat model of post-traumatic stress disorder.
trans-Resveratrol, a natural polyphenol enriched in grape seed and skin, has been extensively investigated for its antioxidant, anti-inflammatory and anti-psychiatric properties. The present study examined the effects of trans-resveratrol on ameliorating anxiety-like behaviors and fear memory deficits induced by time-dependent sensitization (TDS) procedure, which is a classical animal model for mimicking posttraumatic stress disorder (PTSD). The results suggested that trans-resveratrol at doses of 10, 20 and 40 mg/kg (via gavage, i.g.) reversed TDS-induced decreases in the percentage of time spent in the center of arena, the open arm entries and time spent in the open arms in the open field and elevated plus maze tests. It also decreased the percentage of freezing time in the contextual fear paradigm that was increased in TDS treated rats. Further study suggested that TDS-induced abnormality in the limbic hypothalamus-pituitary-adrenal gland (L-HPA) axis was reversed by trans-resveratrol, i.e. it reversed increased adrenal gland index and corticotropin-releasing factor (CRF) levels, and rescued the differential expression of glucocorticoid receptor (GR) in the hypothalamus, hippocampus and amygdala. Neurobiological studies suggested that trans-resveratrol increased phosphorylation of cAMP response element binding protein (pCREB) and brain derived neurotrophic factor (BDNF) levels, which were decreased in rats subjected to TDS. These results provide compelling evidence that trans-resveratrol protects neurons against PTSD-like stress insults by regulation of L-HPA axis function and activation of downstream neuroprotective molecules, such as pCREB and BDNF expression. Topics: Adrenal Glands; Analysis of Variance; Animals; Antioxidants; Anxiety; Brain-Derived Neurotrophic Factor; Corticotropin-Releasing Hormone; CREB-Binding Protein; Disease Models, Animal; Exploratory Behavior; Fear; Male; Maze Learning; Memory Disorders; Rats; Rats, Sprague-Dawley; Resveratrol; Stilbenes; Stress Disorders, Post-Traumatic | 2018 |
Quantitative Evaluation of Combretastatin A4 Phosphate Early Efficacy in a Tumor Model with Dynamic Contrast-Enhanced Ultrasound.
Combretastatin A4 phosphate (CA4P) is a vascular disrupting agent that rapidly shuts down blood supply to tumors. Early monitoring of tumor perfusion plays a crucial role in determining the optimal strategy to managing treatment and guiding future therapy. The aim of this study was to investigate the potential value of dynamic contrast-enhanced ultrasound (CEUS) in quantitative evaluation of tumor perfusion at an early stage in CA4P therapy. Central and peripheral perfusion of tumors was detected by CEUS pre-treatment (0 h) and 2, 12 and 48 h after CA4P injection. Two perfusion parameters, maximum intensity (IMAX) and time to peak (TTP), were calculated from the time-intensity curve. After CEUS, the efficacy of CA4P was immediately confirmed by immunofluorescence assay and hematoxylin and eosin, Hoechst 33342 and fluorescein isothiocyanate-lectin staining. In CEUS of the center region of tumors, IMAX gradually decreased from 0 to 12 h and regrew at 48 h (p < 0.01). TTP increased only at 2 h. In the peripheral regions, IMAX did not change obviously from 0 to 12 h (p > 0.05) and just increased at 48 h (p < 0.01). The TTP of peripheral regions had the same tendency to vary tendency as that of center regions. In addition, microvascular density (MVD), vascular perfusion and necrotic area of the tumor were quantitatively analyzed. A close correlation between IMAX and MVD was observed in the center areas of tumors (r = 0.72, p < 0.01), whereas the correlation between IMAX and MVD in peripheral areas was weak (r = 0.37, p < 0.01). However, IMAX was positively correlated with tumor perfusion in both center and peripheral areas of tumors (r = 0.82, p < 0.01, and r = 0.63, p < 0.01, respectively). Consequently, IMAX was a reliable indicator of tumor perfusion evaluation by CEUS. The use of CEUS to quantify tumor perfusion could a promising method for the early detection of tumor responses in anti-vascular treatment. Topics: Animals; Antineoplastic Agents, Phytogenic; Contrast Media; Disease Models, Animal; Evaluation Studies as Topic; Female; Image Enhancement; Liver; Liver Neoplasms; Mice; Mice, Inbred BALB C; Phospholipids; Stilbenes; Sulfur Hexafluoride; Treatment Outcome; Ultrasonography | 2018 |
Improved neuroprotective effect of resveratrol nanoparticles as evinced by abrogation of rotenone-induced behavioral deficits and oxidative and mitochondrial dysfunctions in rat model of Parkinson's disease.
The objective of the present study was to evaluate the protective effect of resveratrol nanoparticles (NRSV) against rotenone-induced neurodegeneration in rats. NRSV were prepared by temperature-controlled antisolvent precipitation method and characterized for its particle size, shape, and dissolution properties. Moreover, NRSV effects compared with the free resveratrol (RSV). Animals were divided into four groups: (I) control, (II) rotenone (2 mg/kg s.c.), (III) RSV (40 mg/kg, p.o.) + rotenone, and (IV) NRSV (40 mg/kg, p.o.) + rotenone. Animals received treatments 30 min before rotenone administration for a period of 35 days. Behavioral quantifications were done using rota rod test and rearing behavior after 24 h of last dose. Animals were euthanized, and mid brains were isolated for the estimation of tricarboxylic acid cycle enzymes, oxidative measures (lipid peroxidation (LPO), glutathione (GSH), and catalase), and complex-I activity. In addition, histopathological studies were also performed. Our results showed that chronic rotenone treatment causes motor deficits, decreased rearing behavior, mitochondrial dysfunction, and oxidative stress. Furthermore, histological analysis demonstrated neuronal degeneration in rotenone-treated rats. An important finding of the present study was NRSV showed comparatively better efficacy than the RSV treatment in attenuating the rotenone-induced Parkinson's like behavioral alterations, biochemical and histological changes, oxidative stress, and mitochondrial dysfunction in rats. Topics: Animals; Antioxidants; Behavior, Animal; Brain; Disease Models, Animal; Male; Mitochondria; Nanoparticles; Neuroprotective Agents; Oxidative Stress; Parkinsonian Disorders; Rats, Wistar; Resveratrol; Rotenone; Stilbenes | 2018 |
Combination drug delivery via multilamellar vesicles enables targeting of tumor cells and tumor vasculature.
Blood vessel development is critical for the continued growth and progression of solid tumors and, therefore, makes an attractive target for improving cancer therapy. Indeed, vascular-targeted therapies have been extensively explored but they have shown minimal efficacy as monotherapies. Combretastatin A4 (CA-4) is a tubulin-binding vascular disrupting agent that selectively targets the established tumor endothelium, causing rapid vascular beak down. Despite its potent anticancer potential, the drug has dose-limiting side effects, particularly in the form of cardiovascular toxicity. Furthermore, its poor aqueous solubility and the resulting limited bioavailability hinder its antitumor activity in the clinic. To improve the therapeutic efficacy of CA-4, we investigated its application as a combination therapy with doxorubicin (Dox) in a tumor vasculature targeted delivery vehicle: peptide-modified cross-linked multilamellar liposomal vesicles (cMLVs). In vitro cell culture studies showed that a tumor vasculature-targeting peptide, RIF7, could facilitate higher cellular uptake of drug-loaded cMLVs, and consequently enhance the antitumor efficacy in both drug resistant B16 mouse melanoma and human MDA-MB-231 breast cancer cells. In vivo, upon intravenous injection, targeted cMLVs could efficiently deliver both Dox and CA-4 to significantly slow tumor growth through the specific interaction of the targeting peptide with its receptor on the surface of tumor vasculature. This study demonstrates the potential of our novel targeted combination therapy delivery vehicle to improve the outcome of cancer treatment. Topics: Animals; Antineoplastic Agents; Cell Line, Tumor; Disease Models, Animal; Doxorubicin; Drug Delivery Systems; Drug Therapy, Combination; Humans; Mice; Models, Biological; Molecular Targeted Therapy; Neoplasms; Neovascularization, Pathologic; Stilbenes | 2018 |
Increased podocyte Sirtuin-1 function attenuates diabetic kidney injury.
Podocyte injury and loss contribute to the progression of glomerular diseases, including diabetic kidney disease. We previously found that the glomerular expression of Sirtuin-1 (SIRT1) is reduced in human diabetic glomeruli and that the podocyte-specific loss of SIRT1 aggravated albuminuria and worsened kidney disease progression in diabetic mice. SIRT1 encodes an NAD-dependent deacetylase that modifies the activity of key transcriptional regulators affected in diabetic kidneys, including NF-κB, STAT3, p53, FOXO4, and PGC1-α. However, whether the increased glomerular SIRT1 activity is sufficient to ameliorate the pathogenesis of diabetic kidney disease has not been explored. We addressed this by inducible podocyte-specific SIRT1 overexpression in diabetic OVE26 mice. The induction of SIRT1 overexpression in podocytes for six weeks in OVE26 mice with established albuminuria attenuated the progression of diabetic glomerulopathy. To further validate the therapeutic potential of increased SIRT1 activity against diabetic kidney disease, we developed a new, potent and selective SIRT1 agonist, BF175. In cultured podocytes BF175 increased SIRT1-mediated activation of PGC1-α and protected against high glucose-mediated mitochondrial injury. In vivo, administration of BF175 for six weeks in OVE26 mice resulted in a marked reduction in albuminuria and in glomerular injury in a manner similar to podocyte-specific SIRT1 overexpression. Both podocyte-specific SIRT1 overexpression and BT175 treatment attenuated diabetes-induced podocyte loss and reduced oxidative stress in glomeruli of OVE26 mice. Thus, increased SIRT1 activity protects against diabetes-induced podocyte injury and effectively mitigates the progression of diabetic kidney disease. Topics: Albuminuria; Animals; Blood Glucose; Boronic Acids; Cell Line; Diabetes Mellitus, Type 1; Diabetic Nephropathies; Disease Models, Animal; Enzyme Induction; Mice, Transgenic; Mitochondria; Oxidative Stress; Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha; Podocytes; Signal Transduction; Sirtuin 1; Stilbenes | 2018 |
Resveratrol Alleviates Inflammatory Responses and Oxidative Stress in Rat Kidney Ischemia-Reperfusion Injury and H2O2-Induced NRK-52E Cells via the Nrf2/TLR4/NF-κB Pathway.
Ischemia-reperfusion injury (IRI) is one of the major causes of postoperative renal allograft dysfunction, which is mainly the result of proinflammatory reactions including inflammatory responses, oxidative stress, and metabolic disorders. Resveratrol (RSV) plays an important role in protecting various organs in IRI because it reduces oxidative stress, lessens the inflammatory response, and exerts anti-apoptotic effects. The aim of this study was to demonstrate the renoprotective effect of RSV in inhibiting inflammatory responses, reducing oxidative stress, and decreasing cell apoptosis in vivo and in vitro.. RSV was administered before renal ischemia and H2O2 induction. Serum and kidneys were harvested 24 h after reperfusion and NRK-52E cells were collected 4 h after H2O2 stimulation. Serum creatinine and blood urea nitrogen were used to assess renal function. Hematoxylin and eosin staining was performed to assess histological injury. Quantitative real-time PCR and enzyme-linked immunosorbent assay were used to assess proinflammatory cytokine expression. Oxidative stress-related proteins, such as Nrf2 and TLR4, were evaluated by western blot. Terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling assay was used to detect apoptotic cells in tissues, and western blot was used to evaluate the expression of caspase-3, -8, and -9 in this study.. RSV inhibited inflammatory responses and improved renal function after renal IRI. Additionally, RSV decreased oxidative stress and reduced cell apoptosis by upregulating Nrf2 expression, downregulating the TLR4/NF-κB signaling pathway, and by decreasing caspase-3 activity and caspase cascades.. Our study demonstrated the mechanisms underlying RSV renoprotection. We found that RSV exerts its greatest effects by blocking inflammatory responses, lowering oxidative stress, and reducing apoptosis via the Nrf2/TLR4/NF-κB pathway. Topics: Animals; Caspase 3; Cell Line; Cell Survival; Cytokines; Disease Models, Animal; Hydrogen Peroxide; Kidney; Male; Matrix Metalloproteinase 13; NF-E2-Related Factor 2; NF-kappa B; Oxidative Stress; Rats; Rats, Sprague-Dawley; Reperfusion Injury; Resveratrol; RNA Interference; Signal Transduction; Stilbenes; Superoxide Dismutase; Toll-Like Receptor 4 | 2018 |
Resveratrol combined with total flavones of hawthorn alleviate the endothelial cells injury after coronary bypass graft surgery.
To explore the preventive and therapeutic effects of Resveratrol combined with total flavones of hawthorn, compatibility of traditional Chinese medicines, on the endothelial cells injury after artery bypass graft surgery.. The animal model of coronary artery bypass grafting (CABG) was prepared by transplanting a segment of autologous jugular vein onto the transected common carotid artery in rabbits. After CABG surgery, the rabbits were administrated with saline (model group), aspirin (Aspirin group), resveratrol (Res group), total flavones of hawthorn (Haw group) and resveratrol combined with total flavones of hawthorn (Res+Haw group) once a day for eight weeks, respectively. Eight weeks later, the grafting arteries from all group were obtained for the pathomorphism observation, peripheral blood was collected to detect circulating endothelial cells (CECs) by flow cytometry. And the concentration of albumen and mRNA of ICAM-1 in the serum were measured by western blot and quantitative real-time polymerase chain reaction, respectively.. Compared with the model group, the level of CECs density and the expressions of albumen and mRNA of ICAM-1 were significantly decreased in the aspirin,resveratrol,total flavones of hawthorn and resveratrol combined with total flavones of hawthorn groups (P < .05). Of note, above all parameters were lower in Res group than aspirin group.. The Resveratrol combined with total flavones of hawthorn could protect the endothelial cells after coronary artery bypass graft. Topics: Animals; Aspirin; Coronary Artery Bypass; Crataegus; Disease Models, Animal; Endothelial Cells; Endothelium, Vascular; Flavones; Intercellular Adhesion Molecule-1; Rabbits; Resveratrol; Stilbenes | 2018 |
Behavioral alterations in autism model induced by valproic acid and translational analysis of circulating microRNA.
Autism spectrum disorder (ASD) is characterized by difficulties in social interaction, communication and language, and restricted repertoire of activities and interests. The etiology of ASD remains unknown and no clinical markers for diagnosis were identified. Environmental factors, including prenatal exposure to valproic acid (VPA), may contribute to increased risk of developing ASD. MicroRNA (miRNA) are small noncoding RNA that regulate gene expression and are frequently linked to biological processes affected in neurodevelopmental disorders. In this work, we analyzed the effects of resveratrol (an antioxidant and anti-inflammatory molecule) on behavioral alterations of the VPA model of autism, as well as the levels of circulating miRNA. We also evaluated the same set of miRNA in autistic patients. Rats of the VPA model of autism showed reduced total reciprocal social interaction, prevented by prenatal treatment with resveratrol (RSV). The levels of miR134-5p and miR138-5p increased in autistic patients. Interestingly, miR134-5p is also upregulated in animals of the VPA model, which is prevented by RSV. In conclusion, our findings revealed important preventive actions of RSV in the VPA model, ranging from behavior to molecular alterations. Further evaluation of preventive mechanisms of RSV can shed light in important biomarkers and etiological triggers of ASD. Topics: Adolescent; Animals; Anticonvulsants; Antioxidants; Autistic Disorder; Behavior, Animal; Child; Child, Preschool; Circulating MicroRNA; Disease Models, Animal; Female; Humans; Male; Maternal Exposure; MicroRNAs; Pregnancy; Prenatal Exposure Delayed Effects; Protein Biosynthesis; Rats, Wistar; Resveratrol; Stilbenes; Valproic Acid | 2018 |
The Synergistic Neuroprotective Effects of Combined Rosuvastatin and Resveratrol Pretreatment against Cerebral Ischemia/Reperfusion Injury.
It is well accepted that both rosuvastatin and resveratrol exert neuroprotective effects on cerebral ischemia/reperfusion injury through some common pathways. Resveratrol has also been demonstrated to protect against cerebral ischemia/reperfusion injury through enhancing autophagy. Thus, we hypothesized that combined rosuvastatin and resveratrol pretreatment had synergistic effects on cerebral ischemia/reperfusion injury.. Adult male Sprague Dawley rats receiving middle cerebral artery occlusion surgery as animal model of cerebral ischemia/reperfusion injury were randomly assigned to 4 groups: control, resveratrol alone pretreatment, rosuvastatin alone pretreatment, and combined rosuvastatin and resveratrol pretreatment. Rosuvastatin (10 mg/kg) or resveratrol (50 mg/kg) was administrated once a day for 7 days before cerebral ischemia onset.. We found that combined rosuvastatin and resveratrol pretreatment not only significantly decreased the neurologic defective score, cerebral infarct volume, the levels of caspase-3, and Interleukin-1β (IL-1β) but also significantly increased the ratios of Bcl-2/Bax and LC3II/LC3I, as well as the level of Becline-1, compared with resveratrol alone or rosuvastatin alone pretreatment group. Rosuvastatin alone pretreatment significantly increased the ratio of LC3II/LC3I and the level of Beclin-1. However, there were no significant differences in the neurologic defective score, cerebral infarct volume, the levels of caspase-3, IL-1β, and Beclin-1, and the ratios of Bcl-2/Bax and LC3II/LC3I between resveratrol pretreatment group and rosuvastatin pretreatment group.. Synergistically enhanced antiapoptosis, anti-inflammation, and autophagy activation might be responsible for the synergistic neuroprotective effects of combining rosuvastatin with resveratrol on cerebral ischemia/reperfusion injury. Topics: Animals; Anti-Inflammatory Agents; Apoptosis; Apoptosis Regulatory Proteins; Autophagy; Autophagy-Related Proteins; Brain; Cytoprotection; Disease Models, Animal; Drug Synergism; Drug Therapy, Combination; Infarction, Middle Cerebral Artery; Inflammation Mediators; Male; Neuroprotective Agents; Rats, Sprague-Dawley; Reperfusion Injury; Resveratrol; Rosuvastatin Calcium; Signal Transduction; Stilbenes | 2018 |
Pterostilbene Decreases Cardiac Oxidative Stress and Inflammation via Activation of AMPK/Nrf2/HO-1 Pathway in Fructose-Fed Diabetic Rats.
Oxidative stress has a pivotal role in the pathogenesis of diabetes-associated cardiovascular problems, which has remained a primary cause of the increased morbidity and mortality in diabetic patients. It is of paramount importance to prevent the diabetes-associated cardiac complications by reducing oxidative stress with the help of nutritional or pharmacological agents. Pterostilbene (PT), the primary antioxidant in blueberries, has recently gained attention for its promising health benefits in metabolic and cardiac diseases. However, the mechanism whereby PT reduces diabetic cardiac complications is currently unknown.. Sprague-Dawley rats were fed with 65% fructose diet with or without PT (20 mg kg. Fructose-fed rats demonstrated cardiac hypertrophy, hypertension, enhanced myocardial oxidative stress, inflammation and increased NF-κB expression. Administration of PT significantly decreased cardiac hypertrophy, hypertension, oxidative stress, inflammation, NF-κB expression and NLRP3 inflammasome. We demonstrated that PT improved mitochondrial biogenesis as evidenced by increased protein expression of PGC-1α, complex III and complex V in fructose-fed diabetic rats. Further, PT increased protein expressions of AMPK, Nrf2, HO-1 in cardiac tissues, which may account for the prevention of cardiac oxidative stress and inflammation in fructose-fed rats.. Collectively, PT reduced cardiac oxidative stress and inflammation in diabetic rats through stimulation of AMPK/Nrf2/HO-1 signalling. Topics: AMP-Activated Protein Kinases; Animals; Anti-Inflammatory Agents; Antioxidants; Blood Glucose; Diabetes Mellitus; Diabetic Cardiomyopathies; Disease Models, Animal; Fructose; Heme Oxygenase (Decyclizing); Hemodynamics; Inflammasomes; Inflammation; Inflammation Mediators; Male; Mitochondria, Heart; Myocardium; NF-E2-Related Factor 2; NLR Family, Pyrin Domain-Containing 3 Protein; Oxidative Stress; Rats, Sprague-Dawley; Signal Transduction; Stilbenes | 2018 |
Resveratrol reverses the adverse effects of a diet-induced obese murine model on oocyte quality and zona pellucida softening.
Reproductive dysfunction associated with obesity is increasing among women of reproductive age, including infertility and increasing risk of miscarriage. In females, reproductive disorders are linked to declining quality of oocytes. Using a model of diet-induced obesity, we have investigated the possible effects of obesity on oocyte quality, including metabolism, lipid accumulation, ROS levels, meiosis and changes in spindle structure in Metaphase II. Our study showed that obesity induced by a high fat diet can impair oocyte meiosis, destroy spindle assembly, and promote oxidative stress and abnormal mitochondrial distribution. With the addition of resveratrol, the negative impact of diet-induced obesity on the quality of oocytes was alleviated to some extent. In addition, we found that obesity causes mouse oocytes to soften, and resveratrol can restore the zona pellucida of oocytes to the same state as the control group. In conclusion, resveratrol can reverse the adverse effects of obesity on oocytes, which is beneficial for subsequent embryonic development. Topics: Animals; Diet, High-Fat; Disease Models, Animal; Female; Humans; Meiosis; Mice; Mice, Inbred C57BL; Obesity; Oocytes; Oxidative Stress; Resveratrol; Stilbenes; Zona Pellucida | 2018 |
Resveratrol prevents cognitive deficits induced by chronic unpredictable mild stress: Sirt1/miR-134 signalling pathway regulates CREB/BDNF expression in hippocampus in vivo and in vitro.
Chronic unpredictable mild stress (CUMS) leads to neuropsychiatric disorders, such as depression, anxiety and cognitive impairment. Resveratrol is a natural polyphenol existed in polygonum cuspidatum and has been demonstrated to be a potent activator of Sirtuin 1 (Sirt1). Previous studies reported that resveratrol treatment ameliorated CUMS-induced depressive-like behavior and cognitive deficits through upregulating cAMP response element-binding protein (CREB) and brain derived neurotrophic factor (BDNF) expression. However, the upstream signalling pathway mediating CREB/BDNF expression and then exerting a protective role on cognitive function remains unclear. The present study aims to investigate the possible mechanism of resveratrol on CUMS-induced cognitive deficits. Male Sprague Dawley rats were adminstrated resveratrol (40 and 80 mg/kg) every day for 4 consecutive weeks before exposure to CUMS procedure. Morris Water Maze test was used to appraise spatial learing and memory of rats. Sirt1/miR-134 signalling pathway and CREB/BDNF expression in hippocampus of rats were measured. We also explored Sirt1/miR-134 signalling pathway and CREB/BDNF expression in primary cultured hippocampus neurons with resveratrol (25, 50 and 100 μmol/L) treatment. We found that resveratrol treatment prevented spatial learing and memory impairment induced by CUMS. Meanwhile the potential mechanism of resveratrol was associated with increased levels of Sirt1, CREB phosphorylation (p-CREB), CREB, BDNF and decreased levels of miR-134 in vivo and in vitro. In conclusion, our study showed that the neuroprotective effect of resveratrol on CUMS-induced cognitive impairment may rely on activating Sirt1/miR-134 pathway and then upregulating its downstream CREB/BDNF expression in hippocampus. Topics: Animals; Brain-Derived Neurotrophic Factor; Cognitive Dysfunction; Cyclic AMP Response Element-Binding Protein; Disease Models, Animal; Hippocampus; Male; Maze Learning; MicroRNAs; Nootropic Agents; Random Allocation; Rats, Sprague-Dawley; Resveratrol; Sirtuin 1; Spatial Memory; Stilbenes; Stress, Psychological; Uncertainty | 2018 |
Resveratrol inhibits pulmonary fibrosis by regulating miR-21 through MAPK/AP-1 pathways.
To explore the molecular mechanism of Res in regulation of pulmonary fibrosis (PF).. Rats were injected with bleomycin (BLM) to establish a PF model and treated with resveratrol (Res) and/or miR-21 agomir. After 14 days, lung tissues were collected for Hematoxylin-eosin and Masson's staining, and real-time quantitative polymerase chain reaction and Western blot were performed to detect fibrosis-related protein expression and the activation of the TGF-β1/Smad pathway. In vitro, MRC-5 cells were pretreated with TGF-β1, Res, and/or miR-21 agomir. After 48 h, total soluble collagen was detected with a Sircol Soluble Collagen Assay. Subsequently, a miR-21 mimic was transfected into MRC-5 cells, and a luciferase reporter assay was employed to verify whether miR-21 targeted Smad7.. Res reversed the increased levels of miR-21 induced by BLM and alleviated serious PF symptoms, but agomiR-21 treatment effectively impaired the above manifestations. In vivo, miR-21 inhibited the decreases of TGF-β1 and p-Smad2/3 that were induced by Res. In vitro, miR-21 significantly disrupted the positive effect of Res on TGF-β-induced collagen deposition, as well as the levels of Fn, α-SMA, p-Smad2, and Smad7. In addition, Smad7 was found to be a direct target of miR-21-5p. TGF-β stimulation led to an enormous increase in p-c-Jun, c-Jun, and c-Fos, which were significantly reduced by Res. Finally, miR-21 sharply reduced the increased phosphorylation levels of ERK, JNK and p38 that were induced by Res.. Res inhibits BLM-induced PF by regulating miR-21 through MAPK/AP-1 pathways. Topics: Animals; Antioxidants; Disease Models, Animal; Female; Gene Expression Regulation; Male; MAP Kinase Signaling System; MicroRNAs; Pulmonary Fibrosis; Rats, Sprague-Dawley; Resveratrol; Stilbenes; Transcription Factor AP-1 | 2018 |
The effects of resveratrol on ovarian hyperstimulation syndrome in a rat model.
The aim of the present study was to investigate effects of resveratrol (RSV) over ovarian hyperstimulation syndrome (OHSS) in rat model.. 24 female Wistar rats (22 days old) were divided into four groups. Group 1 (control group; n = 6) received 0.1 ml intraperitoneal (IP) saline from days 22-26; group 2 (mild-stimulated group; n = 6) received 10 IU pregnant mare serum gonadotropin (PMSG) on day 24 and 10 IU of hCG 48 h later (day 26); group 3 (OHSS group; n = 6) was given 10 IU of PMSG for 4 consecutive days from day 22 and 30 IU hCG on the fifth day to induce OHSS; group 4 (OHSS + RSV group; n = 6) was treated the same as group 3, but received 60 mg/kg RSV 2 h before PMSG injection for 4 consecutive days and 2 h before the hCG injection on the fifth day.. Weight gain was highest in the OHSS group. Ovarian weights were lower in the treatment group than OHSS group. Peritoneal fluid VEGF levels were lower for RSV group compared to group 2 and 3. Total VEGF immunoreactivity was higher in OHSS group than group 1, 2 and 4.. These results indicate that RSV is beneficial for prevention of OHSS by reducing the increases in body and ovarian weight and VEGF activity. These effects may be mediated by anti-inflammatory, anti-oxidant and anti-angiogenic capacity of RSV. Topics: Animals; Antioxidants; Body Weight; Disease Models, Animal; Female; Gonadotropins, Equine; Humans; Ovarian Hyperstimulation Syndrome; Ovary; Rats; Rats, Wistar; Resveratrol; Statistics, Nonparametric; Stilbenes; Vascular Endothelial Growth Factor A | 2018 |
Effect of resveratrol and metformin on ovarian reserve and ultrastructure in PCOS: an experimental study.
PCOS is a reproductive hormonal abnormality and a metabolic disorder. It is frequently associated with insulin resistance, hyperandrogenism, chronic inflammation, and oxidative stress. We aim to investigate the potential therapeutic effects of combined therapy of resveratrol and metformin on polycystic ovaries via SIRT1 and AMPK activation.. Wistar albino rats were divided into control and experimental (PCOS) groups. DHEA-induced PCOS rats were given resveratrol (20 mg/kg/day), metformin (300 mg/kg/day) and combined therapy. At the end of the experiment, the body and ovarian weight of rats were measured and blood samples were analyzed for FSH, LH, testosterone, AMH, TNF-α and MDA levels. Histopathological evaluation of ovaries were carried out by light and electron microscopy. SIRT1 and AMPK immunreactivity and TUNEL assay were scored. Data were statistically analyzed by SPSS programme.. Metformin and combined treatment groups reduced the body and ovary weights compared to the PCOS group. Serum testosterone levels were significantly higher in the PCOS group than in the control group and this was reduced when PCOS was treated with all but especially resveratrol. All the treatment groups decreased LH, LH/FSH, TNF-α and tissue AMH levels which were induced in the PCOS group, whereas metformin was unable to improve the increased MDA and plasma AMH levels. Treatment with resveratrol and/or metformin ameliorated the elevated number of secondary and atretic follicles and the decreased number of Graafian follicles in the PCOS group, which indicates the effect of the treatments on the maintenance of folliculogenesis. Light and electron microscopic findings supported the analysis of follicular count. Increased number of TUNEL (+) granulosa cells in the PCOS group were reduced significantly in the treatment groups. Resveratrol and metformin increased SIRT1 and AMPK immunreactivity, respectively, compared to the PCOS group.. The results suggest that combined therapy of metformin and resveratrol may improve the weight gain, hormone profile and ovarian follicular cell architecture by inducing antioxidant and antiinflammatory systems via SIRT1 and AMPK activation in PCOS. Topics: AMP-Activated Protein Kinases; Animals; Apoptosis; Cell Count; Dehydroepiandrosterone; Disease Models, Animal; Drug Therapy, Combination; Female; Hormones; Lipid Peroxidation; Metformin; Ovarian Follicle; Ovarian Reserve; Ovary; Polycystic Ovary Syndrome; Rats; Rats, Wistar; Resveratrol; Sirtuin 1; Stilbenes; Tumor Necrosis Factor-alpha; Vagina | 2018 |
Retinoic acid signaling is essential for airway smooth muscle homeostasis.
Airway smooth muscle (ASM) is a dynamic and complex tissue involved in regulation of bronchomotor tone, but the molecular events essential for the maintenance of ASM homeostasis are not well understood. Observational and genome-wide association studies in humans have linked airway function to the nutritional status of vitamin A and its bioactive metabolite retinoic acid (RA). Here, we provide evidence that ongoing RA signaling is critical for the regulation of adult ASM phenotype. By using dietary, pharmacologic, and genetic models in mice and humans, we show that (a) RA signaling is active in adult ASM in the normal lung, (b) RA-deficient ASM cells are hypertrophic, hypercontractile, profibrotic, but not hyperproliferative, (c) TGF-β signaling, known to cause ASM hypertrophy and airway fibrosis in human obstructive lung diseases, is hyperactivated in RA-deficient ASM, (d) pharmacologic and genetic inhibition of the TGF-β activity in ASM prevents the development of the aberrant phenotype induced by RA deficiency, and (e) the consequences of transient RA deficiency in ASM are long-lasting. These results indicate that RA signaling actively maintains adult ASM homeostasis, and disruption of RA signaling leads to aberrant ASM phenotypes similar to those seen in human chronic airway diseases such as asthma. Topics: Adult; Animals; Benzoates; Cells, Cultured; Disease Models, Animal; Female; Fibrosis; Humans; Hypertrophy; Lung; Lung Diseases, Obstructive; Male; Mice; Mice, Transgenic; Muscle, Smooth; Myocytes, Smooth Muscle; Primary Cell Culture; Receptors, Retinoic Acid; Signal Transduction; Stilbenes; Tretinoin | 2018 |
Protective effects of 2,3,5,4-tetrahydroxystilbene-2-o-β-D-glucoside against osteoporosis: Current knowledge and proposed mechanisms.
The aim of this study was to explore the mechanism underlying the protective effects of 2,3,5,4-tetrahydroxystilbene-2-o-β-D-glucoside (TSG) against osteoporosis.. MC3T3-E1 mouse osteoblast precursor cells were used to analyze the protective effects of TSG on osteoblast apoptosis and differential inhibition induced by oxidative stress to determine the gene expression of forkhead transcription factor FKHRL1 (FoxO3a), T cell factors (TCFs), and downstream genes. A mouse model was used to assess the protective effects of TSG on ovariectomy-induced osteoporosis as well as on Cell Counting Kit-8 (CCK) gene expression, including that of FoxO3a. The mechanism underlying the protective effects of TSG against osteoporosis was further explored using high-throughput sequencing data.. A CCK-8 assay in MC3T3-E1 cells and hematoxylin and eosin staining in mouse tissue indicated that cell viability and bone tissue development were inhibited by oxidative stress and ovariectomy and that TSG neutralized or attenuated this effect. The expression levels of FoxO3a, TCF, and downstream genes and the indices of oxidative stress were the same in MC3T3-E1 cells and the bone tissues of the mouse model. Bioinformatics analysis indicated that the cardiac muscle contraction and chemokine signaling pathway were disturbed in MC3T3-E1 cells treated with hydrogen peroxide. Gene ontology-biological process analysis revealed the influence of TSG treatment.. Osteoporosis and cardiac diseases appear to share a common mechanism. In addition to Wnt/FoxO3a signaling, the immune system and the chemokine signaling pathway may contribute to the protective mechanism of TSG. Topics: 3T3 Cells; Animals; Apoptosis; Bone Density Conservation Agents; Bone Remodeling; Chemokines; Disease Models, Animal; Female; Forkhead Box Protein O3; Glucosides; Humans; Mice; Mice, Inbred BALB C; Osteoblasts; Osteoporosis, Postmenopausal; Ovariectomy; Oxidative Stress; Stilbenes; TCF Transcription Factors; Wnt Signaling Pathway | 2018 |
Protective Effects of 2,3,5,4'-Tetrahydroxystilbene-2-
Topics: Animals; Biomarkers; Body Weight; Bone and Bones; Disease Models, Animal; Glucosides; Humans; Mice; Organ Size; Osteoporosis; Ovariectomy; Plant Extracts; Protective Agents; Stilbenes; X-Ray Microtomography | 2018 |
Resveratrol attenuates brain damage in permanent focal cerebral ischemia via activation of PI3K/Akt signaling pathway in rats.
The aim of this study was to evaluate the potential molecular mechanism of resveratrol (RSV) that attenuates brain damage from focal cerebral ischemia.. To investigate whether phosphatidylinositol 3-kinase/Akt (PI3K/Akt) pathway was involved in RSV anti-inflammatory and neuroprotective properties. Middle cerebral artery occlusion (MCAO) animal model was used in this study. Adult male Sprague-Dawley (SD) rats underwent MCAO, and then received treatment with RSV or vehicle after the onset of ischemia. PI3K inhibitor LY294002 was injected intracerebroventricularly to inhibit the PI3K/Akt signaling pathway. Neurological deficit scores and cerebral water content were assessed 24 h after MCAO. The inflammatory factors interleukin (IL)-1β, tumor necrosis factor (TNFα), and cyclooxygenase-2 (COX2) mRNA level were examined by real-time PCR. The enzymatic activity of myeloperoxidase (MPO) was measured 24 h after MCAO. The protein expression of phospho-Akt and COX2 in ischemic brain were determined by western blot.. RSV significantly reduced neurological deficit scores, cerebral water content and the enzymatic activity of MPO, all of which were abolished by LY294002 administration. Real-time PCR showed that RSV significantly suppressed the upregulation of the inflammatory factors IL-1β, TNFα, COX2 mRNA levels. RSV significantly inhibited upregulated the protein expression of COX2 24 h after MCAO, which effect was abolished by LY294002 administration.. RSV attenuated ischemic brain damage induced by cerebral artery occlusion mainly through PI3K/Akt signaling pathway. Abbreviation: MCAO: Middle cerebral artery occlusion; RSV: resveratrol; PI3K/Akt: phosphatidylinositol 3-kinase/Akt; TNF: tumor necrosis factor; COX2: cyclooxygenase-2; MPO: myeloperoxidase; IL: interleukin. Topics: Analysis of Variance; Animals; Antioxidants; Brain Ischemia; Cyclooxygenase 2; Cytokines; Disease Models, Animal; Enzyme Activation; Hypoxia, Brain; Infarction, Middle Cerebral Artery; Male; Neurologic Examination; Oncogene Protein v-akt; Peroxidase; Phosphatidylinositol 3-Kinase; Rats; Rats, Sprague-Dawley; Resveratrol; RNA, Messenger; Signal Transduction; Stilbenes | 2018 |
Postoperative resveratrol administration improves prognosis of rat orthotopic glioblastomas.
Although our previous study revealed lumbar punctured resveratrol could remarkably prolong the survival of rats bearing orthotopic glioblastomas, it also suggested the administration did not completely suppress rapid tumour growth. These evidences led us to consider that the prognosis of tumour-bearing rats may be further improved if this treatment is used in combination with neurosurgery. Therefore, we investigated the effectiveness of the combined treatment on rat orthotopic glioblastomas.. Rat RG2 glioblastoma cells were inoculated into the brains of 36 rats. The rats were subjected to partial tumour removal after they showed symptoms of intracranial hypertension. There were 28 rats that survived the surgery, and these animals were randomly and equally divided into the control group without postoperative treatment and the LP group treated with 100 μl of 300 μM resveratrol via the LP route. Resveratrol was administered 24 h after tumour resection in 3-day intervals, and the animals received 7 treatments. The intracranial tumour sizes, average life span, cell apoptosis and STAT3 signalling were evaluated by multiple experimental approaches in the tumour tissues harvested from both groups.. The results showed that 5 of the 14 (35.7%) rats in the LP group remained alive over 60 days without any sign of recurrence. The remaining nine animals had a longer mean postoperative survival time (11.0 ± 2.9 days) than that of the (7.3 + 1.3 days; p < 0.05) control group. The resveratrol-treated tumour tissues showed less Ki67 labelling, widely distributed apoptotic regions, upregulated PIAS3 expression and reduced p-STAT3 nuclear translocation.. This study demonstrates that postoperative resveratrol administration efficiently improves the prognosis of rat advanced orthotopic glioblastoma via inhibition of growth, induction of apoptosis and inactivation of STAT3 signalling. Therefore, this therapeutic approach could be of potential practical value in the management of glioblastomas. Topics: Animals; Apoptosis; Cell Proliferation; Disease Models, Animal; Gene Expression Regulation, Neoplastic; Glioblastoma; Humans; Intracranial Hypertension; Neoplasm Recurrence, Local; Prognosis; Rats; Resveratrol; Signal Transduction; STAT3 Transcription Factor; Stilbenes | 2018 |
Stilbenoid pterostilbene complexed with cyclodextrin preserves left ventricular function after myocardial infarction in rats: possible involvement of thiol proteins and modulation of phosphorylated GSK-3β.
Topics: Animals; Antioxidants; Apoptosis; Cardiotonic Agents; Cyclodextrins; Disease Models, Animal; Glycogen Synthase Kinase 3 beta; Humans; Lipid Peroxidation; Myocardial Infarction; Myocytes, Cardiac; NF-E2-Related Factor 2; Oxidative Stress; Phosphorylation; Rats; Stilbenes; Ventricular Function, Left | 2018 |
Pterostilbene Reduces Acetaminophen-Induced Liver Injury by Activating the Nrf2 Antioxidative Defense System via the AMPK/Akt/GSK3β Pathway.
Pterostilbene (Pts), a natural dimethylated analog of resveratrol from blueberries, exerts antioxidative and anti-apoptotic effects in various diseases. This study aims to investigate the protective effects and mechanism of Pts against acetaminophen (APAP)-induced hepatotoxicity in vivo.. C57BL/6 mice were treated with APAP or APAP+Pts. HepG2 cells were used to further explore the underlying mechanisms in vitro. The effects of Pts on hepatotoxicity were measured by commercial kits, Hematoxylin and Eosin (H&E) straining, TUNEL assay, Western blot analysis, and Flow cytometry assay.. In vivo, Pts treatment effectively protected against APAP-induced severe liver injury by decreasing the lethality rate, the serum alanine transaminase (ALT) and aspartate aminotransferase (AST) levels, liver histological injury, liver malondialdehyde (MDA) formation and myeloperoxidase (MPO) levels and by increasing liver glutathione (GSH) and superoxide dismutase (SOD) levels. Moreover, in Pts-treated mice, the nuclear factor-erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway was activated; however, APAP-induced c-Jun NH2-terminal kinase (JNK) activation, mitochondrial Bcl-2 Associated X Protein (Bax) translocation, apoptosis-inducing factor (AIF) levels and cytochrome c release were attenuated. In vitro, Pts was found to reverse hydrogen peroxide (H2O2) -induced cytotoxicity, reactive oxygen species (ROS) production and apoptosis that depended on Nrf2 activation. Moreover, Pts induced a dose-dependent increase in the phosphorylation of AMP-activated protein kinase (AMPK), serine/threonine kinase (Akt), and glycogen synthase kinase 3β (GSK3β) in HepG2 cells. Moreover, Pts protect against APAP or H2O2-induced toxicity were effectively attenuated or abolished in HepG2 Nrf2-/- cells and Nrf2-/- mice.. Our data suggest that Pts protects against APAP-induced toxicity by activating Nrf2 via the AMPK/Akt/GSK3β pathway. Topics: Acetaminophen; AMP-Activated Protein Kinases; Animals; Antioxidants; Chemical and Drug Induced Liver Injury; Disease Models, Animal; Glycogen Synthase Kinase 3 beta; Hep G2 Cells; Humans; JNK Mitogen-Activated Protein Kinases; Mice; Mice, Inbred C57BL; Mice, Knockout; NF-E2-Related Factor 2; Oxidative Stress; Proto-Oncogene Proteins c-akt; Reactive Oxygen Species; Signal Transduction; Stilbenes; Superoxide Dismutase | 2018 |
Polydatin suppresses nucleus pulposus cell senescence, promotes matrix homeostasis and attenuates intervertebral disc degeneration in rats.
Intervertebral disc degeneration (IVDD) is one of the major causes of low back pain. Polydatin (PD) has been shown to exert multiple pharmacological effects on different diseases; here, we test the therapeutic potential of PD for IVDD. In in-vitro experiments, we confirmed PD is nontoxic to nucleus pulposus cells (NPCs) under the concentration of 400 μmol/L. Furthermore, PD was able to decrease the level of senescence in TNF-α-treated NPCs, as indicated by β-gal staining as well as senescence markers p53 and p16 expression. In the aspect of extracellular matrix (ECM), PD not only reduced metalloproteinase 3 (MMP-3), metalloproteinase 13 (MMP-13) and a disintegrin-like and metalloproteinase thrombospondin type 1 motif 4 (ADAMTS-4) expression, but also increased aggrecan and collagen II levels. Mitochondrion is closely related to cellular senescence and ECM homeostasis; mechanistically, we found PD may rescue TNF-α-induced mitochondrial dysfunction, and it may also promote Nrf2 expression and activity. Silencing Nrf2 partly abolished the protective effects of PD on mitochondrial homeostasis, senescence and ECM homeostasis in TNF-α-treated NPCs. Correspondingly, PD ameliorated IVDD in rat model by promoting Nrf2 activity, preserving ECM and inhibiting senescence in nucleus pulposus cells. To sum up, our study suggests that PD exerts protective effects in NPCs against IVDD and reveals the underlying mechanism of PD on Nrf2 activation in NPCs. Topics: ADAMTS4 Protein; Aggrecans; Animals; Cells, Cultured; Cellular Senescence; Collagen; Disease Models, Animal; Extracellular Matrix; Glucosides; Humans; Intervertebral Disc; Intervertebral Disc Degeneration; Low Back Pain; Matrix Metalloproteinase 13; Matrix Metalloproteinase 3; NF-E2-Related Factor 2; Nucleus Pulposus; Rats; Stilbenes; Tumor Necrosis Factor-alpha | 2018 |
Polydatin effectively attenuates disease activity in lupus-prone mouse models by blocking ROS-mediated NET formation.
Neutrophil extracellular trap (NET) formation has been described to be closely involved in the pathogenesis of systemic lupus erythematosus (SLE). In this study, we aimed to investigate the effect of polydatin (PD) on NET formation and its effects on disease activity in lupus-prone mouse models.. In vitro, neutrophils from SLE patients and healthy people stimulated with phorbol 12-myristate 13-acetate (PMA) or phosphate-buffered saline (PBS) were treated with PD, and reactive oxygen species (ROS) production and NET formation examined. In vivo, pristane-induced lupus (PIL) mice were treated with vehicle, PD, mycophenolate mofetil (MMF) or cyclophosphamide (CYC) while MRL/lpr mice were treated with vehicle or PD. Proteinuria, serum autoantibodies, ROS production, NET formation and kidney histopathology were tested.. Consistent with previous findings, blood neutrophils from SLE patients showed increased spontaneous NET formation. Both in vivo and in vitro, PD treatment significantly inhibited ROS production and NET release by neutrophils. In MRL/lpr mouse model, PD administration reduced the proteinuria, circulating autoantibody levels, and deposition of NETs and immune complex in the kidneys. In addition, PD treatment ameliorated lupus-like features in PIL mice as MMF or CYC did.. PD treatment inhibited ROS-mediated NET formation and ameliorated lupus manifestations in both PIL mice and MRL/lpr mice. These results highlight the involvement of NETosis in SLE pathogenesis and reveal that PD might be a potential therapeutic agent for SLE or other autoimmune diseases. Topics: Animals; Cells, Cultured; Disease Models, Animal; Disease Progression; Drugs, Chinese Herbal; Extracellular Traps; Female; Glucosides; Humans; Lupus Erythematosus, Systemic; Mice; Mice, Inbred BALB C; Reactive Oxygen Species; Stilbenes; Treatment Outcome | 2018 |
Pterostilbene 4'-
Heme oxygenase-1 (HO-1) can exert anti-inflammatory and antioxidant effects. Acute lung injury (ALI) is associated with increased inflammation and influx of proinflammatory cells and mediators in the airspaces and lung parenchyma. In this study, we demonstrate that pterostilbene 4'- Topics: Acute Lung Injury; Animals; Antioxidants; Disease Models, Animal; Enzyme Induction; Epithelial Cells; Glucosides; Heme Oxygenase-1; Humans; Inflammation; Lipopolysaccharides; Lung; Macrophages; Mice; Mice, Inbred BALB C; Mice, Inbred C57BL; Pseudomonas aeruginosa; RAW 264.7 Cells; RNA, Messenger; Stilbenes; Up-Regulation | 2018 |
The Protective Effects of 2,3,5,4'-Tetrahydroxystilbene-2-
Asthma is an inflammatory disease caused by an imbalance of Th1 and Th2 cells. In general, asthma is characterized by a stronger Th2 response. Most conventional asthma treatment focuses on improving airway flow or suppression of airway inflammation. To reduce the side effects of currently used asthma medicines, we have conducted studies on natural products that have no side effects. 2,3,5,4'-tetrahydroxystilbene-2-O-β-d-glucoside (TSG), the main compound of Topics: Animals; Asthma; Bronchoalveolar Lavage Fluid; Cell Count; Cytokines; Disease Models, Animal; Female; Glucosides; Immunoglobulin Class Switching; Inflammation; Inflammation Mediators; Lung; Mice, Inbred C57BL; Ovalbumin; Protective Agents; Respiratory Hypersensitivity; Stilbenes; Th1 Cells; Th2 Cells | 2018 |
Computational fluid dynamics with imaging of cleared tissue and of in vivo perfusion predicts drug uptake and treatment responses in tumours.
Understanding the uptake of a drug by diseased tissue, and the drug's subsequent spatiotemporal distribution, are central factors in the development of effective targeted therapies. However, the interaction between the pathophysiology of diseased tissue and individual therapeutic agents can be complex, and can vary across tissue types and across subjects. Here, we show that the combination of mathematical modelling, high-resolution optical imaging of intact and optically cleared tumour tissue from animal models, and in vivo imaging of vascular perfusion predicts the heterogeneous uptake, by large tissue samples, of specific therapeutic agents, as well as their spatiotemporal distribution. In particular, by using murine models of colorectal cancer and glioma, we report and validate predictions of steady-state blood flow and intravascular and interstitial fluid pressure in tumours, of the spatially heterogeneous uptake of chelated gadolinium by tumours, and of the effect of a vascular disrupting agent on tumour vasculature. Topics: Animals; Antineoplastic Agents; Blood Vessels; Cell Line, Tumor; Colorectal Neoplasms; Contrast Media; Diphosphates; Disease Models, Animal; Female; Gadolinium; Glioma; Humans; Hydrodynamics; Image Processing, Computer-Assisted; Mice; Mice, Inbred C57BL; Mice, Nude; Models, Theoretical; Regional Blood Flow; Stilbenes; Transplantation, Heterologous | 2018 |
Pterostilbene, a dimethylated analog of resveratrol, promotes energy metabolism in obese rats.
Pterostilbene (trans-3,5-dimethoxy-4-hydroxystilbene) is a dimethylated analog of resveratrol and has been reported to exert various pharmacological effects. In this study, we evaluated the effect of pterostilbene on the pathogenesis of obesity and energy metabolism in obese rats. Pterostilbene significantly activates silent mating type information regulation 2 homolog-1 and peroxisome proliferator-activated receptor-alpha in vitro. At 4 weeks a 0.5% pterostilbene diet markedly suppressed the abdominal white adipose tissue (WAT) accumulation in obese rats. The oxygen consumption and energy expenditure were significantly higher in the pterostilbene group, and pterostilbene increased the fat metabolism rather than the carbohydrate metabolism in obese rats. The mRNA level of uncoupling protein, a thermogenic regulator, was increased and the mRNA levels of fatty acid synthase and leptin, which are involved in lipogenesis and fat storage, were markedly decreased in WAT after the pterostilbene feeding. These results suggest that pterostilbene prevents WAT accumulation through the enhancement of energy metabolism and partly the suppression of lipogenesis in obese OLETF rats. Topics: Adipose Tissue; Animals; Dietary Supplements; Disease Models, Animal; Energy Metabolism; Gene Expression Regulation; Lipid Metabolism; Male; Obesity; PPAR alpha; Rats; Sirtuin 1; Stilbenes | 2017 |
Caloric Restriction Mimetics Slow Aging of Neuromuscular Synapses and Muscle Fibers.
Resveratrol and metformin have been shown to mimic some aspects of caloric restriction and exercise. However, it remains unknown if these molecules also slow age-related synaptic degeneration, as previously shown for caloric restriction and exercise. In this study, we examined the structural integrity of neuromuscular junctions (NMJs) in 2-year-old mice treated with resveratrol and metformin starting at 1 year of age. We found that resveratrol significantly slows aging of NMJs in the extensor digitorum longus muscle of 2-year-old mice. Resveratrol also preserved the morphology of muscle fibers in old mice. Although metformin slowed the rate of muscle fiber aging, it did not significantly affect aging of NMJs. Based on these findings, we sought to determine if resveratrol directly affects NMJs. For this, we examined postsynaptic sites, the NMJ region located on the muscle peripheral membrane, on cultured myotubes derived from C2C12 cells. We discovered that resveratrol increases the number of postsynaptic sites on myotubes exhibiting a youthful architecture, suggesting that resveratrol directly affects the NMJ. Altogether, we provide compelling evidence indicating that resveratrol slows aging of NMJs and muscle fibers. Topics: Aging; Animals; Antioxidants; Caloric Restriction; Cells, Cultured; Disease Models, Animal; Energy Metabolism; Hypoglycemic Agents; Immunohistochemistry; Metformin; Mice; Mice, Inbred C57BL; Motor Disorders; Muscle Fibers, Skeletal; Neuromuscular Junction; Resveratrol; Stilbenes; Synapses | 2017 |
Janus-faced Acrolein prevents allergy but accelerates tumor growth by promoting immunoregulatory Foxp3+ cells: Mouse model for passive respiratory exposure.
Acrolein, a highly reactive unsaturated aldehyde, is generated in large amounts during smoking and is best known for its genotoxic capacity. Here, we aimed to assess whether acrolein at concentrations relevant for smokers may also exert immunomodulatory effects that could be relevant in allergy or cancer. In a BALB/c allergy model repeated nasal exposure to acrolein abrogated allergen-specific antibody and cytokine formation, and led to a relative accumulation of regulatory T cells in the lungs. Only the acrolein-treated mice were protected from bronchial hyperreactivity as well as from anaphylactic reactions upon challenge with the specific allergen. Moreover, grafted D2F2 tumor cells grew faster and intratumoral Foxp3+ cell accumulation was observed in these mice compared to sham-treated controls. Results from reporter cell lines suggested that acrolein acts via the aryl-hydrocarbon receptor which could be inhibited by resveratrol and 3'-methoxy-4'-nitroflavone Acrolein- stimulation of human PBMCs increased Foxp3+ expression by T cells which could be antagonized by resveratrol. Our mouse and human data thus revealed that acrolein exerts systemic immunosuppression by promoting Foxp3+ regulatory cells. This provides a novel explanation why smokers have a lower allergy, but higher cancer risk. Topics: Acrolein; Allergens; Animals; Antibody Formation; Cytokines; Disease Models, Animal; Forkhead Transcription Factors; Hypersensitivity; Immunologic Factors; Lung; Mice; Neoplasms; NF-kappa B; Receptors, Aryl Hydrocarbon; Resveratrol; Signal Transduction; Stilbenes; T-Lymphocytes, Regulatory | 2017 |
Resveratrol attenuates ICAM-1 expression and monocyte adhesiveness to TNF-α-treated endothelial cells: evidence for an anti-inflammatory cascade mediated by the miR-221/222/AMPK/p38/NF-κB pathway.
Resveratrol, an edible polyphenolic phytoalexin, improves endothelial dysfunction and attenuates inflammation. However, the mechanisms have not been thoroughly elucidated. Therefore, we investigated the molecular basis of the effects of resveratrol on TNF-α-induced ICAM-1 expression in HUVECs. The resveratrol treatment significantly attenuated the TNF-α-induced ICAM-1 expression. The inhibition of p38 phosphorylation mediated the reduction in ICAM-1 expression caused by resveratrol. Resveratrol also decreased TNF-α-induced IκB phosphorylation and the phosphorylation, acetylation, and translocation of NF-κB p65. Moreover, resveratrol induced the AMPK phosphorylation and the SIRT1 expression in TNF-α-treated HUVECs. Furthermore, TNF-α significantly suppressed miR-221/-222 expression, which was reversed by resveratrol. miR-221/-222 overexpression decreased p38/NF-κB and ICAM-1 expression, which resulted in reduced monocyte adhesion to TNF-α-treated ECs. In a mouse model of acute TNF-α-induced inflammation, resveratrol effectively attenuated ICAM-1 expression in the aortic ECs of TNF-α-treated wild-type mice. These beneficial effects of resveratrol were lost in miR-221/222 knockout mice. Our data showed that resveratrol counteracted the TNF-α-mediated reduction in miR-221/222 expression and decreased the TNF-α-induced activation of p38 MAPK and NF-κB, thereby suppressing ICAM-1 expression and monocyte adhesion. Collectively, our results show that resveratrol attenuates endothelial inflammation by reducing ICAM-1 expression and that the protective effect was mediated partly through the miR-221/222/AMPK/p38/NF-κB pathway. Topics: AMP-Activated Protein Kinases; Animals; Anti-Inflammatory Agents; Cell Adhesion; Disease Models, Animal; Gene Expression Regulation; Human Umbilical Vein Endothelial Cells; Humans; Inflammation; Intercellular Adhesion Molecule-1; Mice; Mice, Inbred C57BL; Mice, Knockout; MicroRNAs; Monocytes; p38 Mitogen-Activated Protein Kinases; Peritonitis; Primary Cell Culture; Resveratrol; Signal Transduction; Sirtuin 1; Stilbenes; Transcription Factor RelA; Tumor Necrosis Factor-alpha | 2017 |
Resveratrol protects podocytes against apoptosis via stimulation of autophagy in a mouse model of diabetic nephropathy.
Podocyte apoptosis coincides with albuminuria onset and precedes podocytopenia in diabetic nephropathy. However, there is a lack of effective therapeutic drugs to protect podocytes from apoptosis. Here, we demonstrated that resveratrol relieved a series of indicators of diabetic nephropathy and attenuated apoptosis of podocytes in db/db diabetic model mice. In addition, resveratrol induced autophagy in both db/db mice and human podocytes. Furthermore, inhibition of autophagy by 3-methyladenine (3-MA) and autophagy gene 5 (Atg5) short hairpin RNA (shRNA) reversed the protective effects of resveratrol on podocytes. Finally, we found that resveratrol might regulate autophagy and apoptosis in db/db mice and podocytes through the suppression of microRNA-383-5p (miR-383-5p). Together, our results indicate that resveratrol effectively attenuates high glucose-induced apoptosis via the activation of autophagy in db/db mice and podocytes, which involves miR-383-5p. Thus, this study reveals a new possible strategy to treat diabetic nephropathy. Topics: Albuminuria; Animals; Apoptosis; Autophagy; Diabetic Nephropathies; Disease Models, Animal; Mice; Mice, Inbred C57BL; Podocytes; Protective Agents; Resveratrol; RNA, Small Interfering; Stilbenes | 2017 |
Polydatin impairs mitochondria fitness and ameliorates podocyte injury by suppressing Drp1 expression.
Polydatin (PD), a resveratrol glycoside, has been shown to protect renal function in diabetic nephropathy (DN), but the underlying molecular mechanism remains unclear. This study demonstrates that PD stabilize the mitochondrial morphology and attenuate mitochondrial malfunction in both KKAy mice and in hyperglycemia (HG)-induced MPC5 cells. We use Western blot analysis to demonstrate that PD reversed podocyte apoptosis induced by HG via suppressing dynamin-related protein 1 (Drp1). This effect may depend on the ability of PD to inhibit the generation of cellular reactive oxygen species (ROS). In conclusion, we demonstrate that PD may be therapeutically useful in DN, and that, podocyte apoptosis induced by HG can be reversed by PD through suppressing Drp1 expression. Topics: Animals; Apoptosis; Blood Glucose; Cell Line; Cytoprotection; Diabetes Mellitus, Type 2; Diabetic Nephropathies; Disease Models, Animal; Down-Regulation; Dynamins; Glucosides; Mice, Inbred C57BL; Mitochondria; Mitochondrial Dynamics; Podocytes; Reactive Oxygen Species; RNA Interference; Signal Transduction; Stilbenes; Transfection | 2017 |
Resveratrol inhibits LPS-induced mice mastitis through attenuating the MAPK and NF-κB signaling pathway.
Resveratrol is a natural polyphenol extracted from mangy plants. It has been reported that resveratrol show multitudinous positive role in biology such as anti-oxidant, anti-nociception and anti-inflammatory effects. Therefore, the present study devotes to test the effect of resveratrol on LPS-induced mastitis in mice. Resveratrol was administered intraperitoneally 1 h before LPS treatment. And the anti-inflammatory effect of resveratrol was measured by histopathological examination, MPO assay, real-time PCR and western blotting analysis. The results showed that resveratrol significantly reduced the LPS-induced mammary histopathological changes. Meanwhile, it sharply attenuated the activity of MPO. The result also indicated that the resveratrol can decrease the expression of pro-inflammatory cytokines TNF-α and IL-1β. From the results of western blotting, resveratrol suppressed the expression of phosphorylation of p65 and IκB from NF-κB signal pathway and phosphorylation of p38 and ERK from MAPK signal pathway. These findings suggested that resveratrol may inhibit the inflammatory response in the mastitis. Topics: Animals; Anti-Inflammatory Agents; Blotting, Western; Cytokines; Disease Models, Animal; Female; Inflammation; Interleukin-1beta; Lipopolysaccharides; Mammary Glands, Animal; MAP Kinase Signaling System; Mastitis; Mice; Mice, Inbred BALB C; NF-kappa B; Peroxidase; Phosphorylation; Real-Time Polymerase Chain Reaction; Resveratrol; Signal Transduction; Stilbenes; Tumor Necrosis Factor-alpha | 2017 |
Resveratrol protects against early polymicrobial sepsis-induced acute kidney injury through inhibiting endoplasmic reticulum stress-activated NF-κB pathway.
Resveratrol, a polyphenol compound derived from various edible plants, protects against sepsis-induced acute kidney injury (AKI) via its anti-inflammatory activity, but the underlying mechanisms remain largely unknown. In this study, a rat model of sepsis was established by cecal ligation and puncture (CLP), 30 mg/kg resveratrol was intraperitoneally administrated immediately after the CLP operation. HK-2 cells treated by 1 μg/ml lipopolysaccharide, 0.2 μM tunicamycin, 2.5 mM irestatin 9389 and 20 μM resveratrol were used for in vitro study. The results demonstrated that resveratrol significantly improved the renal function and tubular epithelial cell injury and enhanced the survival rate of CLP-induced rat model of sepsis, which was accompanied by a substantial decrease of the serum content and renal mRNA expressions of TNF-α, IL-1β and IL-6. In addition, resveratrol obviously relieved the endoplasmic reticulum stress, inhibited the phosphorylation of inositol-requiring enzyme 1(IRE1) and nuclear factor-κB (NF-κB) in the kidney. In vitro studies showed that resveratrol enhanced the cell viability, reduced the phosphorylation of NF-κB and production of inflammatory factors in lipopolysaccharide and tunicamycin-induced HK-2 cells through inhibiting IRE1 activation. Taken together, administration of resveratrol as soon as possible after the onset of sepsis could protect against septic AKI mainly through inhibiting IRE1-NF-κB pathway-triggered inflammatory response in the kidney. Resveratrol might be a readily translatable option to improve the prognosis of sepsis. Topics: Acute Kidney Injury; Animals; Anti-Inflammatory Agents; Biomarkers; Cell Line; Cytokines; Disease Models, Animal; Endoplasmic Reticulum Stress; Humans; Inflammation Mediators; Kidney Function Tests; Lipopolysaccharides; Male; Membrane Proteins; NF-kappa B; Protein Serine-Threonine Kinases; Rats; Resveratrol; Sepsis; Signal Transduction; Stilbenes | 2017 |
Resveratrol improves mitochondrial function in the remnant kidney from 5/6 nephrectomized rats.
Mitochondrial dysfunction is involved in the pathogenesis of chronic kidney disease (CKD). Resveratrol has been demonstrated to be beneficial for the recovery of kidney diseases. In this study, the 5/6 nephrectomized rat was used as a CKD model and the TGF-β1-exposed mouse mesangial cells were used as an in vitro model. Pathological examination showed that resveratrol treatment attenuated glomerular injury in the remnant kidney of 5/6 nephrectomized rat. Additionally, resveratrol improved mitochondrial function in vivo and in vitro, as evidenced by increasing mitochondrial membrane potential, increasing ATP, decreasing reactive oxygen species production and enhancing activities of complex I and III. Furthermore, the dysregulated expressions of electron transport chain proteins and fission/fusion proteins in the kidney of 5/6 nephrectomize rats and TGF-β1-exposed mesangial cells were restored by resveratrol. Finally, upregulated sirt1 and PGC-1α deacetylation were found after treatment with resveratrol in vivo and in vitro, which may contribute to the mitochondrial protective effects of resveratrol. The results demonstrate that resveratrol protects the mitochondria of kidney in 5/6 nephrectomized rats and TGF-β1 induced mesangial cells. The study provides new insights into the renoprotective mechanisms of resveratrol. Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Blotting, Western; Cell Line; Disease Models, Animal; Gene Expression Regulation; Kidney; Male; Mice; Mitochondria; Nephrectomy; Rats; Rats, Sprague-Dawley; Renal Insufficiency, Chronic; Resveratrol; Stilbenes | 2017 |
Caffeic acid phenethyl ester attenuates pathological cardiac hypertrophy by regulation of MEK/ERK signaling pathway in vivo and vitro.
To explore the effects of caffeic acid phenethyl ester (CAPE) on cardiac hypertrophy induced by pressure overload.. Male wild-type C57 mice, aged 8-10weeks, were used for aortic banding (AB) to induce cardiac hypertrophy. CAPE or (resveratrol) RS was administered from the 3rd day after AB surgery for 6weeks. Echocardiography and hemodynamic analysis were performed to estimate cardiac function. Mice hearts were collected for H&E and PSR staining. Western blot analysis and quantitative PCR were performed for to investigate molecular mechanism. We further confirmed our findings in H9c2 cardiac fibroblasts treated with PE or CAPE.. CAPE protected against cardiac hypertrophy induced by pressure overload, as evidenced by inhibition of cardiac hypertrophy and improvement in mouse cardiac function. The effect of CAPE on cardiac hypertrophy was mediated via inhibition of the MEK/ERK and TGFβ-Smad signaling pathways. We also demonstrated that CAPE protected H9c2 cells from PE-induced hypertrophy in vitro via a similar molecular mechanism as seen in the mouse heart. Finally, CAPE seemed to be as effective as RS for treatment of pressure overload induced mouse cardiac hypertrophy.. Our results suggest that CAPE may play an important role in the regulation of cardiac hypertrophy induced by pressure overload via negative regulation of the MEK/ERK and TGFβ/Smad signaling pathways. These results indicate that CAPE could potentially be used for treatment of cardiac hypertrophy. Topics: Animals; Blotting, Western; Caffeic Acids; Cardiomegaly; Cell Line; Disease Models, Animal; Male; MAP Kinase Signaling System; Mice; Mice, Inbred C57BL; Phenylephrine; Phenylethyl Alcohol; Polymerase Chain Reaction; Rats; Resveratrol; Smad Proteins; Stilbenes; Transforming Growth Factor beta | 2017 |
Nanoparticle-mediated dual delivery of resveratrol and DAP5 ameliorates kidney ischemia/reperfusion injury by inhibiting cell apoptosis and inflammation.
Ischemia reperfusion (I/R) injury is a leading cause of acute kidney injury with high morbidity and mortality due to limited therapy. NMDA receptor inhibitor (DAP5) and resveratrol (Res) could ameliorate kidney I/R injury, but their use is limited by low aqueous solubility and poor stability. Here, we examined the potential protective effects of Res-DAP5 nanoparticles (NP) against renal I/R injury. Mice were subjected to renal ischemia for 30 min followed by reperfusion for 24 h. The results showed that Res-DAP5-NP could decreased serum creatinine (Cr) and urea nitrogen (BUN), alleviated tubular damage and oxidative stress. In addition, Res-DAP5-NP suppressed cell apoptosis, promoted the expression of p-DAPK, and inhibited the expression of p-CaMK and p-AKT. Furthermore, Res-DAP5-NP decreased the production of pro-inflammatory cytokines such as tumor necrosis factor-α, IL-1β, IL-6, and p-IκBα induced by renal I/R injury. In addition, Res-DAP5-NP also attenuated renal I/R injury in vivo, as manifested by increase in cell viability, SOD level, and the expression of p-DAPK, decreases in intracellular Ca2+ concentration and the expression of p-CaMK. Taken together, our findings indicates that Res-DAP5-NP could effectively protect renal I/R injury by inhibiting apoptosis and inflammation responses, possibly through AKT/NMDA/CaMK/DAPK and NF-κB pathways. Topics: Animals; Apoptosis; Biomarkers; Calcium; Caspase 3; Cell Line; Cell Survival; Cytokines; Disease Models, Animal; Drug Delivery Systems; Humans; Inflammation Mediators; Kidney Diseases; Kidney Function Tests; Male; Nanoparticles; Oxidative Stress; Protective Agents; Rats; Reactive Oxygen Species; Reperfusion Injury; Resveratrol; Stilbenes | 2017 |
Neuroprotective effect of resveratrol on rotenone-treated C57BL/6 mice.
The aim of the present study was to investigate whether resveratrol could reduce nigral iron levels to prevent the degeneration of dopaminergic neurons in the substantia nigra (SN) of C57BL/6 mice induced by rotenone. Parkinson's disease (PD) is an age-related neurodegenerative disorder; elevated iron levels in the SN participate in neuronal death in PD. Resveratrol is a kind of polyphenolic compounds and possess antioxidant, anticancer, and anti-inflammatory biological functions. Although many research groups have investigated the neuroprotective effects of resveratrol against PD, the precise mechanisms underlying its beneficial effects on dopaminergic neuron are poorly defined. In this study, rotenone-treated mice were used to examine neuroprotective roles of resveratrol in PD. Sixty-four adult C57BL/6 mice were divided into four groups: vehicle control mice, rotenone mice, resveratrol-treated rotenone mice, resveratrol mice. In the present study, we found that chronic administration of rotenone significantly induced motor coordination impairment and increased iron levels and dopaminergic neuron loss in SN in mice. Resveratrol administration significantly protected mice from rotenone-induced motor coordination impairment, elevated iron levels, and dopaminergic neuronal loss. Our results show that resveratrol can elicit neuroprotective effects on rotenone-induced parkinsonism through reducing nigral iron levels. Topics: Animals; Disease Models, Animal; Dopaminergic Neurons; Insecticides; Iron; Male; Mice; Mice, Inbred C57BL; Neurodegenerative Diseases; Neuroprotective Agents; Psychomotor Disorders; Random Allocation; Resveratrol; Rotarod Performance Test; Rotenone; Stilbenes; Substantia Nigra; Tyrosine 3-Monooxygenase | 2017 |
Resveratrol Inhibits Periodontitis-Related Bone Loss in Rats Subjected to Cigarette Smoke Inhalation.
Alternative therapeutic approaches have been explored to modulate host response to periodontal disease. Knowledge of new strategies to treat periodontitis is particularly relevant in patients presenting augmented risk to periodontitis, such as smokers. The aim of this study is to investigate the impact of resveratrol (RESV) on progression of experimental periodontitis (EP) in the presence of cigarette smoke inhalation (CSI).. Rats were assigned to one of three groups: 1) CSI+RESV (n = 20); 2) CSI+placebo (n = 20); and 3) non-CSI (n = 20). CSI was initiated 1 week prior to initiation of RESV or placebo administration (systemically for 30 days) and was continued until the end of the study. EP was induced around the first mandibular and second maxillary molars using ligatures. Specimens from the mandible were processed for morphometric and microcomputed tomography examination of bone volume/levels. Gingival tissues surrounding mandibular molars were collected for quantification of interleukin (IL)-1β, IL-4, IL-6, IL-17, and tumor necrosis factor-α using an assay system. Additional analyses of immunoinflammatory mediator performance (T-helper Type 17 [Th17]/Th2 and Th1/Th2 cell levels) were performed according to Th cell responses in gingival tissues. Gingival tissues of maxillary molars were subjected to real-time polymerase chain reaction for assessment of osteoprotegrin, runt-related transcription factor-2, receptor activator of nuclear factor-kappa B ligand (RANKL), sclerostin, and Dickkopf Wnt signaling pathway inhibitor 1 levels.. Higher linear alveolar bone loss (ABL) and lower interradicular bone density were detected in ligated molars in the CSI+placebo group (P <0.05). IL-4 level was the highest, and Th17/Th2 levels were the lowest in RESV-treated rats compared with placebo rats (P <0.05). RESV reduced expression of messenger RNA for RANKL in animals receiving CSI (P <0.05).. RESV inhibits EP and CSI-induced supporting ABL and has a beneficial effect on osteo-immunoinflammatory markers. Topics: Alveolar Bone Loss; Animals; Cytokines; Disease Models, Animal; Disease Progression; Gene Expression; Immunologic Factors; Inflammation Mediators; Male; Periodontitis; Rats; Rats, Wistar; Real-Time Polymerase Chain Reaction; Resveratrol; Smoking; Stilbenes | 2017 |
Negative correlation between serum uric acid and kidney URAT1 mRNA expression caused by resveratrol in rats.
This study established a hyperuricemic rat model to elucidate the effect of resveratrol on the transport of UA in the kidney.. Hyperuricemia was induced in rats through daily oral gavage of a potassium oxonate and UA mixture over 3 weeks. Our results revealed that resveratrol significantly reduced the serum UA levels but not creatinine, c-creative protein, alanine aminotransferase, or aspartate aminotransferase levels in these rats. Furthermore, renal URAT1 and OAT1 mRNA expression were significantly higher in the rats treated with allopurinol than in those with no treatment. Therefore, allopurinol not only inhibited UA production but also mediated renal URAT1 and OAT1 expression. The correlation analysis revealed that UA levels correlated negatively with renal IL-6 mRNA expression in rats treated with allopurinol. Moreover, URAT1 showed strong immunoreactivity in the distal convoluted tubule of rats treated with allopurinol or resveratrol and in hyperuricemic treated with allopurinol. Finally, in the rats treated with resveratrol, UA levels correlated negatively with renal URAT1 mRNA expression; thus, resveratrol reduced URAT1 mRNA expression under high UA levels, thereby reducing UA reabsorption in renal cells.. Resveratrol contributes to URAT1 expression, which is potentially useful in therapeutic strategies aimed at treating hyperuricemia. Topics: Alanine Transaminase; Allopurinol; Animals; Anion Transport Proteins; Aspartate Aminotransferases; C-Reactive Protein; Creatinine; Cytokines; Disease Models, Animal; Hyperuricemia; Kidney; Male; Rats; Rats, Sprague-Dawley; Resveratrol; RNA, Messenger; Stilbenes; Uric Acid | 2017 |
Sirt1 ameliorates systemic sclerosis by targeting the mTOR pathway.
Systemic sclerosis (SSc) is a chronic autoimmune disease characterized by inflammation and fibrosis. Our previous research has indicated that Sirtuin1 (Sirt1) plays a role in the regulation of TNF-α-induced inflammation; however, whether Sirt1 may inhibit the progress of SSc by blocking inflammation remains unknown.. We aimed to investigate the function of Sirt1 in SSc.. The function and its mechanism of Sirt1 were evaluated in fibroblasts or scleroderma mice. The expression of Sirt1 and cytokines was analyzed using real-time PCR, western blot, ELISA and immunohistochemistry.. We determined that fibroblasts of SSc patients were activated to exhibit inflammation. Sirt1, activated by resveratrol (Res), ameliorated cutaneous inflammation and fibrosis in bleomycin (BLM)-induced scleroderma mice. An improvement in mammalian target of rapamycin (mTOR) was identified in the fibroblasts of SSc patients and the skin lesions of BLM mice. Rapamycin, an mTOR specific inhibitor, substantially inhibited the induced inflammation and fibrosis. The enhancement of mTOR expression in the skin lesions of the BLM-treated mice was significantly inhibited by Sirt1 activation. However, in both the BLM-treated cells and mice, Res exerted an inhibitory function on the expression of inflammatory factors, and collagen was diminished following mTOR knockdown. These findings suggest that Res may inhibit inflammation and fibrosis via mTOR.. The modulation of Sirt1 activity may represent a potential therapeutic method for SSc. The mechanism may involve the inhibition of mTOR phosphorylation, whereas mTOR activity was shown to be a pathogenic culprit of SSc. Topics: Animals; Biopsy; Bleomycin; Cells, Cultured; Collagen; Cytokines; Disease Models, Animal; Enzyme-Linked Immunosorbent Assay; Female; Fibroblasts; Gene Knockdown Techniques; Humans; Immunohistochemistry; Mice; Mice, Inbred C3H; Phosphorylation; Real-Time Polymerase Chain Reaction; Resveratrol; RNA, Messenger; Scleroderma, Systemic; Signal Transduction; Sirolimus; Sirtuin 1; Skin; Stilbenes; TOR Serine-Threonine Kinases; Tumor Necrosis Factor-alpha | 2017 |
Antidepressant-like effects of tetrahydroxystilbene glucoside in mice: Involvement of BDNF signaling cascade in the hippocampus.
Current antidepressants in clinic need weeks of administration and always have significant limitations. Tetrahydroxystilbene glucoside (TSG) is one of the major bioactive ingredients of Polygonum multiflorum with neuroprotective effects. This study aimed to evaluate the antidepressant effects of TSG in mice.. The antidepressant-like effects of TSG in mice were examined in the forced swim test (FST), tail suspension test (TST), and chronic social defeat stress (CSDS) model of depression. The effects of CSDS and TSG on the hippocampal brain-derived neurotrophic factor (BDNF) signaling pathway and neurogenesis were further investigated. Moreover, the pharmacological inhibitors and lentiviral-shRNA were used to explore the antidepressant mechanisms of TSG.. TSG produced antidepressant-like effects in the FST and TST and also reversed the CSDS-induced depressive-like symptoms. Moreover, TSG treatment significantly restored the decreased hippocampal BDNF signaling pathway and neurogenesis in CSDS mice. Importantly, blockade of the hippocampal BDNF system fully abolished the antidepressant-like effects of TSG in mice.. In conclusion, TSG produces antidepressant-like effects in mice via enhancement of the hippocampal BDNF system. Topics: Animals; Antidepressive Agents; Brain-Derived Neurotrophic Factor; Chronic Disease; Depressive Disorder; Disease Models, Animal; Dominance-Subordination; Glucosides; Hippocampus; Male; Mice, Inbred C57BL; Motor Activity; Neurogenesis; Receptor, trkB; Serotonin; Signal Transduction; Stilbenes; Stress, Psychological | 2017 |
Pterostilbene alleviates polymicrobial sepsis-induced liver injury: Possible role of SIRT1 signaling.
Liver injury occurs frequently during sepsis. Pterostilbene (Pte), a natural dimethylated analog of resveratrol from blueberries, exerts anti-inflammatory and anti-apoptotic effects in various diseases. However, the role of Pte in sepsis-induced liver injury and its underlying mechanisms remain unknown. The current study aimed to evaluate the protective effects of Pte on sepsis-induced liver injury and its potential mechanisms. Sepsis was induced using cecal ligation and puncture (CLP) in C57BL/6 mice. Mice were administered Pte (5, 10, 15mg/kg, i.p.) at 0.5h, 2h, and 8h after CLP induction. The pathological changes of the liver were evaluated using hematoxylin and eosin (H&E) staining. The serum levels of alanine transaminase (ALT) and aspartate aminotransferase (AST) were measured. The levels of tumor necrosis factor-alpha (TNF-α), interleukin (IL-6), myeloperoxidase (MPO), p38 mitogen-activated protein kinase (p38MAPK), Bax, and B-cell lymphoma 2 (Bcl-2) were also evaluated. Pte treatment attenuated the CLP-induced liver injury, as evidenced by the attenuated histopathologic injuries and the decreased serum aminotransferase levels. Pte reduced the serum inflammatory cytokine (TNF-α and IL-6) levels and hepatic mRNA levels of TNF-α and IL-6. Pte also reduced MPO activity and p38MAPK activation in the liver. Additionally, Pte significantly inhibited Bax expression and increased Bcl-2 expression. Moreover, Pte increased the expression of sirtuin-1 (SIRT1) and reduced the expression of acetylated forkhead box O1 (Ac-FoxO1), acetylated Ac-p53, and acetylated nuclear factor-kappa beta (Ac-NF-κB). However, SIRT1 small interfering RNA (siRNA) abolished Pte's effects on the expression levels of those protein. Notably, Pte improved the survival rate in septic mice. In conclusion, Pte alleviates sepsis-induced liver injury by reducing inflammatory response and inhibiting hepatic apoptosis, and the potential mechanism is associated with SIRT1 signaling activation. Topics: Alanine Transaminase; Animals; Anti-Inflammatory Agents; Aspartate Aminotransferases; Blueberry Plants; Cecum; Cytokines; Disease Models, Animal; Inflammation Mediators; Liver; Male; Mice; Mice, Inbred C57BL; RNA, Small Interfering; Sepsis; Signal Transduction; Sirtuin 1; Stilbenes | 2017 |
Trans-resveratrol enriched maternal diet protects the immature hippocampus from perinatal asphyxia in rats.
Trans-resveratrol (tRESV), a polyphenol with antioxidant properties, is common in many food sources, hence easily accessible for study as a maternal dietary supplement in perinatal asphyxia (PA). Hypoxic-ischemic encephalopathy secondary to PA affects especially vulnerable brain areas such as hippocampus and is a leading cause of neonatal morbidity. The purpose of this study is to identify new epigenetic mechanisms of brain inflammation and injury related to PA and to explore the benefit of tRESV enriched maternal diet. The hippocampal interleukin 1 beta (IL-1b), tumour necrosis factor alpha (TNFα) and S-100B protein, at 24-48h after 90min of asphyxia were assessed in postnatal day 6 rats whose mothers received either standard or tRESV enriched diet. The expression of non-coding microRNAs miR124, miR132, miR134, miR146 and miR15a as epigenetic markers of hippocampus response to PA was determined 24h post-asphyxia. Our results indicate that neural response to PA could be epigenetically controlled and that tRESV reduces asphyxia-related neuroinflammation and neural injury. Moreover, tRESV could increase, through epigenetic mechanisms, the tolerance to asphyxia, with possible impact on the neuronal maturation. Our data support the neuroprotective quality of tRESV when used as a supplement in the maternal diet on the offspring's outcome in PA. Topics: Animals; Animals, Newborn; Asphyxia Neonatorum; Dietary Supplements; Disease Models, Animal; Epigenesis, Genetic; Female; Hippocampus; Inflammation; Neuroprotective Agents; Pregnancy; Rats; Rats, Wistar; Resveratrol; Stilbenes | 2017 |
Tapinarof Is a Natural AhR Agonist that Resolves Skin Inflammation in Mice and Humans.
Tapinarof (GSK2894512) is a naturally derived topical treatment with demonstrated efficacy for patients with psoriasis and atopic dermatitis, although the biologic target and mechanism of action had been unknown. We demonstrate that the anti-inflammatory properties of tapinarof are mediated through activation of the aryl hydrocarbon receptor (AhR). We show that tapinarof binds and activates AhR in multiple cell types, including cells of the target tissue-human skin. In addition, tapinarof moderates proinflammatory cytokine expression in stimulated peripheral blood CD4+ T cells and ex vivo human skin, and impacts barrier gene expression in primary human keratinocytes; both of these processes are likely to be downstream of AhR activation based on current evidence. That the anti-inflammatory properties of tapinarof derive from AhR agonism is conclusively demonstrated using the mouse model of imiquimod-induced psoriasiform skin lesions. Topical treatment of AhR-sufficient mice with tapinarof leads to compound-driven reductions in erythema, epidermal thickening, and tissue cytokine levels. In contrast, tapinarof has no impact on imiquimod-induced skin inflammation in AhR-deficient mice. In summary, these studies identify tapinarof as an AhR agonist and confirm that its efficacy is dependent on AhR. Topics: Administration, Topical; Animals; Basic Helix-Loop-Helix Transcription Factors; Cells, Cultured; Cytokines; Dermatitis, Atopic; Disease Models, Animal; Humans; Inflammation; Mice; Psoriasis; Receptors, Aryl Hydrocarbon; Resorcinols; Skin; Stilbenes | 2017 |
VOSalophen: a vanadium complex with a stilbene derivative-induction of apoptosis, autophagy, and efficiency in experimental cutaneous leishmaniasis.
In our previous work, we demonstrated the promising in vitro effect of VOSalophen, a vanadium complex with a stilbene derivative, against Leishmania amazonensis. Its antileishmanial activity has been associated with oxidative stress in L. amazonensis promastigotes and L. amazonensis-infected macrophages. In the present study, the mechanism involved in the death of parasites after treatment with VOSalophen, as well as in vivo effect in the murine model cutaneous leishmaniasis, has been investigated. Promastigotes of L. amazonensis treated with VOSalophen presented apoptotic cells features, such as cell volume decrease, phosphatidylserine externalization, and DNA fragmentation. An increase in autophagic vacuoles formation in treated promastigotes was also observed, showing that autophagy also may be involved in the death of these parasites. In intracellular amastigotes, DNA fragmentation was observed after treatment with VOSalophen, but this effect was not observed in host cells, highlighting the selective effect of this vanadium complex. In addition, VOSalophen showed activity in the murine model of cutaneous leishmaniasis, without hepatic and renal damages. The outcome described here points out that VOSalophen had promising antileishmanial properties and these data also contribute to the understanding of the mechanisms involved in the death of protozoa induced by metal complexes. Topics: Animals; Apoptosis; Autophagy; Disease Models, Animal; DNA Fragmentation; Female; Leishmaniasis, Cutaneous; Mice; Mice, Inbred BALB C; Organometallic Compounds; Stilbenes; Vanadium | 2017 |
Resveratrol Improves Cell Cycle Arrest in Chronic Prostatitis Rats, by C-kit/SCF Suppression.
Chronic prostatitis (CP) with complex pathogenesis is difficult for treatment. c-kit has been associated with the control of cell proliferation of prostate cells. This study aims to evaluate the role of resveratrol, an activator of Sirt1, in regulating the expression of c-kit in CP and investigate the consequent effects on cell cycle. Rat model of CP was established through subcutaneous injections of diphtheria-pertussis-tetanus vaccine and subsequently treated with resveratrol. Hematoxylin and eosin staining was performed to identify the histopathological changes in prostates. Western blotting and immunohistochemical staining examined the expression level of c-kit, stem cell factor (SCF), Sirt1, and cell cycle-associated proteins. The model group exhibited severe diffuse chronic inflammation, characterized by leukocyte infiltration and papillary frond protrusion into the gland cavities, and a notable increase in prostatic epithelial height. Gland lumen diameter was also significantly smaller; the activity of c-kit/SCF in the CP rats was increased significantly compared to the control group. Meanwhile, the cell cycle proteins are dysregulated significantly in CP rats. Resveratrol treatment significantly improved these factors by Sirt1 activation. Dysregulation of cell cycle was involved in the pathological processes of CP, which was improved after resveratrol treatment by the downregulation of c-kit/SCF by activating Sirt1. Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Cell Cycle Checkpoints; Cell Cycle Proteins; Cell Proliferation; Chronic Disease; Diphtheria-Tetanus-Pertussis Vaccine; Disease Models, Animal; Down-Regulation; Humans; Immunohistochemistry; Male; Prostatitis; Proto-Oncogene Proteins c-kit; Rats; Rats, Sprague-Dawley; Resveratrol; Sirtuin 1; Staining and Labeling; Stem Cell Factor; Stilbenes | 2017 |
Pterostilbene 4'-
Pterostilbene, a dimethyl ester analog of resveratrol, has anti-inflammatory and antioxidative effects and alters cell proliferation. Tristetraprolin (TTP) promotes the degradation of proinflammatory mediators via binding to adenosine and uridine- (AU-) rich elements (ARE) located in the 3'-untranslated regions of mRNAs. Here, we utilized pterostilbene 4'- Topics: Animals; Colitis; Disease Models, Animal; Glucosides; Male; Mice; Mice, Knockout; Stilbenes; Tristetraprolin | 2017 |
Polydatin alleviated radiation-induced lung injury through activation of Sirt3 and inhibition of epithelial-mesenchymal transition.
Radiation-induced lung injury (RILI) is one of the most common and fatal complications of thoracic radiotherapy. It is characterized with two main features including early radiation pneumonitis and fibrosis in later phase. This study was to investigate the potential radioprotective effects of polydatin (PD), which was shown to exert anti-inflammation and anti-oxidative capacities in other diseases. In this study, we demonstrated that PD-mitigated acute inflammation and late fibrosis caused by irradiation. PD treatment inhibited TGF-β1-Smad3 signalling pathway and epithelial-mesenchymal transition. Moreover, radiation-induced imbalance of Th1/Th2 was also alleviated by PD treatment. Besides its free radical scavenging capacity, PD induced a huge increase of Sirt3 in culture cells and lung tissues. The level of Nrf2 and PGC1α in lung tissues was also elevated. In conclusion, our data showed that PD attenuated radiation-induced lung injury through inhibiting epithelial-mesenchymal transition and increased the expression of Sirt3, suggesting PD as a novel potential radioprotector for RILI. Topics: Acute Lung Injury; Animals; Cell Line; Disease Models, Animal; Epithelial Cells; Epithelial-Mesenchymal Transition; Female; Gene Expression Regulation; Glucosides; Humans; Lung; Mice; Mice, Inbred C57BL; NF-E2-Related Factor 2; Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha; Radiation Pneumonitis; Radiation-Protective Agents; Signal Transduction; Sirtuin 3; Smad3 Protein; Stilbenes; Th1-Th2 Balance; Transforming Growth Factor beta1 | 2017 |
Effects of a co-micronized composite containing palmitoylethanolamide and polydatin in an experimental model of benign prostatic hyperplasia.
Palmitoylethanolamide (PEA), a fatty acid amide-signaling molecule has well-known anti-inflammatory and neuroprotective effects. Nevertheless, PEA does not possess the ability to prevent free radicals formation. Polydatin (PLD), a biological precursor of resveratrol, has antioxidant activity. A combination of PEA and PLD could, conceivably, have beneficial effects on oxidative stress produced by inflammatory processes. In the present study we investigated the effects of a co-micronized composite containing PEA and PLD (m(PEA/PLD)) in a model of testosterone-induced benign hyperplasia (BPH). BPH was provoked in rats by daily administration of testosterone propionate (3mg/kg) for 14days. This protocol leads to alterations in prostate morphology and increased levels of prostaglandin E2 and dihydrotestosterone as well as of 5α-reductase 1 and 5α-reductase 2 expression. Moreover, testosterone induced marked inflammation in terms of an increase in nuclear translocation of nuclear factor-κB p65 and consequently in IκB-α degradation as well as disregulation of inducible nitric oxide synthase, cyclooxygenase-2 and manganese superoxide dismutase expression and in the apoptosis pathway. Our results show, for the first time, that m(PEA/PLD) is capable of decreasing prostate weight and dihydrotestosterone production in BPH-induced rats. These effects were most likely correlated to the anti-inflammatory and apoptotic effects of m(PEA/PLD). Accordingly, these results support the view that m(PEA/PLD) should be further studied as a potent candidate for the management of BPH. Topics: 3-Oxo-5-alpha-Steroid 4-Dehydrogenase; Amides; Animals; Anti-Inflammatory Agents; Antioxidants; Apoptosis; Apoptosis Regulatory Proteins; Dihydrotestosterone; Dinoprostone; Disease Models, Animal; Drug Combinations; Drug Compounding; Ethanolamines; Glucosides; Inflammation Mediators; Male; Oxidative Stress; Palmitic Acids; Prostate; Prostatic Hyperplasia; Rats, Sprague-Dawley; Signal Transduction; Stilbenes; Testosterone Propionate | 2017 |
Resveratrol reversed chronic restraint stress-induced impaired cognitive function in rats.
Chronic stress occurs in everyday life, and often results in memory impairments and depressive symptoms. Resveratrol is a natural polyphenol that possesses numerous biological properties, including potent antidepressant‑like effects. The present study aimed to examine the effects of resveratrol treatment on chronic restraint stress (CRS)‑induced cognitive impairment and to explore the underlying molecular mechanisms. Male Wistar rats were exposed to CRS for 21 days in order to induce depressive‑like behavior. The results demonstrated that CRS (6 h/day, 21 days) was able to induce cognitive deficits in rats, as evidenced by Morris water maze and novel object recognition tests. In addition, CRS exposure significantly decreased the mRNA and protein expression levels of hippocampal brain‑derived neurotrophic factor (BDNF) in the rats. Conversely, chronic treatment with resveratrol (80 mg/kg, i.p.; 21 days) significantly prevented the behavioral and biochemical alterations induced by CRS. The effects of resveratrol were nearly identical to those observed with fluoxetine treatment. In conclusion, the present study demonstrated that resveratrol may be a potential therapeutic agent for the treatment of chronic stress‑induced cognitive impairments, and its underlying molecular mechanism may be associated with the increased levels of hippocampal BDNF. Topics: Animals; Antidepressive Agents; Behavior, Animal; Brain-Derived Neurotrophic Factor; Cognition Disorders; Disease Models, Animal; Enzyme-Linked Immunosorbent Assay; Hippocampus; Male; Maze Learning; Rats; Rats, Wistar; Resveratrol; Stilbenes; Stress, Physiological | 2017 |
Evaluation of Antivascular Combretastatin A4 P Efficacy Using Supersonic Shear Imaging Technique of Ectopic Colon Carcinoma CT26.
A recent ultrasound imaging technique-shear wave elastography-showed its ability to image and quantify the mechanical properties of biological tissues, such as prostate or liver tissues. In the present study this technique was used to evaluate the relationship among tumor growth, stiffness and reduction of treatment with combretastatin (CA4 P) in allografted colon tumor CT26 in mice. During 12 d, CT26 tumor growth (n = 52) was imaged by ultrasound, and shear modulus was quantified, showing a good correlation between tumor volume and stiffness (r = 0.59). The treatment was initiated at d 12 and monitored every d during 4 d. Following the treatment, the tumor volume had decreased, while the elasticity of the tumor volume remained steady throughout the treatment. After segmentation using the shear modulus map, a detailed analysis showed a decrease in the stiffness after treatment. This reduction in the mechanical properties was shown to correlate with tissue reorganization, particularly, fibrosis and necrosis, assessed by histology. Topics: Animals; Antineoplastic Agents, Phytogenic; Colon; Colonic Neoplasms; Disease Models, Animal; Elasticity Imaging Techniques; Female; Mice; Mice, Inbred BALB C; Stilbenes; Treatment Outcome | 2017 |
Local intra-articular injection of resveratrol delays cartilage degeneration in C57BL/6 mice by inducing autophagy via AMPK/mTOR pathway.
Autophagy is an essential cellular homeostasis mechanism that was found to be compromised in aging and osteoarthritis (OA) cartilage. Previous studies showed that resveratrol can effectively regulate autophagy in other cells. The purpose of this study was to determine whether the chondroprotective effect of resveratrol was related to chondrocyte autophagy and to elucidate underlying mechanisms. OA model was induced by destabilization of the medial meniscus (DMM) in 10-week-old male mice. OA mice were treated with resveratrol with/without 3-MA for 8 weeks beginning 4 weeks after surgery. The local intra-articular injection of resveratrol delayed articular cartilage degradation in DMM-induced OA by OARSI scoring systems and Safranin O-fast green. Resveratrol treatment increased Unc-51-like kinase1, Beclin1, microtubule-associated protein light chain 3, hypoxia inducible factor-1α, phosphorylated AMPK, collagen-2A1, Aggrecan expressions, but decreased hypoxia inducible factor-2α, phosphorylated mTOR, matrix metalloproteinases13 and a disintegrin and metalloproteinase with thrombospondin motifs 5 expressions. The effects of resveratrol were obviously blunted by 3-MA except HIF and AMPK. These findings indicate that resveratrol intra-articular injection delayed articular cartilage degeneration and promoted chondrocyte autophagy in an experimental model of surgical DMM-induced OA, in part via balancing HIF-1α and HIF-2α expressions and thereby regulating AMPK/mTOR signaling pathway. Topics: AMP-Activated Protein Kinases; Animals; Autophagy; Cartilage; Chondrocytes; Disease Models, Animal; Hypoxia-Inducible Factor 1, alpha Subunit; Injections, Intra-Articular; Male; Mice, Inbred C57BL; Osteoarthritis; Resveratrol; Signal Transduction; Stilbenes; TOR Serine-Threonine Kinases | 2017 |
Resveratrol Ameliorates Cardiac Dysfunction by Inhibiting Apoptosis via the PI3K/Akt/FoxO3a Pathway in a Rat Model of Diabetic Cardiomyopathy.
The aim of this study was to explore the effect and mechanism of action of resveratrol (RSV) on cardiac function in diabetic cardiomyopathy (DCM). Hyperglycemia-induced apoptosis contributes to the pathogenic changes in DCM. RSV treatment inhibited high glucose-induced apoptosis of neonatal rat ventricular myocytes. Additionally, high glucose decreased cell viability, prevented serine-threonine kinase (Akt) and FoxO3a phosphorylation, and suppressed cytoplasmic translocation of FoxO3a. However, these effects of apoptosis were reversed by 10 μM of RSV. The PI3K inhibitor LY294002 abolished the RSV protective effect in vitro. RSV (5 or 50 mg·kg·d orally for 8 weeks) prevented the deterioration of cardiac function and structural cardiomyopathy in a streptozotocin-induced rat model of diabetes and reduced apoptosis in diabetic myocardium. Furthermore, it restored streptozotocin-impaired phosphorylation of Akt and FoxO3a (p-Akt and p-FoxO3a) and suppressed nuclear translocation of FoxO3a in vivo. Together, these data indicate that RSV has therapeutic potential against DCM by inhibiting apoptosis via the PI3K/Akt/FoxO3a pathway. Topics: Animals; Apoptosis; Diabetic Cardiomyopathies; Disease Models, Animal; Forkhead Box Protein O3; Male; Phosphatidylinositol 3-Kinases; Phosphoinositide-3 Kinase Inhibitors; Proto-Oncogene Proteins c-akt; Random Allocation; Rats; Rats, Sprague-Dawley; Resveratrol; Signal Transduction; Stilbenes | 2017 |
Resveratrol alleviates cerebral ischemia/reperfusion injury in rats by inhibiting NLRP3 inflammasome activation through Sirt1-dependent autophagy induction.
Resveratrol has been reported to protect against cerebral ischemia/reperfusion (I/R) injury in rats, but the underlying mechanism is unclear. In the current study, we examined whether resveratrol ameliorates cerebral I/R injury by inhibiting NLRP3 inflammasome-derived inflammation and whether autophagy is involved in this process. In addition, we explored the role of Sirt1 in resveratrol-mediated protective effects. To answer these questions, healthy male Sprague-Dawley rats were exposed to middle cerebral artery occlusion for 1h followed by 24h reperfusion. We found that cerebral I/R increased levels of activated NLRP3 inflammasome, caspase-1, IL-1β, and IL-18 and enhanced autophagy activity (ratio of LC3B-II/LC3B-I and p62/SQSTM1). Treatment with resveratrol, a specific Sirt1 agonist, attenuated I/R-induced NLRP3 inflammasome-derived inflammation but upregulated autophagy. Furthermore, resveratrol treatment clearly reduced cerebral infarct volume, decreased brain water content, and improved neurological scores. In addition, inhibition of autophagy using 3-MA intracerebroventricular injection blocked the inhibitory effect of resveratrol on NLRP3 inflammasome activation. Finally, Sirt1 knockdown with siRNA significantly blocked resveratrol-induced enhancement of autophagy activity and suppression of NLRP3 inflammasome activation. In conclusion, our results demonstrate that resveratrol protects against cerebral I/R injury by inhibiting NLRP3 inflammasome activation through Sirt1-dependent autophagy activity. Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Autophagy; Brain Ischemia; Cerebral Arteries; Disease Models, Animal; Humans; Inflammasomes; Male; NLR Family, Pyrin Domain-Containing 3 Protein; Rats; Rats, Sprague-Dawley; Reperfusion Injury; Resveratrol; Sirtuin 1; Stilbenes | 2017 |
Sirtuin 1 attenuates inflammation and hepatocellular damage in liver transplant ischemia/Reperfusion: From mouse to human.
Hepatic ischemia/reperfusion injury (IRI), an inevitable antigen-independent inflammation response in cadaveric liver transplantation, correlates with poor early graft function, rejection episodes, and contributes to donor organ shortage. Sirtuin 1 (SIRT1) is a histone deacetylase that may regulate inflammatory cell activity and manage liver function in IRI, though its functional role and clinical relevance remains to be elucidated. We investigated the efficacy of SIRT1 activation in a murine liver IRI model and verified the concept of putative SIRT1-mediated hepatoprotection in clinical liver transplantation. In the experimental arm, mice were subjected to 90 minutes of liver partial warm ischemia followed by 6 hours of reperfusion with or without adjunctive SIRT1 activation in vivo (resveratrol [Res]). In parallel, bone marrow-derived macrophage (BMDM) or spleen lymphocyte cultures were treated with Res. In the clinical arm, liver biopsies from 21 adult primary liver transplant patients (2 hours after reperfusion) were divided into "low" (n = 11) versus "high" (n = 10) SIRT1 expression groups, assessed by Western blots. Treatment with Res attenuated murine liver IRI while up-regulating SIRT1, suppressing leukocyte infiltration, and decreasing proinflammatory cytokine programs. SIRT1 silencing (small interfering RNA) in BMDM cultures enhanced inflammatory cytokine programs, whereas addition of Res decreased proinflammatory response in a SIRT1-dependent manner. In addition, Res decreased interferon γ production in liver-infiltrating and spleen lymphocyte cultures. Human liver transplants with high SIRT1 levels showed improved hepatocellular function and superior survival (P = 0.04), accompanied by lower proinflammatory cytokine profile. In conclusion, our translational study is the first to identify SIRT1 as a regulator of hepatocellular function in human liver transplant recipients under ischemia/reperfusion stress. By targeting innate and adaptive immune activation, manipulation of SIRT1 signaling should be considered as a novel means to combat inflammation in liver transplantation. Liver Transplantation 23 1282-1293 2017 AASLD. Topics: Adult; Allografts; Animals; Biopsy; Cells, Cultured; Cytokines; Disease Models, Animal; End Stage Liver Disease; Female; Follow-Up Studies; Graft Rejection; Graft Survival; Humans; Kaplan-Meier Estimate; Liver; Liver Transplantation; Lymphocytes; Macrophages; Male; Mice; Mice, Inbred C57BL; Middle Aged; Reperfusion Injury; Resveratrol; Signal Transduction; Sirtuin 1; Stilbenes; Young Adult | 2017 |
Resveratrol efficiently improves pulmonary function via stabilizing mast cells in a rat intestinal injury model.
Intestinal ischemia/reperfusion (IIR) leads to acute lung injury (ALI) distally by aggravating pulmonary oxidative stress. Resveratrol is effective in attenuating ALI through its antioxidant capacity. This study aimed to determine the effects of resveratrol on IIR-induced ALI and to explore the role of mast cells (MCs) activation in a rat model of IIR.. Adult Sprague-Dawley rats were subjected to IIR by occluding the superior mesenteric artery for 60min followed by 4-hour reperfusion. Resveratrol was intraperitoneally injected at a dose of 15mg/kg for 5days before IIR. MCs stabilizer/inhibitor cromolyn sodium and degranulator compound 48/80 were used to explore the interaction between resveratrol and MCs. Lung tissues were collected for pathological detection and MCs staining. Pulmonary protein expression of surfactant protein-C (SP-C), tryptase, p47. At the end of IIR, lung injury was significantly increased and was associated with decreased expression of SP-C and increased lung oxidative stress. Increased inflammation as well as activation of MCs was also observed in the lungs after IIR. All these changes were prevented or reversed by resveratrol pretreatment or MCs inhibition with cromolyn sodium. However, these protective effects of resveratrol or cromolyn sodium were reduced by MCs degranulator compound 48/80.. These findings reveal that resveratrol attenuates IIR-induced ALI by reducing NADPH oxidase protein expression and inflammation through stabilizing MCs. Topics: Acute Lung Injury; Animals; Antioxidants; Disease Models, Animal; Intestinal Diseases; Male; Mast Cells; NADPH Oxidases; Oxidative Stress; Rats; Rats, Sprague-Dawley; Reperfusion Injury; Resveratrol; Stilbenes | 2017 |
Treatment with antioxidants ameliorates oxidative damage in a mouse model of propionic acidemia.
Oxidative stress contributes to the pathogenesis of propionic acidemia (PA), a life threatening disease caused by the deficiency of propionyl CoA-carboxylase, in the catabolic pathway of branched-chain amino acids, odd-number chain fatty acids and cholesterol. Patients develop multisystemic complications including seizures, extrapyramidal symptoms, basal ganglia deterioration, pancreatitis and cardiomyopathy. The accumulation of toxic metabolites results in mitochondrial dysfunction, increased reactive oxygen species and oxidative damage, all of which have been documented in patients' samples and in a hypomorphic mouse model. Here we set out to investigate whether treatment with a mitochondria-targeted antioxidant, MitoQ, or with the natural polyphenol resveratrol, which is reported to have antioxidant and mitochondrial activation properties, could ameliorate the altered redox status and its functional consequences in the PA mouse model. The results show that oral treatment with MitoQ or resveratrol decreases lipid peroxidation and the expression levels of DNA repair enzyme OGG1 in PA mouse liver, as well as inducing tissue-specific changes in the expression of antioxidant enzymes. Notably, treatment decreased the cardiac hypertrophy marker BNP that is found upregulated in the PA mouse heart. Overall, the results provide in vivo evidence to justify more in depth investigations of antioxidants as adjuvant therapy in PA. Topics: Administration, Oral; Amino Acids, Branched-Chain; Animals; Antioxidants; Disease Models, Animal; Heart; Humans; Lipid Peroxidation; Mice; Organophosphorus Compounds; Oxidative Stress; Propionic Acidemia; Resveratrol; Stilbenes; Ubiquinone | 2017 |
Maternal Resveratrol Treatment Reduces the Risk of Mammary Carcinogenesis in Female Offspring Prenatally Exposure to 2,3,7,8-Tetrachlorodibenzo-p-Dioxin.
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) presents adverse effects on breast development/carcinogenesis. This study aimed to identify the ability of resveratrol (Res) to modify the adverse effects of TCDD in a female offspring. Pregnant female Wistar rats were allocated into four groups: TCDD, TCDD + Res, Res, and control. TCDD (1 μg/kg) was orally administered as a single dose on gestational day (GD) 15, and Res was orally administered during GD10-21 and lactation at a dose of 20 mg/kg/day. Female offsprings were euthanized on a specific postnatal day (PND) for hormonal analysis (PND 22, 48-51), vaginal opening (PND 30-48), and mammary gland morphology (PND 22). Other females received two doses of N-nitroso-N-methylurea (MNU, 50 mg/kg) on PNDs 22 and 51 and were euthanized on PND 24 (Ki-67, ER-α and apoptosis indexes or molecular analysis) or PND 180 (tumor assay). TCDD exposure altered the development of the mammary structure while these alterations were partially improved by maternal Res. Two days after first MNU administration, some genes associated with apoptosis were altered in the mammary tissue from the TCDD group (Bax and Caspase 3 down- and Bcl-2 upregulated) but were also partially reestablished by maternal Res. Mammary gland bcl-2 and bcl-xl proteins expression was increased while the apoptosis index was reduced by TCDD exposure but restored by maternal Res. An increase in number of mammary tumors was observed in female offspring from the TCDD group compared to the other groups. The results indicate that most mammary changes induced in female offspring through TCDD exposure or after MNU administrations were reduced by maternal resveratrol treatment. Topics: Animals; Antineoplastic Agents, Phytogenic; Breast Neoplasms; Cell Transformation, Neoplastic; Disease Models, Animal; Female; Hormones; Male; Maternal Exposure; Polychlorinated Dibenzodioxins; Pregnancy; Prenatal Exposure Delayed Effects; Rats; Resveratrol; Stilbenes; Teratogens; Tumor Burden | 2017 |
Attenuation of Multiple Organ Damage by Continuous Low-Dose Solvent-Free Infusions of Resveratrol after Severe Hemorrhagic Shock in Rats.
Therapeutic effects of continuous intravenous infusions of solvent-free low doses of resveratrol on organ injury and systemic consequences resulting from severe hemorrhagic shock in rats were studied. Hemorrhagic shock was induced by withdrawing arterial blood until a mean arterial blood pressure (MAP) of 25-30 mmHg was reached. Following a shock phase of 60 min, rats were resuscitated with the withdrawn blood plus lactated Ringer's. Resveratrol (20 or 60 μg/kg × h) was continuously infused intravenously starting with the resuscitation phase (30 min) and continued until the end of the experiment (total treatment time 180 min). Animals of the shock control group received 0.9% NaCl solution. After the observation phase (150 min), rats were sacrificed. Resveratrol significantly stabilized the MAP and peripheral oxygen saturation after hemorrhagic shock, decreased the macroscopic injury of the small intestine, significantly attenuated the shock-induced increase in tissue myeloperoxidase activity in the small intestine, liver, kidney and lung, and diminished tissue hemorrhages (particularly in the small intestine and liver) as well as the rate of hemolysis. Already very low doses of resveratrol, continuously infused during resuscitation after severe hemorrhagic shock, can significantly improve impaired systemic parameters and attenuate multiple organ damage in rats. Topics: Animals; Blood Glucose; Blood Pressure; Disease Models, Animal; Dose-Response Relationship, Drug; Hematocrit; Hemoglobins; Intestine, Small; Isotonic Solutions; Kidney; Lactic Acid; Liver; Lung; Male; Multiple Organ Failure; Peroxidase; Rats; Rats, Wistar; Resuscitation; Resveratrol; Ringer's Lactate; Shock, Hemorrhagic; Sodium Chloride; Stilbenes | 2017 |
The effect of exercise, resveratrol or their combination on Sarcopenia in aged rats via regulation of AMPK/Sirt1 pathway.
Sarcopenia is an age-related syndrome characterized by progressive loss of muscle mass and function. Exercise is an important strategy to prolong life and increase muscle mass, and resveratrol has been shown a variety beneficial effects on skeletal muscle. In the present study, we investigated the potential efficacy of using short-term exercise (six weeks), resveratrol (150mg/kg/day), or combined exercise+resveratrol (150mg/kg/day) on gastrocnemius muscle mass, grip strength, cross-sectional area and microscopic morphology in aged rats, and explored the potential mechanism at the apoptosis level. Six months old SD rats were used as young control group and 24months old SD rats were adopted as aged group. After six weeks intervention, the data provide evidence that exercise, resveratrol or their combination significantly increase the relative grip strength and muscle mass in aged rats (P<0.05). Electron microscopy discovered a significant increase in sarcomere length, I-band and H-zone in aged rats (P<0.05), and exercise, resveratrol or their combination significantly reduced the increasement (P<0.05). Moreover, light microscopy revealed a significant increase on Feret's diameter and cross-sectional area (CSA) in aged rats (P<0.05), but exercise and resveratrol did not show significant effects on them (P>0.05). Furthermore, exercise, resveratrol or their combination significantly increased the expression of p-AMPK and SIRT1, decreased the expression of acetyl P53 and Bax/Bcl-2 ratio in aged rats (P<0.05). These findings show that aged rats show significant changes in gastrocnemius muscle morphology and ultrastructure, and the protective effects of exercise, resveratrol and their combination are probably associated with anti-apoptotic signaling pathways through activation of AMPK/Sirt1. Topics: Age Factors; Aging; AMP-Activated Protein Kinases; Animals; Apoptosis; bcl-2-Associated X Protein; Combined Modality Therapy; Disease Models, Animal; Exercise Therapy; Male; Muscle Fibers, Skeletal; Muscle Strength; Muscle, Skeletal; Physical Conditioning, Animal; Proto-Oncogene Proteins c-bcl-2; Rats, Sprague-Dawley; Resveratrol; Sarcopenia; Signal Transduction; Sirtuin 1; Stilbenes; Time Factors; Tumor Suppressor Protein p53 | 2017 |
A study of Sirt1 regulation and the effect of resveratrol on synoviocyte invasion and associated joint destruction in rheumatoid arthritis.
The aim of the current study was to investigate the role and mechanism of sirtuin 1 (Sirt1) in the regulation of synovial cell invasion and joint destruction in rheumatoid arthritis (RA). The Sirt1 protein and mRNA levels in fibroblast‑like synoviocytes (FLS) isolated from RA synovial tissues were compared with normal tissues by western blot and reverse transcription‑polymerase chain reaction. RA FLS were then treated with the Sirt1 agonist resveratrol (1, 3 and 10 µg/ml) for 48 h, and their invasiveness and expression of matrix metalloproteinase (MMP) 1 and MMP13 protein and mRNA were measured. Furthermore, a collagen‑induced arthritis (CIA) rat model was established and the rats were divided into a model group, and low‑ and high‑dose resveratrol (2.5 and 10 mg/kg/day) groups to receive an intraperitoneal injection of resveratrol for 42 consecutive days. The joint morphology, arthritis index (AI), and MMP1 and MMP13 expression in synovial tissues was monitored. The Sirt1 protein and mRNA levels in RA FLS were significantly lower compared with normal FLS (P<0.01). The resveratrol treatment significantly inhibited the invasive ability of RA FLS (P<0.01) and reduced MMP1 and MMP13 expression (P<0.01). The AI in low‑ and high‑dose groups was significantly lower compared with the model group from day 28 (P<0.01). Resveratrol also reduced the swelling and damage and decreased MMP1 and MMP13 expression levels in CIA rats (P<0.01). The resveratrol‑induced upregulation of Sirt1 in RA FLS may significantly inhibit the invasion of these cells and reduce the degree of joint damage, which may be mediated through the inhibition of MMP1 and MMP13 expression. The present results suggested a regulatory role for Sirt1 in RA pathogenesis, and demonstrated the beneficial effects of resveratrol, which may have potential as an alternative therapeutic strategy for the treatment of patients with RA. Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Arthritis, Experimental; Arthritis, Rheumatoid; Disease Models, Animal; Gene Expression; Joints; Matrix Metalloproteinases; Rats; Resveratrol; RNA, Messenger; Sirtuin 1; Stilbenes; Synoviocytes | 2017 |
A Novel Benzocoumarin-Stilbene Hybrid as a DNA ligase I inhibitor with in vitro and in vivo anti-tumor activity in breast cancer models.
Existing cancer therapies are often associated with drug resistance and toxicity, which results in poor prognosis and recurrence of cancer. This necessitates the identification and development of novel therapeutics against existing as well as novel cellular targets. In this study, a novel class of Benzocoumarin-Stilbene hybrid molecules were synthesized and evaluated for their antiproliferative activity against various cancer cell lines followed by in vivo antitumor activity in a mouse model of cancer. The most promising molecule among the series, i.e. compound (E)-4-(3,5-dimethoxystyryl)-2H-benzo[h]chromen-2-one (19) showed maximum antiproliferative activity in breast cancer cell lines (MDA-MB-231 and 4T1) and decreased the tumor size in the in-vivo 4T1 cell-induced orthotopic syngeneic mouse breast cancer model. The mechanistic studies of compound 19 by various biochemical, cell biology and biophysical approaches suggest that the compound binds to and inhibits the human DNA ligase I enzyme activity that might be the cause for significant reduction in tumor growth and may constitute a promising next-generation therapy against breast cancers. Topics: Animals; Anthracenes; Antineoplastic Agents; Apoptosis; Breast Neoplasms; Cell Cycle Checkpoints; Cell Line, Tumor; Cell Proliferation; Disease Models, Animal; DNA Damage; DNA Ligase ATP; Enzyme Inhibitors; Female; Humans; Mice; Molecular Structure; Signal Transduction; Stilbenes; Xenograft Model Antitumor Assays | 2017 |
The Effects of Resveratrol on Inflammation and Oxidative Stress in a Rat Model of Chronic Obstructive Pulmonary Disease.
Oxidative stress and inflammation are hypothesized to contribute to the pathogenesis of chronic obstructive pulmonary disease (COPD). Resveratrol (trans-3,5,4'-trihydroxystilbene) is known for its antioxidant and anti-inflammatory properties. The study aimed to investigate the effects of resveratrol in a rat model with COPD on the regulation of oxidative stress and inflammation via the activation of Sirtuin1 (SIRTl) and proliferator-activated receptor-γ coactivator-1α (PGC-1α). Thirty Wistar rats were randomly divided into three groups: control group, COPD group and resveratrol intervention group. The COPD model was established by instilling with lipopolysaccharide (LPS) and challenging with cigarette smoke (CS). The levels of interleukin-6 (IL-6) and interleukin-8 (IL-8) in serum were measured. The levels of malondialdehyde (MDA) and the activity of superoxide dismutase (SOD) were measured. The expression levels of SIRT1 and PGC-1α in the lung tissues were examined by immunohistochemistry as well as real-time reverse transcriptase polymerase chain reaction (real-time RT-PCR) and western blotting analysis. After the treatment with resveratrol (50 mg/kg), compared with the COPD group, alleviation of inflammation and reconstruction in the small airways of the lungs were seen. Resveratrol might be correlated not only with the lower level of MDA and the higher activity of SOD, but also with the upregulation of SIRT1 and PGC-1α expression. Resveratrol treatment decreased serum levels of IL-6 and IL-8. Our findings indicate that resveratrol had a therapeutic effect in our rat COPD model, which is related to the inhibition of oxidative stress and inflammatory response. The mechanism may be related to the activation and upgrading of the SIRT1/PGC-1α signaling pathways. Thus resveratrol might be a therapeutic modality in COPD. Topics: Animals; Anti-Inflammatory Agents; Antioxidants; Bronchoalveolar Lavage Fluid; Disease Models, Animal; Gene Expression Regulation; Inflammation; Interleukin-6; Interleukin-8; Lipopolysaccharides; Lung; Malondialdehyde; Oxidative Stress; Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha; Pulmonary Disease, Chronic Obstructive; Rats; Resveratrol; Signal Transduction; Sirtuin 1; Stilbenes; Superoxide Dismutase | 2017 |
Effects of Hypobaric Hypoxia on Rat Retina and Protective Response of Resveratrol to the Stress.
High-altitude retinopathy represents retinal functional changes associated with environmental challenges imposed by hypobaric hypoxia, but the detailed cellular and molecular mechanism underlying this process remains unclear. Our current investigation was to explore the effect of hypobaric hypoxia on the rat retina and determine whether resveratrol has a protective efficacy on the hypoxic damage to the retina. Experiment rats were randomly grouped as the control group, hypoxia group and resveratrol intervention group. The hypoxia group and the resveratrol intervention group were maintained in a low-pressure oxygen cabin, and the resveratrol intervention group was given daily intraperitoneal injections with resveratrol. We found that hypobaric hypoxia increased thioredoxin 1 (Trx1) and thioredoxin 2 (Trx2) expression in retinas, and resveratrol treatment significantly reversed these changes ( Topics: Altitude Sickness; Animals; Antioxidants; Apoptosis; Cytokines; Disease Models, Animal; Humans; Male; Oxidative Stress; Rats; Rats, Sprague-Dawley; Resveratrol; Retina; Retinal Diseases; Stilbenes; Thioredoxins | 2017 |
Resveratrol ameliorated the behavioral deficits in a mouse model of post-traumatic stress disorder.
Post-traumatic stress disorder (PTSD) has become a major psychiatric and neurological issue. Resveratrol is shown to be effective on depression and anxiety. However, the mechanism of anti-PTSD-like effects of resveratrol remains unknown. The present study aimed to explore the possible molecular and cellular mechanisms underlying the anti-PTSD-like effects of resveratrol. Following a 2-day exposure to inescapable electric foot shocks, animals were administered resveratrol (10, 20, and 40mg/kg, i.g.) during the behavioral tests, which included contextual freezing measurement, elevated plus maze test, staircase test, and open field test. Similar to the positive control drug sertraline (15mg/kg, i.g.), the behavioral deficits of stressed mice were blocked by resveratrol (20 and 40mg/kg, i.g.), which reversed the increased freezing time in contextual freezing measurement and the number of rears in the staircase test and blocked the decrease in time and number of entries in open arms in the elevated plus maze test without affecting the locomotor activity in the open field test. In addition, resveratrol (20 and 40mg/kg, i.g.) antagonized the decrease in the levels of progesterone and allopregnanolone in the prefrontal cortex and hippocampus. Furthermore, long-term resveratrol attenuated the dysfunctions of hypothalamic-pituitary-adrenal axis simultaneously. Collectively, the evidence indicated that the anti-PTSD-like effects of resveratrol were associated with the normalization of biosynthesis of neurosteroids in the brain and prevention of the hypothalamic-pituitary-adrenal axis dysfunction. Topics: Animals; Antioxidants; Disease Models, Animal; Dose-Response Relationship, Drug; Immobilization; Male; Maze Learning; Mice; Mice, Inbred ICR; Resveratrol; Stilbenes; Stress Disorders, Post-Traumatic | 2017 |
Upregulation of FcγRIIB by resveratrol via NF-κB activation reduces B-cell numbers and ameliorates lupus.
Resveratrol, an anti-inflammatory agent, can inhibit pro-inflammatory mediators by activating Sirt1, which is a class III histone deacetylase. However, whether resveratrol can regulate inhibitory or anti-inflammatory molecules has been less studied. FcγRIIB, a receptor for IgG, is an essential inhibitory receptor of B cells for blocking B-cell receptor-mediated activation and for directly inducing apoptosis of B cells. Because mice deficient in either Sirt1 or FcγRIIB develop lupus-like diseases, we investigated whether resveratrol can alleviate lupus through FcγRIIB. We found that resveratrol enhanced the expression of FcγRIIB in B cells, resulting in a marked depletion of plasma cells in the spleen and notably in the bone marrow, thereby decreasing serum autoantibody titers in MRL/lpr mice. The upregulation of FcγRIIB by resveratrol involved an increase of Sirt1 protein and deacetylation of p65 NF-κB (K310). Moreover, increased binding of phosphor-p65 NF-κB (S536) but decreased association of acetylated p65 NF-κB (K310) and phosphor-p65 NF-κB (S468) to the -480 promoter region of Fcgr2b gene was responsible for the resveratrol-mediated enhancement of FcγRIIB gene transcription. Consequently, B cells, especially plasma cells, were considerably reduced in MRL/lpr mice, leading to improvement of nephritis and prolonged survival. Taken together, we provide evidence that pharmacological upregulation of FcγRIIB expression in B cells via resveratrol can selectively reduce B cells, decrease serum autoantibodies and ameliorate lupus nephritis. Our findings lead us to propose FcγRIIB as a new target for therapeutic exploitation, particularly for lupus patients whose FcγRIIB expression levels in B cells are downregulated. Topics: Animals; Anti-Inflammatory Agents; Autoantibodies; B-Lymphocytes; Cell Membrane; Disease Models, Animal; Gene Expression Regulation; Lupus Erythematosus, Systemic; Lupus Nephritis; Mice; Mice, Inbred MRL lpr; Models, Biological; Myeloid Cells; NF-kappa B; Promoter Regions, Genetic; Receptors, IgG; Resveratrol; Splenomegaly; Stilbenes; Survival Rate; Transcriptional Activation | 2017 |
Protective effects of resveratrol on mitochondrial function in the hippocampus improves inflammation-induced depressive-like behavior.
Growing evidence suggests that inflammatory processes may be involved in depressive disorders. Inflammation is known to induce mitochondrial dysfunction in the nervous system. However, whether mitochondrial dysfunction is involved in the occurrence of inflammation-induced depressive-like behavior remains to be investigated. The present study aims to firstly, clarify whether mitochondrial dysfunction contributes to lipopolysaccharide (LPS)-induced depression-like behavior in mice and secondly, determine whether the anti-oxidant resveratrol alleviates inflammation-induced depressive-like behavior through the prevention of mitochondrial dysfunction in the hippocampus. We found that the administration of LPS led to mitochondrial oxidative stress and dysfunction as evidenced by increased mitochondrial superoxide production and decreased mitochondrial membrane potential and ATP production in the hippocampus. These effects were attenuated by intracerebroventricular (ICV) Injection of the mitochondria-targeted antioxidant Mito-TEMPO. LPS-treated mice displayed depressive-like behaviors as evidenced by reduced sucrose preference, increased immobility time and decreased struggling time in the forced swimming test. Both Mito-TEMPO and resveratrol could significantly improve the LPS-induced depressive-like behaviors. In contrast, ICV Injection of rotenone, the mitochondrial respiratory chain inhibitor, induced mitochondrial oxidative stress and dysfunction in the hippocampus, and resulted in depressive-like behaviors. Moreover, resveratrol alleviated the LPS-induced apoptosis of hippocampal cells. The antidepressant action of resveratrol was accomplished through the interruption of mitochondrial oxidative stress and the prevention of cell apoptosis in the hippocampus. These findings support the potential for resveratrol as a possible pharmacological agent for depression treatment in the future. Topics: Animals; Antidepressive Agents; Antioxidants; Apoptosis; Cyclic N-Oxides; Depression; Disease Models, Animal; Food Preferences; Hippocampus; Inflammation; Male; Membrane Potential, Mitochondrial; Mice; Mice, Inbred ICR; Mitochondria; Resveratrol; Rotenone; Stilbenes; Swimming; Uncoupling Agents | 2017 |
Resveratrol Ameliorates Retinal Ischemia/Reperfusion Injury in C57BL/6J Mice via Downregulation of Caspase-3.
Ischemia/reperfusion (I/R) injury induces apoptosis in retinal ganglion cells (RGCs). Resveratrol (Res) is a potent natural antioxidant with beneficial effects in many ocular diseases, such as age-related macular degeneration, diabetic retinopathy, and glaucoma. Because caspase-3 expression is highly correlated with activation of the apoptotic pathway, the present study aimed to determine whether Res regulates the expression of caspase-3 using an I/R retinal injury mouse model.. Male C57BL/6J mice were injected with Res for 2 consecutive days before I/R retinal injury. I/R retinal injury was induced by increasing the intraocular pressure for 1 h. Res was then injected for 3 consecutive days. Changes in retinal morphology were monitored for 3 days after injury by histochemistry using hematoxylin and eosin staining. mRNAs and proteins were extracted 2 days after injury. The expression levels of caspase-8 and caspase-3 mRNA and protein were determined using reverse-transcriptase polymerase chain reaction (RT-PCR) and western blot analyses.. I/R injury induced declines in retinal thickness and number of RGCs during 5 days after injury. Caspase-8 and caspase-3 mRNA and protein activation increased. Res treatment reduced the significant loss of retinal morphology and downregulated the expression of mRNA and activation of caspase-8 and caspase-3 protein.. The observed changes in retinal morphology suggest that I/R injury promotes retinal degeneration. Increased expression of caspase-8 and caspase-3 mRNA indicates apoptosis activation. Res, however, suppresses apoptosis via downregulation of caspase-8 and caspase-3 expression. Topics: Animals; Antioxidants; Apoptosis; Blotting, Western; Caspase 3; Caspase 8; Disease Models, Animal; Down-Regulation; Gene Expression Regulation, Enzymologic; In Situ Nick-End Labeling; Injections, Intraperitoneal; Male; Mice; Mice, Inbred C57BL; Real-Time Polymerase Chain Reaction; Reperfusion Injury; Resveratrol; Retinal Degeneration; RNA, Messenger; Stilbenes | 2017 |
Assessment of a nutritional supplement containing resveratrol, prebiotic fiber, and omega-3 fatty acids for the prevention and treatment of mild traumatic brain injury in rats.
Children and adolescents have the highest rates of traumatic brain injury (TBI), with mild TBI (mTBI) accounting for most of these injuries. Adolescents are particularly vulnerable and often suffer from post-injury symptomologies that may persist for months. We hypothesized that the combination of resveratrol (RES), prebiotic fiber (PBF), and omega-3 fatty acids (docosahexaenoic acid (DHA)) would be an effective therapeutic supplement for the mitigation of mTBI outcomes in the developing brain. Adolescent male and female Sprague-Dawley rats were randomly assigned to the supplement (3S) or control condition, which was followed by a mTBI or sham insult. A behavioral test battery designed to examine symptomologies commonly associated with mTBI was administered. Following the test battery, tissue was collected from the prefrontal cortex (PFC) and primary auditory cortex for Golgi-Cox analysis of spine density, and for changes in expression of 6 genes (Aqp4, Gfap, Igf1, Nfl, Sirt1, and Tau). 3S treatment altered the behavioral performance of sham animals indicating that dietary manipulations modify premorbid characteristics. 3S treatment prevented injury-related deficits in the longer-term behavior measures, medial prefrontal cortex (mPFC) spine density, and levels of Aqp4, Gfap, Igf1, Nfl, and Sirt1 expression in the PFC. Although not fully protective, treatment with the supplement significantly improved post-mTBI function and warrants further investigation. Topics: Animals; Animals, Newborn; Brain; Brain Injuries, Traumatic; Dietary Supplements; Disease Models, Animal; Exploratory Behavior; Fatty Acids, Omega-3; Female; Gene Expression Regulation; Male; Maze Learning; Memory, Short-Term; Neurofibromatosis 1; Prebiotics; Psychomotor Performance; Rats; Rats, Sprague-Dawley; Resveratrol; Stilbenes; Swimming | 2017 |
Neuronal SIRT1 (Silent Information Regulator 2 Homologue 1) Regulates Glycolysis and Mediates Resveratrol-Induced Ischemic Tolerance.
Resveratrol, at least in part via SIRT1 (silent information regulator 2 homologue 1) activation, protects against cerebral ischemia when administered 2 days before injury. However, it remains unclear if SIRT1 activation must occur, and in which brain cell types, for the induction of neuroprotection. We hypothesized that neuronal SIRT1 is essential for resveratrol-induced ischemic tolerance and sought to characterize the metabolic pathways regulated by neuronal Sirt1 at the cellular level in the brain.. We assessed infarct size and functional outcome after transient 60 minute middle cerebral artery occlusion in control and inducible, neuronal-specific SIRT1 knockout mice. Nontargeted primary metabolomics analysis identified putative SIRT1-regulated pathways in brain. Glycolytic function was evaluated in acute brain slices from adult mice and primary neuronal-enriched cultures under ischemic penumbra-like conditions.. Resveratrol-induced neuroprotection from stroke was lost in neuronal. Our data demonstrate that resveratrol requires neuronal SIRT1 to elicit ischemic tolerance and identify a novel role for SIRT1 in the regulation of glycolytic function in brain. Identification of robust neuroprotective mechanisms that underlie ischemia tolerance and the metabolic adaptations mediated by SIRT1 in brain are crucial for the translation of therapies in cerebral ischemia and other neurological disorders. Topics: Animals; Brain Ischemia; Disease Models, Animal; Glycolysis; Mice; Mice, Knockout; Neurons; Neuroprotective Agents; Resveratrol; Sirtuin 1; Stilbenes; Stroke | 2017 |
3'-Hydroxypterostilbene Suppresses Colitis-Associated Tumorigenesis by Inhibition of IL-6/STAT3 Signaling in Mice.
3'-Hydroxypterostilbene (trans-3,5-dimethoxy-3',4'-hydroxystilbene) presents in Sphaerophysa salsula, Pterocarpus marsupium, and honey bee propolis and has been reported to exhibit several biological activities. Herein, we aimed to explore the chemopreventive effects of dietary 3'-hydroxypterostilbene and underlying molecular mechanisms on colitis-associated cancer using the azoxymethane (AOM)/dextran sodium sulfate (DSS) model. 3'-Hydroxypterostilbene administration effectively ameliorated the colon shortening and number of tumors in AOM/DSS-treated mice (3.2 ± 1.2 of the high-dose treatment versus 13.8 ± 5.3 of the AOM/DSS group, p < 0.05). Molecular analysis exhibited the anti-inflammatory activity of 3'-hydroxypterostilbene by a significant decrease in the levels of inducible nitric oxide synthase, cyclooxygenase-2, and interleukin-6 (IL-6) (p < 0.05). Moreover, dietary 3'-hydroxypterostilbene also significantly diminished IL-6/signal transducer and activator of transcription signaling and restored colonic suppressor of cytokine signaling 3 levels in the colonic tissue of mice (p < 0.05). Collectively, these results demonstrated for the first time the in vivo chemopreventive efficacy and molecular mechanisms of dietary 3'-hydroxypterostilbene against colitis-associated colonic tumorigenesis. Topics: Animals; Anticarcinogenic Agents; Carcinogenesis; Colitis; Colonic Neoplasms; Cyclooxygenase 2; Disease Models, Animal; Humans; Interleukin-6; Male; Mice; Mice, Inbred ICR; Signal Transduction; STAT3 Transcription Factor; Stilbenes | 2017 |
SIRT1 activation by resveratrol reduces brain edema and neuronal apoptosis in an experimental rat subarachnoid hemorrhage model.
Early brain injury is considered to be a major risk that is related to the prognosis of subarachnoid hemorrhage (SAH). In SAH model rats, brain edema and apoptosis have been closely related with death rate and neurological function. Sirtuin 1 (SIRT1) was reported to be involved in apoptosis in cerebral ischemia and brain tumor formation through p53 deacetylation. The present study aimed to evaluate the role of SIRT1 in a rat endovascular perforation model of SAH. The SIRT1 activator resveratrol (RES) was administered 48 h prior to SAH induction and the SIRT1 inhibitor Sirtinol (SIR) was used to reverse the effects of RES on SIRT1 expression. Mortality rate, neurological function and brain water content were measured 24 h post‑SAH induction. Proteins associated with the blood brain barrier (BBB), apoptosis and SIRT1 in the cortex, such as zona occludens 1 (ZO‑1), occludin, claudin‑5, SIRT1, p53 and cleaved caspase3 were investigated. mRNA expression of the p53 downstream molecules including Bcl‑associated X protein, P53 upregulated modulator of apoptosis, Noxa and BH3 interacting‑domain death agonist were also investigated. Neuronal apoptosis was also investigated by immunofluorescence. RES pretreatment reduced the mortality rate and improved neurological function, which was consistent with reduced brain water content and neuronal apoptosis; these effects were partially reversed by co‑treatment with SIR. SIRT1 may reduce the brain water content by improvement of dysfunctional BBB permeability, and protein analysis revealed that both ZO‑1, occludin and claudin‑5 may be involved, and these effects were reversed by SIRT1 inhibition. SIRT1 may also affect apoptosis post‑SAH through p53 deacetylation, and the analysis of p53 related downstream pro‑apoptotic molecules supported this hypothesis. Localization of neuron specific apoptosis revealed that SIRT1 may regulate neuronal apoptosis following SAH. SIRT1 may also ease brain edema and neuronal protection through BBB improvement and p53 deacetylation. SIRT1 activators such as RES may have the potential to improve the prognosis of patients with SAH and clinical research should be investigated further. Topics: Animals; Apoptosis; Brain Edema; Caspase 3; Disease Models, Animal; Fluorescent Antibody Technique; Male; Mortality; Neurons; Neuroprotection; Occludin; Rats; Resveratrol; RNA, Messenger; Sirtuin 1; Stilbenes; Subarachnoid Hemorrhage; Zonula Occludens-1 Protein | 2017 |
Suppression of Sirtuin-1 Increases IL-6 Expression by Activation of the Akt Pathway During Allergic Asthma.
A growing number of studies have demonstrated that the activity and expression level of sirtuin-1 (SIRT1) are decreased in asthma patients; however, the mechanisms underlying decreased SIRT1 expression and function are still not completely understood. Interleukin (IL)-6 plays important roles in inflammation during allergic asthma. In this study, we examined whether loss of SIRT1 activity regulated the expression of IL-6 and further verified the underlying mechanisms.. The human airway epithelial cell line 16HBE was used to test the effects of the SIRT1 inhibitor (salermide) on expression of IL-6. IL-6 mRNA and protein expression were assessed with real-time polymerase chain reaction (PCR), immunochemistry, and ELISA. OVA-challenged mice were used as an asthma model to investigate the effect of SIRT1 activation on IL-6 and relative Akt phosphorylation level.. We found that inhibition of SIRT1 increased IL-6 mRNA and protein levels in a time-dependent manner, which was accompanied by increased Akt pathway activation in 16HBE cells. Furthermore activation of Akt showed upregulated expression of the IL-6 protein whereas Akt inhibitor, LY294002 or Akt siRNA significantly inhibited SIRT1-regulated IL-6 expression. Conversely, activation of SIRT1 inhibited Akt activation and IL-6 expression in an asthmatic mice model and 16HBE cells.. Our results indicate the potential role of SIRT1 in regulating inflammation by modulation of IL-6 expression in an Akt-dependent manner during allergic asthma. Topics: Animals; Asthma; Blotting, Western; Cell Line; Chromones; Disease Models, Animal; Enzyme Inhibitors; Enzyme-Linked Immunosorbent Assay; Epithelial Cells; Humans; Immunohistochemistry; Interleukin-6; Lung; Morpholines; Naphthols; Phenylpropionates; Proto-Oncogene Proteins c-akt; Resveratrol; RNA, Small Interfering; Signal Transduction; Sirtuin 1; Stilbenes | 2017 |
Prolonged exposure of resveratrol induces reactive superoxide species-independent apoptosis in murine prostate cells.
Nitric oxide, a signaling molecule, inhibits mitochondrial respiration by binding with cytochrome c oxidase, resulting in elevated production of reactive superoxide species (reactive oxygen and nitrogen) in the mitochondria and increased susceptibility to cell death. Generation of mitochondrial superoxide species can be suppressed by natural compounds such as resveratrol, a dietary polyphenol found in the skin of red fruits. In various cancer cells, resveratrol shows anti-oxidant and cancer preventive properties. Since, the effect of resveratrol on reactive superoxide species-independent apoptosis in prostate cancer cells is not well illustrated; therefore, we investigated this phenomenon in TRAMP murine prostate cancer cells. To accomplish this, TRAMP cells were incubated with resveratrol, resveratrol + DETA-NONOate, DETA-NONOate (nitric oxide donor), resveratrol + L-NMMA, or L-NMMA (nitric oxide inhibitor) for 48 h, and reactive superoxide species in the mitochondria and culture supernatant were measured. In addition, the mitochondrial membrane potential, cell viability, expression of apoptotic markers (Bax and Bcl2), γ-H2A.x, p53, and caspase-3 was determined. We found that resveratrol suppressed reactive superoxide species such as reactive oxygen species in the mitochondria and nitric oxide in culture supernatant when compared to the DETA-NONOate treatment and disrupted the mitochondrial membrane potential. Resveratrol also reduced cell viability, altered the expression of apoptotic markers (Bax and Bcl2), and increased expression of γ-H2A.x (indicative marker of DNA fragmentation) and p53 (a critical DNA damage response protein). However, there was no appreciable modulation of the caspase-3. Therefore, our data suggest that resveratrol induces superoxide species-independent apoptosis and may act as a therapeutic agent against prostate cancer. Topics: Animals; Antioxidants; Apoptosis; Cell Line, Tumor; Disease Models, Animal; Male; Membrane Potential, Mitochondrial; Mice; Prostatic Neoplasms; Reactive Oxygen Species; Resveratrol; Stilbenes | 2017 |
Resveratrol improves urinary dysfunction in rats with chronic prostatitis and suppresses the activity of the stem cell factor/c-Kit signaling pathway.
Chronic prostatitis (CP) is a common urological disorder, with bladder voiding dysfunction being the primary clinical manifestation. Resveratrol is polyphenolic compound isolated from numerous plants, with widely‑reported anti-inflammatory properties. The present study aimed to investigate whether resveratrol may improve overactive bladder in rats with CP and to investigate the underlying molecular mechanisms. Furthermore, the potential pharmacological synergy between resveratrol and solifenacin was also investigated as a potential treatment for CP. Following the successful establishment of a rat model of CP by subcutaneously injecting DPT vaccine, rats were treated with resveratrol or a combination of resveratrol + solifenacin. Bladder pressure and volume tests were performed to investigate the effect of resveratrol and solifenacin on urinary dysfunction in rats with chronic prostatitis. Western blot analysis and immunohistochemical staining were used to examine the expression of c‑Kit receptor, stem cell factor (SCF), AKT and phosphorylated‑AKT (p‑AKT) in the bladder tissue. The results of the bladder pressure and volume test indicated that the maximum capacity of the bladder, residual urine volume and maximum voiding pressure in the control group were 0.57 ml, 0.17 ml and 29.62 cm H2O, respectively. These values were increased by 71, 27 and 206% in rats in the CP group compared with the control group. Following treatment with resveratrol, the results in the resveratrol group were reduced by 25.77, 44.23 and 13.32% compared with the CP group. The results of western blot analysis, immunohistochemical staining and immunofluorescence labeling demonstrate that the protein expression of SCF, c‑Kit and p‑AKT in the bladder of rats in the CP group was 4.32, 6.13 and 6.31 times higher compared with the control group, respectively. Following treatment with resveratrol, protein expression was significantly reduced. However, no significant differences were observed between the protein expression of the SCF, c‑Kit and p‑AKT in the bladder between the resveratrol and combination groups. In conclusion, resveratrol may improve overactive bladder by downregulating the protein expression of SCF, c‑Kit and p‑AKT in the bladder of rats with CP. Furthermore, a combination of resveratrol and solifenacin may have potential pharmacological synergy as a treatment for patients with CP. Topics: Animals; Chronic Disease; Diphtheria-Tetanus-Pertussis Vaccine; Disease Models, Animal; Down-Regulation; Male; Phosphatidylinositol 3-Kinases; Phosphorylation; Prostate; Prostatitis; Proto-Oncogene Proteins c-akt; Proto-Oncogene Proteins c-kit; Rats; Rats, Sprague-Dawley; Resveratrol; Signal Transduction; Solifenacin Succinate; Stem Cell Factor; Stilbenes; Urinary Bladder | 2017 |
Effect of Glycine, Pyruvate, and Resveratrol on the Regeneration Process of Postischemic Intestinal Mucosa.
Intestinal ischemia is often caused by a malperfusion of the upper mesenteric artery. Since the intestinal mucosa is one of the most rapidly proliferating organs in human body, this tissue can partly regenerate itself after the onset of ischemia and reperfusion (I/R). Therefore, we investigated whether glycine, sodium pyruvate, and resveratrol can either support or potentially harm regeneration when applied therapeutically after reperfusion injury.. I/R of the small intestine was initiated by occluding and reopening the upper mesenteric artery in rats. After 60 min of ischemia and 300 min of reperfusion, glycine, sodium pyruvate, or resveratrol was administered intravenously. Small intestine regeneration was analyzed regarding tissue damage, activity of saccharase, and Ki-67 positive cells. Additionally, systemic parameters and metabolic ones were obtained at selected periods.. Resveratrol failed in improving the outcome after I/R, while glycine showed a partial beneficial effect. Sodium pyruvate ameliorated metabolic acidosis, diminished histopathologic tissue injury, and increased cell proliferation in the small intestine.. While glycine could improve in part regeneration but not proliferation, sodium pyruvate seems to be a possible therapeutic agent to facilitate proliferation and to support mucosal regeneration after I/R injury to the small intestine. Topics: Animals; beta-Fructofuranosidase; Cell Proliferation; Disease Models, Animal; Glycine; Injections, Intravenous; Intestinal Mucosa; Intestine, Small; Ki-67 Antigen; Mesenteric Arteries; Pyruvic Acid; Rats; Regeneration; Reperfusion Injury; Resveratrol; Stilbenes | 2017 |
Resveratrol modifies biliary secretion of cholephilic compounds in sham-operated and cholestatic rats.
To investigate the effect of resveratrol on biliary secretion of cholephilic compounds in healthy and bile duct-obstructed rats.. Resveratrol (RSV) or saline were administered to rats by daily oral gavage for 28 d after sham operation or reversible bile duct obstruction (BDO). Bile was collected 24 h after the last gavage during an intravenous bolus dose of the Mdr1/Mrp2 substrate azithromycin. Bile acids, glutathione and azithromycin were measured in bile to quantify their level of biliary secretion. Liver expression of enzymes and transporters relevant for bile production and biliary secretion of major bile constituents and drugs were analyzed at the mRNA and protein levels using qRT-PCR and Western blot analysis, respectively. The TR-FRET PXR Competitive Binding Assay kit was used to determine the agonism of RSV at the pregnane X receptor.. RSV increased bile flow in sham-operated rats due to increased biliary secretion of bile acids (BA) and glutathione. This effect was accompanied by the induction of the hepatic rate-limiting transporters for bile acids and glutathione, Bsep and Mrp2, respectively. RSV also induced Cyp7a1, an enzyme that is crucial for bile acid synthesis; Mrp4, a transporter important for BA secretion from hepatocytes to blood; and Mdr1, the major apical transporter for xenobiotics. The findings were supported by increased biliary secretion of azithromycin. The TR-FRET PXR competitive binding assay confirmed RSV as a weak agonist of the human nuclear receptor PXR, which is a transcriptional regulator of Mdr1/Mrp2. RSV demonstrated significant hepatoprotective properties against BDO-induced cirrhosis. RSV also reduced bile flow in BDO rats without any corresponding change in the levels of the transporters and enzymes involved in RSV-mediated hepatoprotection.. Resveratrol administration for 28 d has a distinct effect on bile flow and biliary secretion of cholephilic compounds in healthy and bile duct-obstructed rats. Topics: Administration, Oral; Animals; Anti-Inflammatory Agents, Non-Steroidal; Antioxidants; ATP-Binding Cassette Transporters; Azithromycin; Bile Acids and Salts; Cholestasis; Disease Models, Animal; Glutathione; Hepatocytes; Humans; Liver; Male; Pregnane X Receptor; Rats; Rats, Wistar; Receptors, Steroid; Resveratrol; Stilbenes | 2017 |
Plant-derived compounds strigolactone GR24 and pinosylvin activate SIRT1 and enhance glucose uptake in rat skeletal muscle cells.
Insulin resistance is a characteristic finding in hyperglycaemia and type 2 diabetes. SIRT1 is a NAD Topics: AMP-Activated Protein Kinases; Animals; Biological Transport; Carbohydrate Metabolism; Cell Culture Techniques; Diabetes Mellitus, Type 2; Disease Models, Animal; Energy Metabolism; Glucose; Glucose Transporter Type 4; Heterocyclic Compounds, 3-Ring; Insulin; Insulin Resistance; Lactones; Muscle, Skeletal; Myoblasts; Organelle Biogenesis; Phytochemicals; Rats; Signal Transduction; Sirtuin 1; Stilbenes | 2017 |
Genetic and Pharmacological Dissection of the Role of Spleen Tyrosine Kinase (Syk) in Intestinal Inflammation and Immune Dysfunction in Inflammatory Bowel Diseases.
The DNAX adaptor protein 12 (DAP12) is a transmembrane adaptor molecule that signals through the activation of Syk (Spleen Tyrosine Kinase) in myeloid cells. The purpose of this study is to investigate the role of DAP12 and Syk pathways in inflammatory bowel diseases (IBDs).. DAP12 deficient and DAP12 transgenic, overexpressing an increased amount of DAP12, mice and Syk deficient mice in the C57/BL6 background were used for these studies. Colitis was induced by administering mice with dextran sulfate sodium (DSS), in drinking water, or 2,4,6-trinitrobenzene sulfonic acid (TNBS), by intrarectal enema.. Abundant expression of DAP12 and Syk was detected in colon samples obtained from Crohn's disease patients with expression restricted to immune cells infiltrating the colonic wall. In rodents development of DSS colitis as measured by assessing severity of wasting diseases, global colitis score,and macroscopic and histology scores was robustly attenuated in DAP12-/- and Syk-/- mice. In contrast, DAP12 overexpression resulted in a striking exacerbation of colon damage caused by DSS. Induction of colon expression of proinflammatory cytokines and chemokines in response to DSS administration was attenuated in DAP12-/- and Syk-/- mice, whereas opposite results were observed in DAP12 transgenic mice. Treating wild-type mice with a DAP-12 inhibitor or a Syk inhibitor caused a robust attenuation of colitis induced by DSS and TNBS.. DAP12 and Syk are essential mediators in inflammation-driven immune dysfunction in murine colitides. Because DAP12 and Syk expression is upregulated in patients with active disease, present findings suggest a beneficial role for DAP12 and Syk inhibitors in IBD. Topics: Adaptor Proteins, Signal Transducing; Adult; Animals; Antipruritics; Colitis; Cytokines; Disease Models, Animal; Female; Humans; Inflammation; Inflammatory Bowel Diseases; Intestinal Diseases; Ketotifen; Male; Mice; Mice, Inbred BALB C; Mice, Inbred C57BL; Mice, Transgenic; Stilbenes; Syk Kinase | 2017 |
Resveratrol attenuates reproductive alterations in type 1 diabetes-induced rats.
The progression of diabetes mellitus leads to several complications including overproduction of reactive oxygen species and reproductive alterations. As resveratrol (RES) is a powerful anti-oxidant and an anti-apoptotic compound, we hypothesized that side effects of type-1 diabetes (DM1) on male reproduction could be reduced by the RES treatment. Eighty-four prepubertal male rats were distributed into seven groups: sham-control (SC), RES-treated (R), resveratrol-vehicle-treated (RV), diabetic (D), diabetic-insulin-treated (DI), diabetic-RES-treated (DR), diabetic-insulin and RES-treated (DIR). DM1 was induced by a single intraperitoneal streptozotocin (STZ) injection (65 mg/kg) on the 30th day postpartum (dpp). Animals of DR, DIR and R groups received 150 mg/day of RES by gavage for 43 consecutive days (from the 33 to 75 dpp). DI and DIR rats received subcutaneous injections of insulin (1 U/100 g b.w./day) from 5th day after the DM1 induction. The blood glucose level was monitored. At 75 dpp, the euthanasia was performed for morphometric and biometric testicular analyses, spermatic evaluation and hormonal doses. In the D group, the blood glucose level was higher than in the DR, DI and DIR groups. Besides morphometric testicular measurements, testosterone and estradiol doses were lower in D group than in DR and DIR groups; LH dose was also lower than in DR. The preputial separation age was delayed in diabetes-induced groups. The DR and DIR groups showed an improvement in sperm mitochondrial activity, epididymal sperm counts and the frequency of morphologically normal sperms. RES treatment improved glycaemic level, sperm quantitative and qualitative parameters and the hormonal profile in DM1-induced rats and seems to be a good reproductive protector. Topics: Animals; Blood Glucose; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 1; Disease Models, Animal; Epididymis; Male; Oxidative Stress; Rats, Wistar; Reactive Oxygen Species; Reproduction; Resveratrol; Sperm Motility; Spermatozoa; Stilbenes; Testis | 2017 |
BDNFVal66met polymorphism: a potential bridge between depression and thrombosis.
Epidemiological studies strongly suggest a link between stress, depression, and cardiovascular diseases (CVDs); the mechanistic correlation, however, is poorly understood. A single-nucleotide polymorphism in the BDNF gene (BDNFVal66Met), associated with depression and anxiety, has been proposed as a genetic risk factor for CVD. Using a knock-in mouse carrying the BDNFVal66Met human polymorphism, which phenocopies psychiatric-related symptoms found in humans, we investigated the impact of this SNP on thrombosis.. BDNFMet/Met mice displayed a depressive-like phenotype concomitantly with hypercoagulable state and platelet hyperreactivity. Proteomic analysis of aorta secretome from BDNFMet/Met and wild-type (WT) mice showed differential expression of proteins involved in the coagulation and inflammatory cascades. The BDNF Met allele predisposed to carotid artery thrombosis FeCl3-induced and to death after collagen/epinephrine injection. Interestingly, transfection with BDNFMet construct induced a prothrombotic/proinflammatory phenotype in WT cells. SIRT1 activation, using resveratrol and/or CAY10591, prevented thrombus formation and restored the physiological levels of coagulation and of platelet markers in BDNFMet/Met mice and/or cells transfected with the Met allele. Conversely, inhibition of SIRT1 by sirtinol and/or by specific siRNA induced the prothrombotic/proinflammatory phenotype in WT mice and cells. Finally, we found that BDNF Met homozygosity is associated with increased risk of acute myocardial infarction (AMI) in humans.. Activation of platelets, alteration in coagulation pathways, and changes in vessel wall protein expression in BDNFMet/Met mice recapitulate well the features occurring in the anxiety/depression condition. Furthermore, our data suggest that the BDNFVal66Met polymorphism contribute to the individual propensity for arterial thrombosis related to AMI. Topics: Animals; Anxiety Disorders; Aorta; Blood Coagulation; Brain-Derived Neurotrophic Factor; Carotid Arteries; Carotid Artery Thrombosis; Depressive Disorder; Disease Models, Animal; Female; Heterozygote; Homozygote; Humans; Male; Mice, Transgenic; Middle Aged; Myocardial Ischemia; Nerve Tissue Proteins; Platelet Activation; Platelet Aggregation Inhibitors; Polymorphism, Single Nucleotide; Receptors, Cell Surface; Resveratrol; Signal Transduction; Sirtuin 1; Stilbenes; Thrombosis | 2017 |
Resveratrol Promotes Remyelination in Cuprizone Model of Multiple Sclerosis: Biochemical and Histological Study.
Multiple sclerosis (MS) is a demyelinating neurodegenerative disease, representing a major cause of neurological disability in young adults. Resveratrol is a stilbenoid polyphenol, known to pass blood brain barrier and exhibit antioxidant, anti-inflammatory, and neuroprotective effects in several brain injuries. Cuprizone model of MS is particularly beneficial in studying demyelination/remyelination. Our study examined the potential neuroprotective and pro-remyelination effects of resveratrol in cuprizone-intoxicated C57Bl/6 mice. Mice were fed with chow containing 0.7 % cuprizone for 7 days, followed by 3 weeks on 0.2 % cuprizone diet. Resveratrol (250 mg/kg/day, p.o.) was given for 3 weeks starting from the second week. At the end of the experiment, animals were tested on rotarod to evaluate changes in balance and motor coordination. Mice were then sacrificed to measure the brain content of glutathione, lipid peroxidation products, adenosine triphosphate, and phospho-inhibitory subunit of nuclear factor κB-α. The activities of cytochrome oxidase and superoxide dismutase were also assessed. The gene expression of myelin basic protein, 2',3'-cyclic nucleotide 3' phosphodiesterase, oligodendrocyte transcription factor-1 (Olig1), NF-κB p65 subunit, and tumor necrosis factor-α was also estimated. Luxol fast blue/periodic acid-Schiff stained brain sections were blindly scored to assess the myelin status. Resveratrol effectively enhanced motor coordination and balance, reversed cuprizone-induced demyelination, improved mitochondrial function, alleviated oxidative stress, and inhibited NF-κB signaling. Interestingly, resveratrol increased Olig1 expression that is positively correlated to active remyelination. The present study may be the first to indicate a pro-remyelinative effect for resveratrol which might represent a potential additive benefit in treating MS. Topics: Animals; Biomarkers; Brain; Cuprizone; Disease Models, Animal; Inflammation; Male; Mice, Inbred C57BL; Mitochondria; Motor Activity; Multiple Sclerosis; Myelin Sheath; Oxidative Stress; Remyelination; Resveratrol; Stilbenes | 2017 |
Systemic treatment with resveratrol and/or curcumin reduces the progression of experimental periodontitis in rats.
Periodontitis is a chronic inflammatory disease of periodontal tissues that leads to the destruction of bone and other connective tissues. Resveratrol and curcumin are plant-derived substances with biological properties that may have immunomodulatory properties. This study investigated the effect of continuous administration of resveratrol and curcumin and the association of resveratrol and curcumin on the progression of experimental periodontitis in rats.. Forty Wistar rats were assigned randomly to the following groups: group 1, experimental periodontitis + placebo (PL) (n = 10); group 2, experimental periodontitis + resveratrol (RSV) (n = 10); group 3, experimental periodontitis + curcumin (C) (n = 10); and group 4, experimental periodontitis + resveratrol + curcumin (COMBI) (n = 10). Periodontitis was induced in rats by tying a silk suture, as a ligature, around one of the first molars. Daily administration of the placebo solution, 10 mg/kg of resveratrol, 100 mg/kg of curcumin or 10 mg/kg of resveratrol plus 100 mg/kg of curcumin was carried out from day 0 to day 30. At the end of the relevant experimental periods, rats were killed and the specimens obtained were processed for morphometric analysis of bone loss. Gingival tissues surrounding the first molar were collected for quantification of interleukin (IL)-1β, IL-4, interferon-gamma (IFN-γ) and tumor necrosis factor-alpha (TNF-α) using a Luminex/MAGPIX assay.. Intergroup comparisons of the morphometric outcomes revealed higher bone-loss values in the PL group (p < 0.05) when compared with RSV, C and COMBI groups. There was no difference in bone-loss values among RSV, C and COMBI groups (p > 0.05). The immunoenzymatic assay of the gingival tissue showed a lower concentration of IL-1β in the COMBI group in comparison with the PL group (p < 0.05). Higher values of IL-4 were demonstrated in groups RSV, C and COMBI in comparison with the PL group (p < 0.05). Only RSV caused a reduction in the levels of IFN-γ (p < 0.05). There was no difference in the concentration of TNF-α amongst the four groups (p > 0.05).. Resveratrol and curcumin are capable of reducing alveolar bone loss in an animal model of periodontitis. This occurred when these agents were added singly or in combination with one another, but there did not appear to be either synergistic or additive effects. Topics: Animals; Curcumin; Disease Models, Animal; Disease Progression; Drug Therapy, Combination; Gingiva; Immunologic Factors; Interferon-gamma; Interleukin-1beta; Male; Periodontitis; Rats; Rats, Wistar; Resveratrol; Stilbenes; Tumor Necrosis Factor-alpha | 2017 |
The effect of resveratrol on angiotensin II levels and the rate of transcription of its receptors in the rat cardiac hypertrophy model.
This study investigated the effect of resveratrol on serum and cardiac levels of angiotensin II and transcription of its main receptors following pressure overload induced-hypertrophy. Rats were divided into untreated (Hyp) and resveratrol treated hypertrophied groups (H + R). Intact animals served as the control (Ctl). Cardiac hypertrophy was induced by abdominal aortic banding. Blood pressure (BP) was recorded via left carotid artery cannula. Fibrosis was confirmed by Masson trichrome staining. Angiotensin II level was measured using an ELIZA test. Gene expression was assessed by a real time PCR (RT-PCR) technique. We observed that in the H + R group BP and heart weight/body weight were decreased significantly (p < 0.001, p < 0.05, respectively vs Hyp). The cardiac levels of angiotensin II and AT1a mRNA were increased in the Hyp group (p < 0.01 vs Ctl). In the H + R group the AT1a mRNA level was decreased significantly (p < 0.05 vs Hyp). It could be concluded that resveratrol protects the heart against hypertrophy progression in part by affecting cardiac AT1a transcription. Topics: Angiotensin II; Animals; Blood Pressure; Cardiomegaly; Disease Models, Animal; Heart; Male; Myocardium; Rats; Rats, Wistar; Resveratrol; RNA, Messenger; Stilbenes; Transcription, Genetic | 2017 |
Sirtuin 3 Deregulation Promotes Pulmonary Fibrosis.
Oxidative stress leads to alveolar epithelial cell injury and fibroblast-myofibroblast differentiation (FMD), key events in the pathobiology of pulmonary fibrosis (PF). Sirtuin 3 (SIRT3) is a mitochondrial protein deacetylase regulator of antioxidant response and mitochondrial homeostasis. Here, we demonstrate reduced SIRT3 expression in the lungs of old mice compared to young mice, as well as in two murine models of PF. The analysis of the pattern of SIRT3 expression in the lungs of patients with PF revealed low SIRT3 staining within the fibrotic regions. We also demonstrated, using murine models of PF and human lung fibroblasts, that reduced SIRT3 expression in response to transforming growth factor beta 1 (TGFβ1) promotes acetylation (inactivation) of major oxidative stress response regulators, such as SOD2 and isocitrate dehydrogenase 2. Reduction of SIRT3 in human lung fibroblasts promoted FMD. By contrast, overexpression of SIRT3 attenuated TGFβ1-mediated FMD and significantly reduced the levels of SMAD family member 3 (SMAD3). Resveratrol induced SIRT3 expression and ameliorated acetylation changes induced by TGFβ1. We demonstrated that SIRT3-deficient mice are more susceptible to PF compared to control mice, and concomitantly exhibit enhanced SMAD3 expression. Collectively, these data define a SIRT3/TGFβ1 interaction during aging that may play a significant role in the pathobiology of PF. Topics: Aging; Animals; Cell Differentiation; Disease Models, Animal; Down-Regulation; Fibroblasts; Humans; Isocitrate Dehydrogenase; Male; Mice; Mice, Inbred C57BL; Oxidative Stress; Pulmonary Fibrosis; Resveratrol; Sirtuin 3; Smad3 Protein; Stilbenes; Superoxide Dismutase; Transforming Growth Factor beta1 | 2017 |
Comparative Mitochondrial-Based Protective Effects of Resveratrol and Nicotinamide in Huntington's Disease Models.
Sirtuin 1 (SIRT1) is a nicotinamide adenine dinucleotide (NAD Topics: Animals; Corpus Striatum; Disease Models, Animal; DNA, Mitochondrial; Humans; Huntington Disease; Membrane Potential, Mitochondrial; Mice, Transgenic; Mitochondria; Neurons; Niacinamide; Resveratrol; Stilbenes | 2017 |
Resveratrol ameliorates spatial learning memory impairment induced by Aβ
β-amyloid (Aβ) deposition is considered partially responsible for cognitive dysfunction in Alzheimer's disease (AD). Recently, resveratrol has been reported to play a potential role as a neuroprotective biofactor by modulating Aβ pathomechanisms, including through anti-neuronal apoptotic, anti-oxidative stress, and anti-neuroinflammatory effects. In addition, SIRT1 has been demonstrated to modulate learning and memory function by regulating the expression of cAMP response binding protein (CREB), which involves in modulating the expression of SIRT1. However, whether resveratrol can alleviate Aβ-induced cognitive dysfunction, whether SIRT1 expression and CREB phosphorylation in the hippocampus are affected by Aβ, and whether resveratrol influences these effects remain unknown. In the present study, we used a hippocampal injection model in rats to investigate the effects of resveratrol on Aβ Topics: Amyloid beta-Peptides; Animals; Blotting, Western; Cyclic AMP Response Element-Binding Protein; Disease Models, Animal; Hippocampus; Learning Disabilities; Long-Term Potentiation; Male; Memory Disorders; Neuroprotective Agents; Nootropic Agents; Peptide Fragments; Phosphorylation; Random Allocation; Rats, Sprague-Dawley; Resveratrol; Sirtuin 1; Spatial Learning; Spatial Memory; Stilbenes; Time Factors | 2017 |
Polydatin protects cardiomyocytes against myocardial infarction injury by activating Sirt3.
Topics: Animals; Apoptosis; Disease Models, Animal; Glucosides; Mice; Mice, Knockout; Mitochondria, Heart; Myocardial Infarction; Myocytes, Cardiac; Organelle Biogenesis; Sirtuin 3; Stilbenes | 2017 |
Protective effect of resveratrol against nigrostriatal pathway injury in striatum via JNK pathway.
Nigrostriatal pathway injury is one of the traumatic brain injury models that usually lead to neurological dysfunction or neuron necrosis. Resveratrol-induced benefits have recently been demonstrated in several models of neuronal degeneration diseases. However, the protective properties of resveratrol against neurodegeneration have not been explored definitely. Thus, we employ the nigrostriatal pathway injury model to mimic the insults on the brain. Resveratrol decreased the p-ERK expression and increased the p-JNK expression compared to the DMSO group, but not alter the p38 MAPK proteins around the lesion site by Western blot. Prior to the injury, mice were infused with resveratrol intracerebroventricularly with or without JNK-IN-8, a specific c-JNK pathway inhibitor for JNK1, JNK2 and JNK4. The study assessed modified improved neurological function score (mNSS) and beam/walking test, the level of inflammatory cytokines IL-1β, IL-6 and TNF-α, and striatal expression of Bax and Bcl-2 proteins associated with neuronal apoptosis. The results revealed that resveratrol exerted a neuroprotective effect as shown by the improved mNSS and beam latency, anti-inflammatory effects as indicated by the decreased level of IL-1β, TNF-α and IL-6. Furthermore, resveratrol up-regulated the protein expression of p-JNK and Bcl-2, down-regulated the expression of Bax and the number of Fluoro-Jade C (FJC) positive neurons. However, these advantages of resveratrol were abolished by JNK-IN-8 treatment. Overall, we demonstrated that resveratrol treatment attenuates the nigrostriatal pathway injury-induced neuronal apoptosis and inflammation via activation of c-JNK signaling. Topics: Animals; Apoptosis; Brain Injuries, Traumatic; Corpus Striatum; Disease Models, Animal; Extracellular Signal-Regulated MAP Kinases; Male; MAP Kinase Kinase 4; MAP Kinase Signaling System; Mice; Neural Pathways; Neurodegenerative Diseases; Neurons; Neuroprotective Agents; p38 Mitogen-Activated Protein Kinases; Phosphorylation; Random Allocation; Resveratrol; Stilbenes; Substantia Nigra | 2017 |
Comparative proteomic analyses of the parietal lobe from rhesus monkeys fed a high-fat/sugar diet with and without resveratrol supplementation, relative to a healthy diet: Insights into the roles of unhealthy diets and resveratrol on function.
A diet consisting of a high intake of saturated fat and refined sugars is characteristic of a Western-diet and has been shown to have a substantial negative effect on human health. Expression proteomics were used to investigate changes to the parietal lobe proteome of rhesus monkeys consuming either a high fat and sugar (HFS) diet, a HFS diet supplemented with resveratrol (HFS+RSV), or a healthy control diet for 2 years. Here we discuss the modifications in the levels of 12 specific proteins involved in various cellular systems including metabolism, neurotransmission, structural integrity, and general cellular signaling following a nutritional intervention. Our results contribute to a better understanding of the mechanisms by which resveratrol functions through the up- or down-regulation of proteins in different cellular sub-systems to affect the overall health of the brain. Topics: 2',3'-Cyclic Nucleotide 3'-Phosphodiesterase; Animals; Brain; Diet, Healthy; Diet, High-Fat; Dietary Sugars; Dietary Supplements; Disease Models, Animal; Glutamate-Ammonia Ligase; Macaca mulatta; Male; Parietal Lobe; Proteome; Reproducibility of Results; Resveratrol; Signal Transduction; Stilbenes | 2017 |
Superparamagnetic nanoparticle-enhanced MRI of Alzheimer's disease plaques and activated microglia in 3X transgenic mouse brains: Contrast optimization.
To optimize magnetic resonance imaging (MRI) of antibody-conjugated superparamagnetic nanoparticles for detecting amyloid-β plaques and activated microglia in a 3X transgenic mouse model of Alzheimer's disease.. Ten 3X Tg mice were fed either chow or chow containing 100 ppm resveratrol. Four brains, selected from animals injected with either anti-amyloid targeted superparamagnetic iron oxide nanoparticles, or anti-Iba-1-conjugated FePt-nanoparticles, were excised, fixed with formalin, and placed in Fomblin for ex vivo MRI (11.7T) using multislice-multiecho, multiple gradient echo, rapid acquisition with relaxation enhancement, and susceptibility-weighted imaging (SWI). Aβ plaques and areas of neuroinflammation appeared as hypointense regions whose number, location, and Z-score were measured as a function of sequence type and echo time.. The MR contrast was due to the shortening of the transverse relaxation time of the plaque-adjacent tissue water. A theoretical analysis of this effect showed that the echo time was the primary determinant of plaque contrast and was used to optimize Z-scores. The Z-scores of the detected lesions varied from 21 to 34 as the echo times varied from 4 to 25 msec, with SWI providing the highest Z-score and number of detected lesions. Computation of the entire plaque and activated microglial distributions in 3D showed that resveratrol treatment led to a reduction of ∼24-fold of Aβ plaque density and ∼4-fold in microglial activation.. Optimized MRI of antibody-conjugated superparamagnetic nanoparticles served to reveal the 3D distributions of both Aβ plaques and activated microglia and to measure the effects of drug treatments in this 3X Tg model.. 1 Technical Efficacy: Stage 2 J. MAGN. RESON. IMAGING 2017;46:574-588. Topics: Alleles; Alzheimer Disease; Amyloid beta-Protein Precursor; Amyloidogenic Proteins; Animals; Brain; Contrast Media; Disease Models, Animal; Ferric Compounds; Homozygote; Humans; Image Processing, Computer-Assisted; Magnetic Resonance Imaging; Magnetite Nanoparticles; Metal Nanoparticles; Mice; Mice, Transgenic; Micelles; Microglia; Mutation; Plaque, Amyloid; Resveratrol; Stilbenes | 2017 |
Resveratrol suppresses neuroinflammation in the experimental paradigm of autism spectrum disorders.
Neuronal dysfunction caused by neuroinflammation triggered by the stimulation of matrix metalloproteinases and the subsequent release of pro-inflammatory cytokines, as a result of oxidative stress and mitochondrial dysfunction, is one of the probable mechanisms involved in the pathogenesis of autism spectrum disorders (ASD). The aim of the present study was to explore the ameliorative potential of resveratrol on neuroinflammation in the experimental paradigm of neuroinflammatory model of ASD in rats.. 1M Propanoic acid (PPA) (4 μl) was infused over 10 min into the anterior portion of the lateral ventricle to induce ASD like symptoms in rats. Resveratrol (5, 10 and 15 mg/kg) was administered starting from the 2nd day of the surgery and continued upto 28th day. Rats were tested for various behavioural paradigms such as social interaction, stereotypy, locomotor activity, anxiety, novelty, depression, spatial learning, memory, repetitive and pervasive behaviour between the 7th day and 28th day. In addition, biochemical tests for oxidative stress, mitochondrial complexes, TNF-α and MMP-9 were also assessed.. Treatment with resveratrol for four weeks restored, significantly and dose dependently, all the neurological, sensory, behavioural, biochemical and molecular deficits in PPA induced autistic phenotype in rats.. The major finding of the study is that resveratrol restored the core and associated symptoms of autistic phenotype by suppressing oxidative-nitrosative stress, mitochondrial dysfunction, TNF-α and MMP-9 expression in PPA induced ASD in rats. Therefore, resveratrol might serve as an adjunct potential therapeutic agent for amelioration of neurobehavioural and biochemical deficits associated with autism spectrum disorders. Topics: Animals; Autism Spectrum Disorder; Disease Models, Animal; Inflammation; Male; Memory; Motor Activity; Neuroprotective Agents; Oxidative Stress; Rats, Sprague-Dawley; Resveratrol; Stilbenes; Tumor Necrosis Factor-alpha | 2017 |
Resveratrol-induced antinociception is involved in calcium channels and calcium/caffeine-sensitive pools.
Resveratrol has been widely investigated for its potential health properties, although little is known about its mechanism in vivo. Previous studies have indicated that resveratrol produces antinociceptive effects in mice. Calcium channels and calcium/caffeine-sensitive pools are reported to be associated with analgesic effect. The present study was to explore the involvement of Ca2+ channel and calcium/caffeine-sensitive pools in the antinociceptive response of resveratrol. Tail-flick test was used to assess antinociception in mice treated with resveratrol or the combinations of resveratrol with MK 801, nimodipine, CaCl2, ryanodine and ethylene glycol tetraacetic acid (EGTA), respectively. The Ca2+/calmodulin-dependent protein kinase II (CaMKII) and brain-derived neurotrophic factor (BDNF) levels in the spinal cord were also investigated when treated with the above drugs. The results showed that resveratrol increased the tail flick latency in the tail-flick test, in dose-dependent manner. N-methyl-D-aspartate (NMDA) glutamate receptor antagonist MK 801 potentiated the antinociceptive effects of sub-threshold dose of resveratrol at 10 mg/kg. Ca2+ channel blocker, however, abolished the antinociceptive effects of resveratrol. In contrast to these results, EGTA or ryanodine treatment (i.c.v.) potentiated resveratrol-induced antinociception. There was a significant decrease in p-CaMKII and an increase in BDNF expression in the spinal cord when combined with MK 801, nimodipine, ryanodine and EGTA. While an increase in p-CaMKII level and a decrease in BDNF expression were observed when high dose of resveratrol combined with CaCl2. These findings suggest that resveratrol exhibits the antinociceptive effects by inhibition of calcium channels and calcium/caffeine-sensitive pools. Topics: Analgesics; Animals; Behavior, Animal; Brain-Derived Neurotrophic Factor; Caffeine; Calcium Channel Blockers; Calcium Channels; Calcium Chelating Agents; Calcium Chloride; Calcium Signaling; Calcium-Calmodulin-Dependent Protein Kinase Type 2; Disease Models, Animal; Dose-Response Relationship, Drug; Egtazic Acid; Male; Mice, Inbred ICR; Nociception; Nociceptive Pain; Phosphorylation; Reaction Time; Resveratrol; Ryanodine; Spinal Cord; Stilbenes; Time Factors | 2017 |
Enhancing Nanoparticle Accumulation and Retention in Desmoplastic Tumors via Vascular Disruption for Internal Radiation Therapy.
Aggressive, desmoplastic tumors are notoriously difficult to treat because of their extensive stroma, high interstitial pressure, and resistant tumor microenvironment. We have developed a combination therapy that can significantly slow the growth of large, stroma-rich tumors by causing massive apoptosis in the tumor center while simultaneously increasing nanoparticle uptake through a treatment-induced increase in the accumulation and retention of nanoparticles in the tumor. The vascular disrupting agent Combretastatin A-4 Phosphate (CA4P) is able to increase the accumulation of radiation-containing nanoparticles for internal radiation therapy, and the retention of these delivered radioisotopes is maintained over several days. We use ultrasound to measure the effect of CA4P in live tumor-bearing mice, and we encapsulate the radio-theranostic isotope Topics: Animals; Antineoplastic Agents, Phytogenic; Disease Models, Animal; Drug Therapy, Combination; Lutetium; Mice; Nanoparticles; Neoplasms; Radioisotopes; Stilbenes; Treatment Outcome | 2017 |
Resveratrol-Mediated Expression of KLF15 in the Ischemic Myocardium is Associated with an Improved Cardiac Phenotype.
Myocardial infarction results in physiological derangements that lead to structural and functional alterations to the myocardium. In addition, oxidative stress potentiates cardiac remodeling and drives disease progression. Unfortunately, treatment with antioxidants in clinical trials have failed to show any therapeutic benefits despite the positive results reported in animal studies, which warrants further investigation into their mechanism(s) of action. Accordingly, the aim of this study was to elucidate a previously unknown mechanism of action for the antioxidant, resveratrol, in the treatment of the ischemic heart.. Male Sprague-Dawley rats underwent four weeks of chronic myocardial ischemia with or without daily resveratrol treatment (10 mg/kg/day). The expression and signaling of Krüppel-like factor 15 (KLF15) were determined by immunoblot and qPCR analyses, respectively.. Chronic myocardial ischemia reduced the protein expression of KLF15. In parallel, mRNA transcripts of KLF15 gene targets actively involved in cardiac remodeling were robustly increased in untreated hearts. Importantly, daily treatment with resveratrol stimulated KLF15 expression, which was associated with attenuated gene expression and an improved cardiac phenotype. Additionally, we describe a novel role for KLF15 in the regulation of redox homeostasis.. Based on our current findings, it appears that resveratrol treatment induces KLF15 expression, which may, in part, explain its therapeutic efficacy to improve the cardiac phenotype following ischemic injury. Topics: Animals; Antioxidant Response Elements; Antioxidants; Disease Models, Animal; Kruppel-Like Transcription Factors; Male; Myocardial Infarction; Myocardium; NF-E2-Related Factor 2; Oxidation-Reduction; Oxidative Stress; Phenotype; Rats, Sprague-Dawley; Resveratrol; RNA, Messenger; Stilbenes; Time Factors; Up-Regulation; Ventricular Remodeling | 2017 |
Long-term low dose dietary resveratrol supplement reduces cardiovascular structural and functional deterioration in chronic heart failure in rats.
A short-term exposure to resveratrol at high dosages exerts a remarkable cardioprotective effect. Whether a long-term exposure to resveratrol at low dosages that can be obtained through consumption of a resveratrol-rich diet is beneficial to heart diseases is unknown. We tested the effects of a resveratrol-enriched diet on cardiovascular remodeling of chronic heart failure (CHF) in rats resulting from permanent ligation of left coronary artery. Two weeks after surgery, rats were started on either a resveratrol-enriched (R; 5 mg/kg per day; n = 23) or normal (Control; n = 23) diet for next 10 months. Serial echocardiography in Control showed a significant decline in LV ejection fraction, increases in LV end-systolic and end-diastolic volumes, and expansion in myocardial infarct from pre-treatment values. In R, compared with Control, there were substantial improvements in those parameters. End-point LV pressure-volume loop analysis showed a significantly improved LV systolic function and AV-coupling, an index of energy transfer efficacy between the heart and aortic tree, in R compared with Control (p < 0.05). Aortic pulse wave velocity, a measure of arterial stiffness, was significantly lower in R (389 ± 15 cm/s; p < 0.05) compared with Control (489 ± 38 cm/s). These results demonstrated that long-term dietary resveratrol supplement reduces cardiovascular structural and functional deterioration in CHF. Topics: Animals; Cardiotonic Agents; Chronic Disease; Collagen; Dietary Supplements; Disease Models, Animal; Drug Administration Schedule; Echocardiography; Fibrosis; Heart Failure; Male; Myocardial Contraction; Myocardium; Pulse Wave Analysis; Rats, Wistar; Resveratrol; Stilbenes; Stroke Volume; Time Factors; Vascular Stiffness; Ventricular Function, Left; Ventricular Remodeling | 2017 |
Resveratrol activates endogenous cardiac stem cells and improves myocardial regeneration following acute myocardial infarction.
Stem cell antigen-1-positive (Sca-1+) cardiac stem cells (CSCs) therapy for myocardial regeneration following acute myocardial infarction (AMI) is limited by insufficient cell viability and a high rate of apoptosis, due to the poor regional microenvironment. Resveratrol, which is a compound extracted from red wine, has been reported to protect myocardial tissue post‑AMI by increasing the expression of angiogenic and chemotactic factors. The present study aimed to investigate the effects of resveratrol on Sca‑1+ CSCs, and to optimize Sca‑1+ CSCs therapy for myocardial regeneration post‑AMI. C57/BL6 mice (age, 6 weeks) were divided into two groups, which received intragastric administration of PBS or 2.5 mg/kg.d resveratrol. The endogenous expression of Sca‑1+ CSCs in the heart was assessed on day 7. Furthermore, C57/BL6 mice underwent left anterior descending coronary artery ligation for the construction of an AMI model, and received an injection of 1x106 CSCs into the peri‑ischemic area (n=8/group). Mice received intragastric administration of PBS or resveratrol (2.5 mg/kg.d) for 4 weeks after cell transplantation. Echocardiography was used to evaluate cardiac function 4 weeks after cell transplantation. Capillary density and cardiomyocyte apoptosis in the peri‑ischemic myocardium were assessed by cluster of differentiation 31 immunofluorescent staining and terminal deoxynucleotidyl transferase‑mediated dUTP nick end labeling assay, respectively. Western blot analysis was conducted to detect the protein expression levels of vascular endothelial growth factor (VEGF) and stromal cell‑derived factor (SDF)‑1α in the myocardium. Treatment with resveratrol increased the number of endogenous Sca‑1+ CSCs in heart tissue after 7 days (PBS vs. Res, 1.85±0.41/field vs. 3.14±0.26/field, P<0.05). Furthermore, intragastric administration of resveratrol significantly increased left ventricle (LV) function 4 weeks after AMI, as determined by an increase in LV fractional shortening (CSCs vs. Res + CSCs, 28.82±1.58% vs. 31.18±2.02%, P<0.05), reduced LV end‑diastolic diameter (CSCs vs. Res + CSCs, 0.37±0.01 mm vs. 0.35±0.02 mm, P<0.05), and reduced LV end‑systolic diameter (CSCs vs. Res + CSCs, 0.26±0.01 mm vs. 0.23±0.02 mm, P<0.05). These protective effects were predominantly achieved via an increase in capillary density (CSCs vs. Res + CSCs, 281.02±24.08/field vs. 329.75±36.69/field, P<0.05) and a reduction in cardiomyocyte apoptosis (CSCs vs. Res + CSCs, 1.5±0.54/field v Topics: Animals; Antigens, Ly; Apoptosis; Biomarkers; Chemokine CXCL12; Disease Models, Animal; Male; Membrane Proteins; Mice; Myoblasts, Cardiac; Myocardial Infarction; Myocardium; Neovascularization, Physiologic; Regeneration; Resveratrol; Stem Cells; Stilbenes; Vascular Endothelial Growth Factor A | 2017 |
Disparate Effects of Stilbenoid Polyphenols on Hypertrophic Cardiomyocytes In Vitro vs. in the Spontaneously Hypertensive Heart Failure Rat.
Stilbenoids are bioactive polyphenols, and resveratrol (trans-3,5,40-trihydroxystilbene) is a representative stilbenoid that reportedly exerts cardioprotective actions. As resveratrol exhibits low oral bioavailability, we turned our attention to other stilbenoid compounds with a history of medicinal use and/or improved bioavailability. We determined the effects of gnetol (trans-3,5,20,60-tetrahydroxystilbene) and pterostilbene (trans-3,5-dimethoxy-40-hydroxystilbene) on cardiac hypertrophy. In vitro, gnetol and pterostilbene prevented endothelin-1-induced indicators of cardiomyocyte hypertrophy including cell enlargement and protein synthesis. Gnetol and pterostilbene stimulated AMP-activated protein kinase (AMPK), and inhibition of AMPK, using compound C or shRNA knockdown,abolished these anti-hypertrophiceffects. In contrast,resveratrol, gnetol, nor pterostilbene reduced blood pressure or hypertrophy in the spontaneously hypertensive heart failure (SHHF) rat. In fact, AMPK levels were similar between Sprague-Dawley and SHHF rats whether treated by stilbenoids or not. These data suggest that the anti-hypertrophic actions of resveratrol (and other stilbenoids?) do not extend to the SHHF rat, which models heart failure superimposed on hypertension. Notably, SHHF rat hearts exhibited prolonged isovolumic relaxationtime(an indicator of diastolicdys function),and this was improved by stilbenoid treatment.In conclusion, stilbenoid-based treatment as a viable strategy to prevent pathological cardiac hypertrophy,a major risk factor for heart failure,may be context-dependent and requires furtherstudy. Topics: Animals; Blood Pressure; Cardiomegaly; Cell Survival; Disease Models, Animal; Heart Failure; Heart Function Tests; MAP Kinase Signaling System; Myocytes, Cardiac; Polyphenols; Rats; Rats, Inbred SHR; Resveratrol; Stilbenes | 2017 |
Protective Effect of Resveratrol on the Brain in a Rat Model of Epilepsy.
Topics: Animals; Anticonvulsants; CA1 Region, Hippocampal; Disease Models, Animal; Down-Regulation; Epilepsy, Temporal Lobe; Excitatory Amino Acid Agonists; gamma-Aminobutyric Acid; GluK2 Kainate Receptor; Glutamic Acid; Kainic Acid; Male; Neuroprotective Agents; Rats; Rats, Wistar; Receptors, GABA-A; Receptors, Kainic Acid; Resveratrol; Stilbenes; Up-Regulation | 2017 |
Vitamin D Combined with Resveratrol Prevents Cognitive Decline in SAMP8 Mice.
Vitamin D (VD) and resveratrol (RSV) are two nutritional molecules that have reported neuroprotective effects, and findings from cellular models suggest that resveratrol could potentiate vitamin D's effects. The senescence-accelerated mouse-prone 8 (SAMP8) is a useful model of Alzheimer's disease (AD)-related memory impairment.. We aimed to explore how the combination of vitamin D with resveratrol would affect memory impairments shown by SAMP8 mice, as well as the potential mechanisms.. SAMP8 mice and their control senescence-accelerated mouse resistant 1 (SAMR1) mice (10 weeks old) were divided into 5 groups, i.e. SAMR1 group, SAMP8 group, SAMP8 mice supplemented with VD group, SAMP8 mice supplemented with RSV group and SAMP8 mice supplemented with both VD and RSV group. At the end of the intervention, Morris water maze (MWM) test was used to assess cognitive function. Hippocampus and parietal cortex were dissected for further analysis.. The combination of VD and RSV significantly increased time spent in target quadrant and the number of crossing via MWM test. In hippocampus, the combined intervention significantly reduced soluble Aβ42 level and BACE1 protein expression. In cortex, the combined treatment significantly reduced phosphorylation of tau at serine404 and p-p53, as well as enhanced p-CREB protein expression. The combination also significantly reduced GFAP and p-NFκB p65 in both hippocampus and cortex.. The combined intervention might exert greater neuroprotective effects in SAMP8 mice, this might be associated with the fact that the combined intervention could positively affect amyloidogenic pathways, neuroinflammation, tau phosphorylation and probably apoptosis markers. Topics: Aging; Amyloid beta-Peptides; Amyloid beta-Protein Precursor; Amyloid Precursor Protein Secretases; Animals; Antioxidants; Aspartic Acid Endopeptidases; Brain; Cathepsin B; Cognition; Cognition Disorders; Disease Models, Animal; Drug Therapy, Combination; Glycogen Synthase Kinase 3; In Situ Nick-End Labeling; Mice; Nerve Tissue Proteins; Peptide Fragments; Resveratrol; Signal Transduction; Stilbenes; tau Proteins; Vitamin D | 2017 |
Protective impact of resveratrol in experimental rat model of hyperoxaluria.
Resveratrol (RES) is a polyphenol with antioxidant, anti-inflammatory, and many other physiological effects on tissues. In the present study, the effect of resveratrol in hyperoxaluria driven nephrolithiasis/nephrocalcinosis is investigated.. Wistar-Albino rats of 250-300 g (male, n = 24) were included in the present study. The rats were randomized into three groups: Group 1 consisted of the controls (n = 8), Group 2 of hyperoxaluria (1% ethylene glycol (EG), n = 8), and Group 3 of the treatment (1% EG + 10 mg/kg of RES, n = 8) group. At the beginning and fifth week of the study, two rats from each group were placed in metabolic cages for 24 h and their urine was collected. At the end of the study, the rats were killed and their blood was collected from the vena cava inferior. The right kidneys of the rats were used for biochemical and the left ones for immunohistochemical analyzes. Malondialdehyde (MDA), catalase, urea, calcium, oxalate, and creatinine clearance were studied in the blood, urine, and kidney tissues. Moreover, routine histological evaluation, and p38-MAPK and NFkB immunohistochemical analyses were conducted.. In the hyperoxaluria group, urinary oxalate levels were higher than the control group; yet, lower in the treatment group compared to hyperoxaluria group (p < 0.05). Serum MDA levels in the hyperoxaluria group were higher than the control group; but in the treatment group it is lower than the hyperoxaluria group (p < 0.05). P38 MAPK activity was higher in the hyperoxaluria group compared to the control (p < 0.05). However, in terms of p38 MAPK activity, there were no statistically significant difference between hyperoxaluria and the treatment group (p < 0.069). Whereas NFkB activity in the hyperoxaluria group is higher than the control (p < 0.001), no statistically significant difference was observed with the treatment group.. In the present study, resveratrol was seen to prevent hyperoxaluria. With preventing oxidative stress factors and Randall plaque formation caused by free oxygen radicals, resveratrol can be an alternative treatment option that can increase the success rate in preventing stone recurrence in the future. Topics: Animals; Antioxidants; Biopsy, Needle; Disease Models, Animal; Ethylene Glycol; Hyperoxaluria; Immunohistochemistry; Kidney Calculi; Male; Oxidative Stress; Random Allocation; Rats; Rats, Wistar; Reference Values; Resveratrol; Statistics, Nonparametric; Stilbenes | 2017 |
A Combination of Resveratrol and Curcumin is Effective Against Aluminum Chloride-Induced Neuroinflammation in Rats.
Experimental studies have demonstrated that aluminum is an environmental toxin that induces neuroinflammation and the development of Alzheimer's disease.. In this report, we investigated the beneficial effect of a combination of resveratrol and curcumin to reduce aluminum-induced neuroinflammation.. We employed both an in vivo model of aluminum-induced neuroinflammation and an in vitro aluminum stimulated cultured PC-12 cells. Neuroinflammation in rats was assessed by measuring the expression of β-secretase, amyloid-β protein precursor, and γ-subunits (PS-1 and PS-2), along with the inflammatory COX-2, Il-1β, Il-1α, and TNF-α. Furthermore, we measured the expression profiles of neuro-protective Apurinic/apyrimidinic endonuclease 1 (APE1) protein and let-7c microRNA. In parallel, PC-12 cells were treated with 0.5 mM aluminum to induce a neuroinflammation-like state. In addition, curcumin effect, as a selective COX-2 expression inhibitor, was detected in a time course manner.. An overall significant attenuation of the inflammatory markers, as well as a decrease in the amyloidogenic mediators, was observed in resveratrol-curcumin treated rats. The therapeutic effect was also confirmed by transmission electron microscopic analysis of the brain cortexes. APE1 was significantly induced by resveratrol-curcumin combination. Both in vivo and in vitro studies indicated that Let-7c expression is significantly reduced after aluminum stimulation, an effect that was partially suppressed by co-addition of either resveratrol or curcumin and totally restored to the normal level by their combination.. The present study clearly indicates the synergistic and therapeutic effect of a resveratrol-curcumin combination. We also show that both compounds exert beneficial effect either cooperatively or through differential molecular mechanisms in counteracting aluminum-induced neuroinflammation. Topics: Acetylcholinesterase; Aluminum Chloride; Aluminum Compounds; Animals; Brain; Catalase; Chlorides; Curcumin; Cyclooxygenase 2; Disease Models, Animal; Drug Combinations; Encephalitis; Glutathione Transferase; Lipid Peroxidation; Male; Neuroprotective Agents; Oxidative Stress; PC12 Cells; Rats; Rats, Wistar; Resveratrol; Stilbenes; Superoxide Dismutase | 2017 |
Peripheral and Cerebral Resistance Arteries in the Spontaneously Hypertensive Heart Failure Rat: Effects of Stilbenoid Polyphenols.
Topics: Animals; Blood Pressure; Disease Models, Animal; Hypertension; Male; Mesenteric Arteries; Rats; Rats, Inbred SHR; Rats, Sprague-Dawley; Resveratrol; Stilbenes; Vascular Resistance | 2017 |
Effect of Melatonin and Resveratrol against Memory Impairment and Hippocampal Damage in a Rat Model of Vascular Dementia.
This study was intended to investigate whether treatment with resveratrol and melatonin alone or in combination can exert neurorestorative effects in a rat model of vascular dementia.. Briefly, male Wistar rats were subjected to permanent bilateral common carotid artery occlusion (BCCAO) by surgery. After 4 weeks, the cognitive deficits were assessed using the Morris water maze and novel object recognition tests. The biochemical parameters of oxidative stress and inflammation were also assessed.. Rats in the BCCAO group showed cognitive deficits, accompanied by oxidonitrosative stress, neuroinflammation, and a reduction in brain-derived neurotrophic factor (BDNF) in the hippocampus region. Moreover, the acetylcholinesterase activity in the hippocampus was found to be increased in the BCCAO group compared to the sham group. The 4-week treatment with melatonin (10 mg/kg) and resveratrol (20 mg/kg) alone and in combination (melatonin 5 mg/kg and reseveratrol 10 mg/kg) caused a significant improvement in the cognitive deficits induced by BCCAO, accompanied by a reversal of oxidonitrosative stress, neuroinflammation, and BDNF depletion in the hippocampus region. Additionally, the treatment with melatonin and resveratrol significantly decreased acetylcholinesterase activity compared to in the BCCAO group. Melatonin and resveratrol ameliorated the BDNF expression of hippocampal protein.. These results emphasize that coadministration of melatonin and resveratrol can be beneficial in BCCAO-induced vascular dementia through changes in BDNF expressions. Topics: Animals; Antioxidants; Brain-Derived Neurotrophic Factor; Dementia, Vascular; Disease Models, Animal; Drug Therapy, Combination; Glutathione; Hippocampus; Interleukin-1beta; Male; Malondialdehyde; Maze Learning; Melatonin; Memory Disorders; Models, Molecular; Rats; Rats, Wistar; Recognition, Psychology; Resveratrol; Stilbenes; Tumor Necrosis Factor-alpha | 2016 |
A successful experimental model for intimal hyperplasia prevention using a resveratrol-delivering balloon.
Restenosis due to intimal hyperplasia is a major clinical problem that compromises the success of angioplasty and endovascular surgery. Resveratrol (RSV) has demonstrated a beneficial effect on restenosis from angioplasty. Unfortunately, the physicochemical characteristics of RSV reduce the practicality of its immediate clinical application. This work proposes an experimental model aiming to setup an intravessel, elutable, RSV-containing compound.. A 140 μg/mL RSV sterile injectable solution with a suitable viscosity for intravascular administration by drug-delivery catheter (RSV-c) was prepared. This solution was locally administered in the common iliac artery of adult male New Zealand White rabbits using a dedicated device (Genie; Acrostak, Geneva, Switzerland) after the induction of intimal hyperplasia by traumatic angioplasty. The RSV concentrations in the wall artery were determined, and the thickness of the harvested iliac arteries was measured over a 1-month period.. The Genie catheter was applied in rabbit vessels, and the local delivery resulted in an effective reduction in restenosis after plain angioplasty. Notably, RSV-c forced into the artery wall by balloon expansion might accumulate in the interstitial areas or within cells, avoiding the washout of solutions. Magnification micrographs showed intimal proliferation was significantly inhibited when RSV-c was applied. Moreover, no adverse events were documented in in vitro or in vivo studies.. RSV can be advantageously administered in the arterial walls by a drug-delivery catheter to reduce the risk of restenosis. Topics: Angioplasty, Balloon; Animals; Cardiovascular Agents; Cell Proliferation; Cells, Cultured; Coated Materials, Biocompatible; Disease Models, Animal; Equipment Design; Humans; Hyperplasia; Iliac Artery; Male; Muscle, Smooth, Vascular; Myocytes, Smooth Muscle; Neointima; Rabbits; Resveratrol; Stilbenes; Vascular Access Devices; Vascular System Injuries | 2016 |
The effect of resveratrol on the recurrent attacks of gouty arthritis.
Gouty arthritis is characterized by inflammation induced by monosodium urate (MSU) crystal deposition, which is resulted by an increase of serum urate concentration. The management of gout, especially the recurrent acute attacks of chronic gouty arthritis, is still a problem to be resolved. In this study, we aimed to develop the preventive and therapeutic effect of resveratrol on gouty arthritis. MSU was used to induce gouty arthritis in the foot pad of C57BL/6 mice. Yeast polysaccharide and potassium oxonate were used to induce hyperuricemia in Kunming mice. Resveratrol was intraperitoneal injected to the mice in the treatment group. The pad inflammation and the level of serum uric acid were investigated to estimate the effect of resveratrol in gouty arthritis. Hyperuricemia was significantly detected in the mice treated with yeast polysaccharide and potassium oxonate, and gouty arthritis was successfully induced with MSU in mice. We further identified that resveratrol inhibited pad swelling and pad 99mTc uptake in gouty mice. Moreover, serum uric acid level was also decreased by resveratrol in hyperuricemia mice. This study highlighted that resveratrol might be applied to prevent the recurrent acute attack of gouty arthritis because of its inhibition of articular inflammation and down-regulation of serum uric acid. Topics: Animals; Arthritis, Gouty; Disease Models, Animal; Female; Kidney; Male; Mice; Mice, Inbred C57BL; Recurrence; Resveratrol; Stilbenes; Treatment Outcome; Uric Acid | 2016 |
Riluzole- and Resveratrol-Induced Delay of Retinal Ganglion Cell Death in an Experimental Model of Glaucoma.
To evaluate the effects of the neuroprotective agents riluzole and resveratrol on the survival of retinal ganglion cells (RGCs) when administered alone or in combination.. Experimental glaucoma was induced by injecting hyaluronic acid into the anterior chamber of Wistar albino rats weekly for a six-week period. Intraocular pressure was measured before and immediately after glaucoma induction. The neuroprotective effects of daily intraperitoneal injections of riluzole (8 mg/kg) and resveratrol (10 mg/kg) were evaluated and compared. After the six-week period, dextran tetramethylrhodamine was applied into the optic nerve and the density of surviving RGCs was evaluated by counting the labeled RGCs in whole mount retinas for retrograde labeling of RGCs.. The mean numbers of RGCs were significantly preserved in all treatment groups compared to the vehicle-treated glaucoma group (G). The mean number of RGCs in mm(2) were 1207 ± 56 in the control group (C), 404 ± 65 in G group, 965 ± 56 in riluzole-treated group in the early phase of glaucoma (E-Ri), 714 ± 25 in riluzole-treated group in the late phase of glaucoma (L-Ri), 735 ± 29 in resveratrol-treated group in the early phase of glaucoma (E-Re), 667 ± 20 in resveratrol-treated group in the late phase of glaucoma (L-Re), and 1071 ± 49 in riluzole and resveratrol combined-treated group in the early phase of glaucoma (E-RiRe group).. When used either alone or in combination, both riluzole and resveratrol, two agents with different mechanisms of action in glaucoma, significantly delayed RGC loss in this study's experimental glaucoma model. Topics: Animals; Antioxidants; Cell Count; Cell Survival; Disease Models, Animal; Drug Therapy, Combination; Glaucoma; Injections, Intraperitoneal; Intraocular Pressure; Male; Neuroprotective Agents; Rats; Rats, Wistar; Resveratrol; Retinal Ganglion Cells; Riluzole; Stilbenes; Tonometry, Ocular | 2016 |
Effect of resveratrol and orchidectomy on the vasorelaxing influence of perivascular adipose tissue.
Perivascular adipose tissue (PVAT) releases several adipo(cyto)kines. Some are vasoactive substances that elicit a net beneficial anticontractile effect. Resveratrol and testosterone are known to modulate adipo(cyto)kine release from adipose tissue and could therefore influence the anticontractile effect of PVAT. In vitro tension measurements were performed using thoracic aorta segments with and without adipose tissue from sham-operated or orchidectomized male Swiss mice. Concentration-response curves to norepinephrine (NOR) were constructed in the presence and absence of resveratrol (10 μM, 15 min) or the relaxant effect of resveratrol (10-100 μM) was investigated after inducing tone with NOR (5 μM). Aortas with PVAT displayed significantly attenuated contractions to NOR compared with aortas without PVAT. In aortas without PVAT, resveratrol (10 μM) significantly decreased NOR responses and elicited concentration-dependent (10-100 µM) relaxations. However, in aortas with adherent PVAT, resveratrol (10 μM) neither decreased NOR responses, nor did resveratrol (10-100 µM) induce arterial relaxations. The anticontractile effect of PVAT was less pronounced in the presence of resveratrol and unaltered by orchidectomy. Orchidectomy did not influence contractions induced by NOR. Orchidectomy does not modulate the anticontractile capacity of PVAT, while resveratrol decreases the vasorelaxing influence of PVAT. The positive effects associated with resveratrol addition are neutralized by the presence of PVAT. This is thought to result from a dual effect of resveratrol: (1) inhibition of the influence of vasodilatory adipo(cyto)kines and (2) a direct relaxant effect on the vascular smooth muscle. Overall, the beneficial relaxing effect of resveratrol is lost in mice thoracic aorta surrounded by PVAT. Topics: Adipose Tissue; Animals; Aorta, Thoracic; Disease Models, Animal; Male; Mice; Muscle, Smooth, Vascular; Orchiectomy; Platelet Aggregation Inhibitors; Resveratrol; Stilbenes; Vascular Diseases; Vasoconstriction; Vasodilation | 2016 |
Resveratrol reduces amyloid-beta (Aβ₁₋₄₂)-induced paralysis through targeting proteostasis in an Alzheimer model of Caenorhabditis elegans.
Resveratrol is a polyphenol present in red wine for which the capability of directly interfering with the hallmark of Alzheimer's disease (AD), i.e. toxic β-amyloid protein (Aβ) aggregation, has been shown recently. Since the stimulation of proteostasis could explain reduced Aβ-aggregation, we searched for proteostasis targets of resveratrol.. The transgenic Caenorhabditis elegans strain CL2006, expressing Aβ1-42 under control of a muscle-specific promoter and responding to Aβ-toxicity with paralysis, was used as a model. Target identification was accomplished through specific knockdowns of proteostasis genes by RNA interference. Effects of resveratrol on protein aggregation were identified using ProteoStat(®) Detection Reagent, and activation of proteasomal degradation by resveratrol was finally proven using a specific fluorogenic peptide substrate.. Resveratrol at a concentration of 100 µM caused a 40 % decrease in paralysis. UBL-5 involved in unfolded protein response (UPR) in mitochondria proved to be necessary for the prevention of Aβ-toxicity by resveratrol. Also XBP-1, which represents an endoplasmic reticulum-resident factor involved in UPR, was identified to be necessary for the effects of resveratrol. Regarding protein degradation pathways, the inhibition of macroautophagy and chaperone-mediated autophagy prevented resveratrol from reducing paralysis as did the inhibition of proteasomal degradation. Finally, resveratrol reduced the amount of lysosomes, suggesting increased flux of proteins through the autophagy pathways and activated proteasomal degradation.. Resveratrol reduces the Aβ-induced toxicity in a C. elegans model of AD by targeting specific proteins involved in proteostasis and thereby reduces the amount of aggregated Aβ. Topics: Alzheimer Disease; Amyloid beta-Peptides; Animals; Autophagy; Caenorhabditis elegans; Caenorhabditis elegans Proteins; Carrier Proteins; Disease Models, Animal; Endoplasmic Reticulum Stress; Mitochondria; Paralysis; Peptide Fragments; Proteasome Endopeptidase Complex; Proteostasis Deficiencies; Resveratrol; RNA Interference; Stilbenes; Ubiquitins; Unfolded Protein Response | 2016 |
Fruit peel polyphenols demonstrate substantial anti-tumour effects in the model of breast cancer.
Fruit and vegetable intake is inversely correlated with cancer; thus, it is proposed that an extract of phytochemicals as present in whole fruits, vegetables, or grains may have anti-carcinogenic properties. Thus, the anti-tumour effects of fruit peel polyphenols (Flavin7) in the chemoprevention of N-methyl-N-nitrosourea-induced mammary carcinogenesis in female rats were evaluated.. Lyophilized substance of Flavin7 (F7) was administered at two concentrations of 0.3 and 3 % through diet. The experiment was terminated 14 weeks after carcinogen administration, and mammary tumours were removed and prepared for histopathological and immunohistochemical analysis. In addition, using an in vitro cytotoxicity assay, apoptosis and proliferation after F7 treatment in human breast adenocarcinoma (MCF-7) cells were performed.. High-dose F7 suppressed tumour frequency by 58 % (P < 0.001), tumour incidence by 24 % (P < 0.05), and lengthened latency by 8 days (P > 0.05) in comparison with the control rats, whereas lower dose of F7 was less effective. Histopathological analysis of tumours showed significant decrease in the ratio of high-/low-grade carcinomas after high-dose F7 treatment. Immunohistochemical analysis of rat carcinoma cells in vivo found a significant increase in caspase-3 expression and significant decrease in Bcl-2, Ki67, and VEGFR-2 expression in the high-dose group. Both doses demonstrated significant positive effects on plasma lipid metabolism in rats. F7 significantly decreased survival of MCF-7 cells in vitro in MTT assay by dose- and time-dependent manner compared to control. F7 prevented cell cycle progression by significant enrichment in G1 cell populations. Incubation with F7 showed significant increase in the percentage of annexin V-/PI-positive MCF-7 cells and DNA fragmentation.. Our results reveal a substantial tumour-suppressive effect of F7 in the breast cancer model. We propose that the effects of phytochemicals present in this fruit extract are responsible for observed potent anti-cancer activities. Topics: Animals; Antineoplastic Agents, Phytogenic; Apoptosis; bcl-2-Associated X Protein; Caspase 3; Cell Proliferation; Disease Models, Animal; DNA Fragmentation; Dose-Response Relationship, Drug; Female; Flavonoids; Fruit; Humans; Ki-67 Antigen; Mammary Neoplasms, Experimental; MCF-7 Cells; Methylnitrosourea; Polyphenols; Rats; Stilbenes; Tyrosine; Vascular Endothelial Growth Factor Receptor-2 | 2016 |
Antioxidant Treatments Recover the Alteration of Auditory-Evoked Potentials and Reduce Morphological Damage in the Inferior Colliculus after Perinatal Asphyxia in Rat.
Maturation of the auditory pathway is dependent on the central nervous system myelination and it can be affected by pathologies such as neonatal hypoxic ischemic (HI) encephalopathy. Our aim was to evaluate the functional integrity of the auditory pathway and to visualize, by histological and cellular methods, the damage to the brainstem using a neonatal rat model of HI brain injury. To carry out this morphofunctional evaluation, we studied the effects of the administration of the antioxidants nicotine, melatonin, resveratrol and docosahexaenoic acid after hypoxia-ischemia on the inferior colliculus and the auditory pathway. We found that the integrity of the auditory pathway in the brainstem was altered as a consequence of the HI insult. Thus, the auditory brainstem response (ABR) showed increased I-V and III-V wave latencies. At a histological level, HI altered the morphology of the inferior colliculus neurons, astrocytes and oligodendricytes, and at a molecular level, the mitochondria membrane potential and integrity was altered during the first hours after the HI and reactive oxygen species (ROS) activity is increased 12 h after the injury in the brainstem. Following antioxidant treatment, ABR interpeak latency intervals were restored and the body and brain weight was recovered as well as the morphology of the inferior colliculus that was similar to the control group. Our results support the hypothesis that antioxidant treatments have a protective effect on the functional changes of the auditory pathway and on the morphological damage which occurs after HI insult. Topics: Animals; Animals, Newborn; Antioxidants; Astrocytes; Body Weight; Disease Models, Animal; Docosahexaenoic Acids; Evoked Potentials, Auditory, Brain Stem; Gliosis; Hypoxia-Ischemia, Brain; Inferior Colliculi; Melatonin; Neurons; Neuroprotective Agents; Nicotine; Oligodendroglia; Organ Size; Random Allocation; Rats, Sprague-Dawley; Reactive Oxygen Species; Resveratrol; Stilbenes | 2016 |
Chronic treatment with resveratrol, a natural polyphenol found in grapes, alleviates oxidative stress and apoptotic cell death in ovariectomized female rats subjected to chronic cerebral hypoperfusion.
Resveratrol appears to have neuroprotective potential in various animal models of brain disorders including cerebral ischemia and neurodegenerative diseases. Chronic cerebral hypoperfusion is a well-known pathological condition contributing to the neurodegenerative diseases such as vascular dementia. Purpose of the present study is to evaluate the possible therapeutic potential of resveratrol in a model of vascular dementia of ovariectomized female rats. Assessment of the potential was based on the determination of brain oxidative status, caspase-3 level, glial fibrillary acidic protein (GFAP), and neuronal damage on hippocampus and cerebral cortex.. For creating the model of chronic cerebral hypoperfusion, ovariectomized female Wistar rats were subjected to the modified two vessel occlusion method, with the right common carotid artery being occluded first and the left one a week later.. At the 15th day following the ligation, neuronal damage was accompanied by the increased immunoreactivities of both GFAP and caspase-3, and significant neurodegeneration was evident in the hippocampus and cortex, all of which were significantly alleviated with resveratrol treatment (10 mg/kg). Biochemical analysis revealed that the resveratrol treatment decreased lipid peroxidation and restored reduced glutathione level as well.. The collected data of the present study suggest that the administration of resveratrol may provide a remarkable therapeutic benefit for vascular dementia, which is most likely related to the prevention of both apoptotic cell death and oxidative stress. We believe that therapeutic efficacy of resveratrol deserves to be tested for potential clinical application in postmenopausal elderly women suffering from vascular dementia. Topics: Animals; Antioxidants; Apoptosis; Biomarkers; Caspase 3; Cerebral Cortex; Dementia, Vascular; Dietary Supplements; Disease Models, Animal; Female; Glial Fibrillary Acidic Protein; Glutathione; Hippocampus; Lipid Peroxidation; Neuroprotective Agents; Ovariectomy; Oxidative Stress; Random Allocation; Rats, Wistar; Resveratrol; Stilbenes | 2016 |
Resveratrol mediates therapeutic hepatic effects in acquired and genetic murine models of iron-overload.
Abnormal iron metabolism and hepatic iron-overload is a major cause of liver injury and in the development of chronic liver diseases. Iron-overload-mediated liver disease leads to end-stage cirrhosis and/or hepatocellular carcinoma.. Using a genetic hemochromatosis (hemojuvelin knockout mice) and non-genetic (secondary iron-overload) murine models of hepatic iron-overload, we elucidated the mechanism of hepatic iron injury and the therapeutic effects of resveratrol.. Hepatic iron-overload was associated with hepatosplenomegaly, increased oxidative stress, hepatic fibrosis, and inflammation, and a pro-apoptotic state which was markedly corrected by resveratrol therapy. Importantly our aging studies with the hemojuvelin knockout mice showed advanced liver disease in association with steatosis in the absence of a diabetic state which recapitulates the essential pathological features seen in clinical iron-overload. Chronic hepatic iron-overload showed increased nuclear localization of acetylated Forkhead fox-O-1 (FoxO1) transcription factor whereas resveratrol dietary intervention reversed the acetylation of FoxO1 in association with increased SIRT1 levels which together with its pleotropic antioxidant properties are likely key mechanisms of its therapeutic action. Importantly, resveratrol treatment did not affect the degree of hepatic iron-overload but rather direct protects the liver from iron-mediated injury.. Our findings illustrate a novel and definitive therapeutic action of resveratrol and represent an economically feasible therapeutic intervention to treat hepatic iron-overload and liver disease. Topics: Acetylation; Animals; Antioxidants; Apoptosis; Chronic Disease; Disease Models, Animal; Forkhead Box Protein O1; Forkhead Transcription Factors; Hemochromatosis; Iron; Iron Overload; Liver Diseases; Mice; Models, Genetic; Oxidative Stress; Resveratrol; Sirtuin 1; Stilbenes; Treatment Outcome | 2016 |
Protective effect of ursodeoxycholic acid, resveratrol, and N-acetylcysteine on nonalcoholic fatty liver disease in rats.
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease. Resveratrol (RSV) and N-acetylcysteine (NAC) are safe representatives of natural and synthetic antioxidants, respectively.. The objective of this study was to evaluate protective effects of RSV and NAC, compared with ursodeoxycholic acid (UDCA), on experimental NAFLD.. NAFLD was induced by feeding rats a methionine choline-deficient diet (MCDD) for four cycles, each of 4 d of MCDD feeding and 3 d of fasting. Animals were divided into normal control, steatosis control, and five treatment groups, receiving UDCA (25 mg/kg/d), RSV (10 mg/kg/d), NAC (20 mg/kg/d), UDCA + RSV, and UDCA + NAC orally for 28 d. Liver integrity markers (liver index and serum transaminases), serum tumor necrosis factor-α (TNF-α), glucose, albumin, renal functions (urea, creatinine), lipid profile (total cholesterol; TC, triglycerides, high density lipoproteins, low density lipoproteins; LDL-C, very low density lipoproteins, leptin), and oxidative stress markers (hepatic malondialdehyde; MDA, glutathione; GSH, glutathione-S-transferase; GST) were measured using automatic analyzer, colorimetric kits, and ELISA kits, supported by a liver histopathological study.. RSV and NAC administration significantly improved liver index (RSV only), alanine transaminase (52, 52%), TNF-α (70, 70%), glucose (69, 80%), albumin (122, 114%), MDA (55, 63%), GSH (160, 152%), GST (84, 84%), TC (86, 86%), LDL-C (83, 81%), and leptin (59, 70%) levels compared with steatosis control values. A combination of RSV or NAC with UDCA seems to ameliorate their effects.. RSV and NAC are effective on NAFLD through antioxidant, anti-inflammatory, and lipid-lowering potentials, where as RSV seems better than UDCA or NAC. Topics: Acetylcysteine; Animals; Antioxidants; Biomarkers; Choline Deficiency; Cytoprotection; Disease Models, Animal; Hypolipidemic Agents; Lipids; Liver; Male; Methionine; Non-alcoholic Fatty Liver Disease; Oxidative Stress; Rats, Wistar; Resveratrol; Stilbenes; Ursodeoxycholic Acid | 2016 |
Effect of resveratrol on experimental non-alcoholic fatty liver disease depends on severity of pathology and timing of treatment.
Non-alcoholic steatohepatitis (NASH) is a leading cause of chronic liver disease with few therapeutic options. Resveratrol (RSV) prevents the development of steatosis in a number of experimental fatty liver (non-alcoholic fatty liver [NAFL]) models, but the preventive or therapeutic effects on experimental NASH are not yet clarified, and clinical results on non-alcoholic fatty liver disease are ambiguous. Thus, we aimed to compare the RSV-mediated preventive and therapeutic effects on experimental NAFL and NASH.. We used a high-fat (HF) diet to generate a rat NAFL model and a high-fat, high-cholesterol (HFC) diet to generate a rat NASH model. The preventive and therapeutic potential of RSV was tested by adding RSV to the HF and HFC diet from study start or after 1 week of the diets. Animals were sacrificed after 8 weeks with appropriate controls. Blood and liver were harvested for analysis, including measurement of RSV metabolites.. Resveratrol reduced the development of histological steatosis (P = 0.03) and partly triglyceride accumulation (fold change reduced from 3.6 to 2.4, P = 0.08) in the male NAFL model, although effects were moderate. In NASH prevention, RSV reduced the accumulation of triglyceride in hepatic tissue (P < 0.01), while there was no effect on biochemical, histopathological, or transcriptional NASH changes. Further, RSV had no therapeutic effect on established NASH. We found RSV metabolites but no parent RSV in serum or liver tissue, confirming low bioavailability.. These experimental findings suggest that a weak hepatic benefit of RSV treatment is seen in prevention of steatosis only. Topics: Animals; Antioxidants; Biological Availability; Disease Models, Animal; Female; Liver; Male; Non-alcoholic Fatty Liver Disease; Rats, Wistar; Resveratrol; Stilbenes; Triglycerides | 2016 |
Resveratrol prevents renal lipotoxicity in high-fat diet-treated mouse model through regulating PPAR-α pathway.
Resveratrol (RSV) has beneficial effects on renal diseases, but its underlying mechanisms are still unclear. In the present study, we investigate the renoprotective effects of RSV on obesity-related renal diseases and clarify the potential mechanisms. Male C57BL/6J mice were fed with high-fat diet (HFD) with or without 400 mg/kg RSV treatment for 12 weeks. Feeding HFD induced renal injuries, but treating them with RSV significantly decreased glomerular volume (p < 0.05), glycogen (p < 0.01) and collagen (p < 0.05) in renal tissues. Although slightly changed body weight and fasting blood glucose, RSV attenuated renal dysfunction, including decreased levels of blood urea nitrogen (p < 0.05), urea protein (p < 0.01), and microalbuminuria (p < 0.01). Furthermore, RSV treatment markedly reduced gene expression of tumor necrosis factor (TNF)-α, interleukin (IL)-6 and inducible nitric oxide synthase (iNOS) (all p < 0.05), 4-Hydroxynonenal expression (p < 0.01), and lipid accumulation. Mechanistically, RSV enhanced the expression of lipolytic genes, peroxisome proliferator-activated receptor (PPAR)-α (p < 0.001), carnitine palmitoyltransferase (CPT)-1 (p < 0.05), and medium-chain acyl-coenzyme A dehydrogenase (MCAD) (p < 0.01), but had no effect on lipogenic genes, PPAR-γ and sterol regulatory element-binding protein (SREBP)-1c. RSV also obviously increased renal PPAR-α protein expression (p < 0.001) and the phosphorylation of AMPK level. Collectively, these results support the therapeutic effects of RSV on high-fat diet-induced renal damages at least partially through targeting on PPAR-α signaling pathway. Topics: Animals; Diet, High-Fat; Disease Models, Animal; Inflammation; Kidney; Male; Mice; Mice, Inbred C57BL; Oxidative Stress; PPAR alpha; Resveratrol; Signal Transduction; Stilbenes | 2016 |
Topical trans-resveratrol ameliorates steroid-induced anterior and posterior segment changes in rats.
Steroid-induced hypertension and glaucoma is associated with increased extracellular meshwork (ECM) deposition in trabecular meshwork (TM). Previous studies have shown that single drop application of trans-resveratrol lowers IOP in steroid-induced ocular hypertensive (SIOH) rats. This IOP lowering is attributed to activation of adenosine A1 receptors, which may lead to increased matrix metalloproteinase (MMP)-2 activity. This study evaluated the effect of repeated topical application of trans-resveratrol for 21 days in SIOH animals on IOP, changes in MMP-2 level in aqueous humor, trabecular meshwork and retinal morphology and retinal redox status. We observed that treatment with trans-resveratrol results in significant and sustained IOP reduction in SIOH rats. This IOP reduction is associated with significantly higher aqueous humor total MMP-2 level; significantly reduced TM thickness and increased number of TM cells. Treatment with trans-resveratrol also significantly increased ganglion cell layer (GCL) thickness, the linear cell density in the GCL and inner retina thickness; and significantly reduced retinal oxidative stress compared to the SIOH vehicle-treated group. In conclusion, repeated dose topical application of trans-resveratrol produces sustained IOP lowering effect, which is associated with increased level of aqueous humor MMP-2, normalization of TM and retinal morphology and restoration of retinal redox status. Topics: Administration, Topical; Animals; Antioxidants; Aqueous Humor; Cell Count; Disease Models, Animal; Female; Glucocorticoids; Intraocular Pressure; Male; Matrix Metalloproteinase 2; Ocular Hypertension; Ophthalmic Solutions; Oxidation-Reduction; Oxidative Stress; Rats; Rats, Sprague-Dawley; Resveratrol; Retina; Retinal Ganglion Cells; Stilbenes; Tonometry, Ocular; Trabecular Meshwork | 2016 |
Resveratrol prevents alveolar bone loss in an experimental rat model of periodontitis.
Resveratrol is an antioxidant and anti-inflammatory polyphenol. Periodontitis is induced by oral pathogens, where a systemic inflammatory response accompanied by oxidative stress is the major event initiating disease. We investigated how resveratrol modulates cellular responses and the mechanisms related to this modulation in lipopolysaccharide (LPS)-stimulated human gingival fibroblasts (hGFs). We also explored whether resveratrol protects rats against alveolar bone loss in an experimental periodontitis model. Periodontitis was induced around the first upper molar of the rats by applying ligature infused with LPS. Stimulating hGFs with 5μg/ml LPS augmented the expression of cyclooxygenase-2, matrix metalloproteinase (MMP)-2, MMP-9, and Toll-like receptor-4. LPS treatment also stimulated the production of reactive oxygen species (ROS) and the phosphorylation of several protein kinases in the cells. However, the expression of heme oxygenase-1 (HO-1) and nuclear factor-E2 related factor 2 (Nrf2) was inhibited by the addition of LPS. Resveratrol treatment almost completely inhibited all of these changes in LPS-stimulated cells. Specifically, resveratrol alone augmented HO-1 induction via Nrf2-mediated signaling. Histological and micro-CT analyses revealed that administration of resveratrol (5mg/kg body weight) improved ligature/LPS-mediated alveolar bone loss in rats. Resveratrol also attenuated the production of inflammation-related proteins, the formation of osteoclasts, and the production of circulating ROS in periodontitis rats. Furthermore, resveratrol suppressed LPS-mediated decreases in HO-1 and Nrf2 levels in the inflamed periodontal tissues. Collectively, our findings suggest that resveratrol protects rats from periodontitic tissue damage by inhibiting inflammatory responses and by stimulating antioxidant defense systems.. The aims of this study were to investigate how resveratrol modulates cellular responses and the mechanisms related to this modulation in lipopolysaccharide (LPS)-stimulated human gingival fibroblasts (hGFs) and protects rats against alveolar bone disruption in an experimental periodontitis model. Our findings suggest that resveratrol protects rats from periodontitic tissue damage by inhibiting inflammatory responses and by stimulating antioxidant defense systems. On the basis of our experiment studies, we proposed that resveratrol could be used as novel bioactive materials or therapeutic drug for the treatment of periodontitis or other inflammatory bone diseases like osteoporosis, arthritis etc. Furthermore, it could be also used for the modification or coating of implant materials as an antiinflammatory molecules which will help to accelerate bone formation. There are a few of reports suggesting antioxidant and anti-inflammatory potentials of resveratrol. However, our results highlight the cellular mechanisms by which resveratrol inhibits LPS-mediated cellular damages using human-originated gingival fibroblasts and also support the potential of resveratrol to suppress periodontitis-mediated tissue damages. We believe that the present findings might improve a clinical approach of using of resveratrol on human, although further detailed experiments will be needed. Topics: Adult; Alveolar Bone Loss; Animals; Disease Models, Animal; Extracellular Matrix Proteins; Humans; Lipopolysaccharides; Male; Periodontitis; Rats; Rats, Sprague-Dawley; Resveratrol; Stilbenes | 2016 |
Resveratrol attenuates the progress of liver fibrosis via the Akt/nuclear factor-κB pathways.
Liver fibrosis is a wound-healing response to chronic liver injury that results in the accumulation of extracellular matrix proteins. It eventually leads to cirrhosis of the liver and liver failure, and it is a critical threat to the health and lives of patients with chronic liver diseases. No effective treatment is currently available. Resveratrol is a polyphenol with antioxidant, anti‑cancer and anti‑inflammatory properties. It has been reported that resveratrol prevents liver fibrosis, possibly by inhibiting NF‑κB activation. The present study investigated the mechanisms by which resveratrol prevented liver fibrosis, focusing on the possible involvement of the NF‑κB pathway. Mice with carbon tetrachloride (CCl4)‑induced liver fibrosis were treated with various concentrations of resveratrol. Serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST) and tumor necrosis factor (TNF)‑α were detected by ELISAs. Expression of α‑smooth muscle actin (α‑SMA), collagen I, inhibitor of NF‑κB (IκB) and NF‑κB were detected by western blot analysis. In addition, the present study examined the effects of resveratrol on the expression of fibrosis markers in LX‑2 cells. Western blot analysis was further used to detect the levels of Akt and phosphorylated Akt, as well as the nuclear levels of IκB, phosphorylated IκB and NF‑κB p65. The expression of α‑SMA in resveratrol‑treated LX‑2 cells was detected by immunofluorescence and flow cytometry, which demonstrated that resveratrol decreased the expression of α‑SMA in LX‑2 cells. Resveratrol also decreased CCl4‑induced upregulation of serum AST, ALT, TNF‑α, α‑SMA and collagen I. Finally, resveratrol prevented the activation of NF‑κB and Akt. The results of the present study therefore indicated that resveratrol attenuates liver fibrosis via the Akt/NF-κB pathways. Topics: Actins; Animals; Biomarkers; Cell Line; Disease Models, Animal; Disease Progression; Enzyme Activation; Humans; Liver Cirrhosis; Male; Mice, Inbred C57BL; NF-kappa B; Proto-Oncogene Proteins c-akt; Resveratrol; Signal Transduction; Stilbenes | 2016 |
Resveratrol inhibits mucus overproduction and MUC5AC expression in a murine model of asthma.
Previous in vitro studies have demonstrated that resveratrol is able to significantly inhibit the upregulation of mucin 5AC (MUC5AC), a major component of mucus; thus indicating that resveratrol may have potential in regulating mucus overproduction. However, there have been few studies regarding the resveratrol‑mediated prevention of MUC5AC overproduction in vivo, and the mechanisms by which resveratrol regulates MUC5AC expression have yet to be elucidated. In the present study, an ovalbumin (OVA)‑challenged murine model of asthma was used to assess the effects of resveratrol treatment on mucus production in vivo. The results demonstrated that resveratrol significantly inhibited OVA‑induced airway inflammation and mucus production. In addition, the mRNA and protein expression levels of MUC5AC were increased in the OVA‑challenged mice, whereas treatment with resveratrol significantly inhibited this effect. The expression levels of murine calcium‑activated chloride channel (mCLCA)3, an important key mediator of MUC5AC production, were also reduced following resveratrol treatment. Furthermore, in vitro studies demonstrated that resveratrol significantly inhibited human (h)CLCA1 and MUC5AC expression in a dose‑dependent manner. These results indicated that resveratrol was effective in preventing mucus overproduction and MUC5AC expression in vivo, and its underlying mechanism may be associated with regulation of the mCLCA3/hCLCA1 signaling pathway. Topics: Animals; Asthma; Cell Line; Disease Models, Animal; Epithelial Cells; Female; Gene Expression Regulation; Humans; Lung; Mice, Inbred BALB C; Mucin 5AC; Mucus; Pneumonia; Resveratrol; Stilbenes | 2016 |
Aloe vera and Vitis vinifera improve wound healing in an in vivo rat burn wound model.
Aloe vera and Vitis vinifera have been traditionally used as wound healing agents. The present study aimed to investigate the effects of aloe emodin and resveratrol in the burn wound healing procedure. Burn wounds are common in developed and developing countries, however, in developing countries, the incidence of severe complications is higher and financial resources are limited. The results of the present study demonstrated that neither aloe emodin or resveratrol were cytotoxic to THP-1 macrophages at concentrations of 1, 100 and 500 ng/ml. A significant increase in wound-healing activity was observed in mice treated with the aloe emodin and resveratrol, compared with those which received control treatments. The levels of IL-1β in the exudates of the burn wound area of the treated mice increased in a time-dependent manner over 7 days following burn wound injury. At 10 days post-injury, steady and progressive wound healing was observed in the control animals. The present study confirmed that increased wound healing occurs following treatment with aloe emodin,, compared with resveratrol, providing support for the use of Aloe vera plants to improve burn wound healing. Topics: Aloe; Animals; Anthraquinones; Burns; Cell Line; Cell Proliferation; Cytokines; Disease Models, Animal; Humans; Interleukin-1beta; Male; Mice, Inbred BALB C; Resveratrol; Stilbenes; Vascular Endothelial Growth Factor A; Vitis; Wound Healing | 2016 |
Pterostilbene Ameliorates Streptozotocin-Induced Diabetes through Enhancing Antioxidant Signaling Pathways Mediated by Nrf2.
Nuclear factor erythroid 2-related factor 2 (Nrf2) remains a master regulator of cytoprotective and antioxidant genes. In this study, we investigated the antidiabetic role of pterostilbene (PTS) in streptozotocin (STZ)-induced diabetic model through Nrf2-mediated antioxidant mechanisms. The ability of PTS to activate Nrf2 in MIN6 cells was assessed by dissociation of the Nrf2-Keap1 complex at different time points and by expression of ARE-driven downstream target genes of Nrf2. Immunoblot experiments examining Nrf2 activation and phosphorylation indicated that it conferred cytoprotection against STZ-induced cellular damage. In STZ-induced diabetic mice, PTS administration significantly decreased blood glucose levels through the improvement of insulin secretion. In addition, we also observed insulin-positive cells with recovered islet architecture in the pancreas of STZ-induced diabetic mice after treatment with PTS. The activation of Nrf2 and expression of its downstream target genes were observed upon PTS treatment, thereby reducing oxidative damage to pancreas. Furthermore, PTS treatment significantly reverted the abundance of key glucose metabolism enzymes, such as hexokinase, glucose-6-phosphatase, glucose-6-phosphate dehydrogenase, and fructose-1,6-bisphosphatase, to near-normal levels in liver tissue of STZ-induced diabetic mice. These results clearly indicate that PTS maintains glucose homeostasis, suggesting the possibility that it is a future candidate for use in diabetes management. Topics: Animals; Antioxidants; Cells, Cultured; Diabetes Mellitus, Experimental; Disease Models, Animal; Hypoglycemic Agents; Male; Mice; NF-E2-Related Factor 2; Reactive Oxygen Species; Signal Transduction; Stilbenes; Streptozocin | 2016 |
SIRT1 activation attenuates diastolic dysfunction by reducing cardiac fibrosis in a model of anthracycline cardiomyopathy.
Doxorubicin (DOXO) is an effective anti-neoplastic drug but its clinical benefits are hampered by cardiotoxicity. Oxidative stress, apoptosis and myocardial fibrosis mediate the anthracycline cardiomyopathy. ROS trigger TGF-β pathway that activates cardiac fibroblasts promoting fibrosis. Myocardial stiffness contributes to diastolic dysfunction, less studied aspect of anthracycline cardiomyopathy. Considering the role of SIRT1 in the inhibition of the TGF-β/SMAD3 pathway, resveratrol (RES), a SIRT1 activator, might improve cardiac function by interfering with the development of cardiac fibrosis in a model of DOXO-induced cardiomyopathy.. F344 rats received a cumulative dose of 15 mg/kg of DOXO in 2 weeks or DOXO+RES (DOXO and RES, 2.5mg/kg/day, concomitantly for 2 weeks and then RES alone for 1 more week). The effects of RES on cardiac fibroblasts were also tested in vitro.. Along with systolic dysfunction, DOXO was also responsible of diastolic abnormalities. Myocardial stiffness correlated with fibroblast activation and collagen deposition. DOXO+RES co-treatment significantly improved ± dP/dt and, more interestingly, ameliorated end-diastolic pressure/volume relationship. Treatment with RES resulted in reduced fibrosis and fibroblast activation and, most importantly, the mortality rate was significantly reduced in DOXO+RES group. Fibroblasts isolated from DOXO+RES-treated rats, in which SIRT1 was upregulated, showed decreased levels of TGF-β and pSMAD3/SMAD3 when compared to cells isolated from DOXO-exposed hearts.. Our findings reveal a key role of SIRT1 in supporting animal survival and functional parameters of the heart. SIRT1 activation by interfering with fibrogenesis can improve relaxation properties of myocardium and attenuate myocardial remodeling related to chemotherapy. Topics: Animals; Anthracyclines; Antibiotics, Antineoplastic; Cardiomyopathies; Cells, Cultured; Diastole; Disease Models, Animal; Doxorubicin; Female; Fibrosis; Rats; Rats, Inbred F344; Resveratrol; Sirtuin 1; Stilbenes | 2016 |
Resveratrol can prevent CCl₄-induced liver injury by inhibiting Notch signaling pathway.
We investigated whether Notch signaling was increased in an experimental liver fibrosis model and examined the effects of resveratrol on Notch expression. Rats were divided into four groups: the control group, injected with physiological saline; the CCl₄ group; the CCl₄ plus resveratrol group; and the resveratrol group. After treatment, immunostaining was performed to detect Notch1, Notch3, Notch4, transforming growth factor (TGF)-beta, alpha-smooth muscle actin (SMA), glial fibrillary acidic protein (GFAP), and proliferating cell nuclear antigen (PCNA), and TUNEL assays were performed to evaluate apoptosis. Sirius red staining was used to detect fibrosis. Samples were also biochemically evaluated for glutathione (GSH), glutathione peroxidase (GPx), catalase (CAT), lipid peroxidation, and protein oxidation. GSH, GPx, and catalase activities were significantly decreased (p⟨0.001) in the CCl₄ group. Distinct collagen accumulation was detected around the central vein and portal areas, and numbers of Notch1-, Notch3-, and Notch4-positive cells were significantly increased (p⟨0.001) in fibrotic areas in the CCl₄ group. Increased expression of Notch proteins in fibrotic areas may support the role of Notch in mediating signaling associated with liver fibrosis through activation of hepatic stellate and progenitor cells. In contrast, resveratrol prevented liver fibrosis by decreasing lipid peroxidation and may be effective for inhibiting Notch signaling. Topics: Animals; Antioxidants; Apoptosis; Carbon Tetrachloride; Chemical and Drug Induced Liver Injury; Disease Models, Animal; Female; Immunohistochemistry; In Situ Nick-End Labeling; Rats; Rats, Wistar; Receptors, Notch; Resveratrol; Signal Transduction; Stilbenes | 2016 |
Resveratrol Protects and Restores Endothelium-Dependent Relaxation in Hypercholesterolemic Rabbit Corpus Cavernosum.
Oxidative stress dependent-decrease in nitric oxide (NO) bioavailability plays an integral role in hypercholesterolemia-induced erectile dysfunction (ED). Resveratrol has been demonstrated to exert beneficial effects against oxidative stress and improve NO bioavailability.. The protective and restorative potentials of resveratrol on endothelium-dependent relaxations were evaluated in hypercholesterolemic rabbit corpus cavernosum (CC).. Hypercholesterolemia was induced by administering 2% cholesterol diet (CD) (w/w) to the rabbits for 6 weeks. Two different protocols were applied to test the effects of resveratrol on hypercholesterolemia-induced ED. In Protocol-1 (P1), resveratrol was administrated to the rabbits simultaneously with CD in order to evaluate the protective effect, and for Protocol-2 (P2), resveratrol was administrated for 6 weeks after termination of CD in order to evaluate the restorative effect.. Endothelium-dependent relaxations of CC were evaluated by using organ bath studies. In order to elucidate the possible molecular mechanisms, we measured endothelial NO synthase (eNOS) and phosphovasodilator-stimulated phosphoprotein (VASP) expressions and activations, NADPH oxidase, superoxide dismutase (SOD), and catalase (CAT) and glutathione peroxidase (GPx) activity in cavernosal tissues obtained at the end of the study.. Resveratrol showed an improvement in the endothelium-dependent relaxation responses in vitro. We demonstrated significantly increased activatory-phosphorylation (p[S1177]-eNOS) and activated phosphovasodilator-stimulated phosphoprotein (phospho-VASP) levels, but reduced phosphorylation (p[T495]-eNOS) of eNOS and NADPH oxidase activity in the resveratrol-administered HC animals compared with hypercholesterolemic control rabbits in the P1. In the P2, resveratrol exhibited an improvement in endothelium-dependent relaxation responses and more pronounced effects on eNOS activation.. Resveratrol administration, either simultaneously with HC diet or after HC, caused an improvement in the endothelium-dependent relaxation responses in the CC, suggesting its potential in both protective and restorative purposes in hypercholesterolemic rabbit CC. Topics: Animals; Cholesterol, Dietary; Disease Models, Animal; Endothelium; Erectile Dysfunction; Hypercholesterolemia; Male; NADPH Oxidases; Nitric Oxide; Nitric Oxide Synthase Type III; Penis; Rabbits; Resveratrol; Stilbenes | 2016 |
Resveratrol exerts antidepressant properties in the chronic unpredictable mild stress model through the regulation of oxidative stress and mTOR pathway in the rat hippocampus and prefrontal cortex.
Depression is one of the most common neuropsychiatric disorders and has been associated with oxidative stress and brain protein alterations. Resveratrol is a natural polyphenol enriched in Polygonum cuspidatum and has diverse biological activities including potent antidepressant-like effects. The present study attempts to explore the mechanisms underlying the antidepressant-like action of resveratrol by measuring oxidative stress parameters and phosphorylation of AKT/mTOR pathway in the rat hippocampus and prefrontal cortex (PFC) exposed to the chronic unpredictable mild stress (CUMS). Male Wistar rats were subjected to CUMS protocol for a period of 4 weeks to induce depressive-like behavior. The results showed that resveratrol treatment (80 mg/kg/i.p. 4 weeks) significantly reversed the CUMS-induced behavioral abnormalities (reduced sucrose preference, increased immobility time and decreased locomotor activity) and biochemical changes (increased lipid peroxidation and decreased superoxide dismutase). Additionally, CUMS exposure significantly decreased phosphorylation of Akt and mTOR in the hippocampus and PFC, while resveratrol treatment normalized these parameters. In conclusion, our study showed that resveratrol exerted antidepressant-like effects in CUMS rats, which was mediated in part by its antioxidant action, up-regulation of phosphor-Akt and mTOR levels in the hippocampus and PFC. Topics: Animals; Antidepressive Agents; Brain; Chronic Disease; Depression; Disease Models, Animal; Exploratory Behavior; Food Preferences; Lipid Peroxidation; Locomotion; Male; Oxidative Stress; Rats; Rats, Wistar; Resveratrol; Signal Transduction; Stilbenes; Stress, Psychological; Swimming; Time Factors; TOR Serine-Threonine Kinases | 2016 |
Obesity Weighs down Memory through a Mechanism Involving the Neuroepigenetic Dysregulation of Sirt1.
Aberrant gene expression within the hippocampus has recently been implicated in the pathogenesis of obesity-induced memory impairment. Whether a dysregulation of epigenetic modifications mediates this disruption in gene transcription has yet to be established. Here we report evidence of obesity-induced alterations in DNA methylation of memory-associated genes, including Sirtuin 1 (Sirt1), within the hippocampus, and thus offer a novel mechanism by which SIRT1 expression within the hippocampus is suppressed during obesity. Forebrain neuron-specific Sirt1 knock-out closely recapitulated the memory deficits exhibited by obese mice, consistent with the hypothesis that the high-fat diet-mediated reduction of hippocampal SIRT1 could be responsible for obesity-linked memory impairment. Obese mice fed a diet supplemented with the SIRT1-activating molecule resveratrol exhibited increased hippocampal SIRT1 activity and preserved hippocampus-dependent memory, further strengthening this conclusion. Thus, our findings suggest that the memory-impairing effects of diet-induced obesity may potentially be mediated by neuroepigenetic dysregulation of SIRT1 within the hippocampus.. Previous studies have implicated transcriptional dysregulation within the hippocampus as being a relevant pathological concomitant of obesity-induced memory impairment, yet a deeper understanding of the basis for, and etiological significance of, transcriptional dysregulation in this context is lacking. Here we present the first evidence of epigenetic dysregulation (i.e., altered DNA methylation and hydroxymethylation) of memory-related genes, including Sirt1, within the hippocampus of obese mice. Furthermore, experiments using transgenic and pharmacological approaches strongly implicate reduced hippocampal SIRT1 as being a principal pathogenic mediator of obesity-induced memory impairment. This paper offers a novel working model that may serve as a conceptual basis for the development of therapeutic interventions for obesity-induced memory impairment. Topics: Animals; Antioxidants; Diet, High-Fat; Dietary Supplements; Disease Models, Animal; DNA Methylation; Excitatory Postsynaptic Potentials; Exploratory Behavior; Gene Expression Regulation; Hippocampus; Insulin; Male; Memory Disorders; Mice; Mice, Inbred C57BL; Mice, Transgenic; Neurons; Obesity; Prosencephalon; Recognition, Psychology; Resveratrol; Sirtuin 1; Spatial Memory; Stilbenes; Time Factors | 2016 |
Resveratrol augments therapeutic efficiency of mouse bone marrow mesenchymal stem cell-based therapy in experimental autoimmune encephalomyelitis.
Experimental autoimmune encephalitis (EAE) is an inflammatory demyelinating disease, which served as a useful model providing considerable insights into the pathogenesis of multiple sclerosis (MS). Mouse bone marrow mesenchymal stem cells (mBM-MSC) were shown to have neuroprotection capabilities in EAE. Resveratrol is a small polyphenolic compound and possess therapeutic activity in various immune-mediated diseases. The sensitivity of mBM-MSCs to resveratrol was determined by an established cell-viability assay. Resveratrol-treated mBM-MSCs were also characterized with flow cytometry using MSC-specific surface markers and analyzed for their multiple differentiation capacities. EAE was induced in C57BL/6 mice by immunization with MOG35-55. Interferon gamma (IFN-γ)/tumor necrosis factor alpha (TNF-α) and interleukin-4 (IL-4)/interleukin-10 (IL-10), the hallmark cytokines that direct T helper type 1 (Th1) and Th2 development, were detected with enzyme-linked immunosorbent assay (ELISA). In vivo efficacy experiments showed that mBM-MSCs or resveratrol alone led to a significant reduction in clinical scores, and combined treatment resulted in even more prominent reduction. The combined treatment with mBM-MSCs and resveratrol enhanced the immunomodulatory effects, showing suppressed proinflammatory cytokines (IFN-γ, TNF-α) and increased anti-inflammatory cytokines (IL-4, IL-10). The combination of mBM-MSCs and resveratrol provides a novel potential experimental protocol for alleviating EAE symptoms. Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Cell Proliferation; Cell Survival; Cytokines; Disease Models, Animal; Encephalomyelitis, Autoimmune, Experimental; Female; Freund's Adjuvant; L-Lactate Dehydrogenase; Mesenchymal Stem Cell Transplantation; Mesenchymal Stem Cells; Mice; Mice, Inbred C57BL; Myelin-Oligodendrocyte Glycoprotein; Peptide Fragments; Resveratrol; Severity of Illness Index; Stilbenes; Time Factors | 2016 |
Induction of miR-137 by Isorhapontigenin (ISO) Directly Targets Sp1 Protein Translation and Mediates Its Anticancer Activity Both In Vitro and In Vivo.
Our recent studies found that isorhapontigenin (ISO) showed a significant inhibitory effect on human bladder cancer cell growth, accompanied with cell-cycle G0-G1 arrest as well as downregulation of Cyclin D1 expression at transcriptional level via inhibition of Sp1 transactivation in bladder cancer cells. In the current study, the potential ISO inhibition of bladder tumor formation has been explored in a xenograft nude mouse model, and the molecular mechanisms underlying ISO inhibition of Sp1 expression and anticancer activities have been elucidated both in vitro and in vivo. Moreover, the studies demonstrated that ISO treatment induced the expression of miR-137, which in turn suppressed Sp1 protein translation by directly targeting Sp1 mRNA 3'-untranslated region (UTR). Similar to ISO treatment, ectopic expression of miR-137 alone led to G0-G1 cell growth arrest and inhibition of anchorage-independent growth in human bladder cancer cells, which could be completely reversed by overexpression of GFP-Sp1. The inhibition of miR-137 expression attenuated ISO-induced inhibition of Sp1/Cyclin D1 expression, induction of G0-G1 cell growth arrest, and suppression of cell anchorage-independent growth. Taken together, our studies have demonstrated that miR-137 induction by ISO targets Sp1 mRNA 3'-UTR and inhibits Sp1 protein translation, which consequently results in reduction of Cyclin D1 expression, induction of G0-G1 growth arrest, and inhibition of anchorage-independent growth in vitro and in vivo. Our results have provided novel insights into understanding the anticancer activity of ISO in the therapy of human bladder cancer. Topics: 3' Untranslated Regions; Animals; Base Sequence; Binding Sites; Cell Line, Tumor; Cell Proliferation; Disease Models, Animal; Ectopic Gene Expression; G1 Phase Cell Cycle Checkpoints; Gene Expression Regulation, Neoplastic; Humans; Mice; MicroRNAs; Protein Biosynthesis; RNA Interference; RNA, Messenger; Sp1 Transcription Factor; Stilbenes; Tumor Burden; Urinary Bladder Neoplasms; Xenograft Model Antitumor Assays | 2016 |
Polydatin ameliorates lipid and glucose metabolism in type 2 diabetes mellitus by downregulating proprotein convertase subtilisin/kexin type 9 (PCSK9).
Abnormalities in lipid and glucose metabolism are constantly observed in type 2 diabetes. However, these abnormalities can be ameliorated by polydatin. Considering the important role of proprotein convertase subtilisin/kexin type 9 (PCSK9) in metabolic diseases, we explore the possible mechanism of polydatin on lipid and glucose metabolism through its effects on PCSK9.. An insulin-resistant HepG2 cell model induced by palmitic acid (PA) and a db/db mice model were used to clarify the role of polydatin on lipid and glucose metabolism.. In insulin-resistant HepG2 cells, polydatin upregulated the protein levels of LDLR and GCK but repressed PCSK9 protein expression, besides, polydatin also inhibited the combination between PCSK9 and LDLR. Knockdown and overexpression experiments indicated that polydatin regulated LDLR and GCK expressions through PCSK9. In the db/db mice model, we found that polydatin markedly enhanced GCK and LDLR protein levels, and inhibited PCSK9 expression in the liver. Molecular docking assay was further performed to analyze the possible binding mode between polydatin and the PCSK9 crystal structure (PDB code: 2p4e), which indicated that steady hydrogen bonds formed between polydatin and PCSK9.. Our study indicates that polydatin ameliorates lipid and glucose metabolism in type 2 diabetes mellitus by downregulating PCSK9. Topics: Animals; Biomarkers; Blood Glucose; Diabetes Mellitus, Type 2; Disease Models, Animal; Down-Regulation; Drugs, Chinese Herbal; Female; Germinal Center Kinases; Glucosides; Hep G2 Cells; Hepatocytes; Humans; Hydrogen Bonding; Hypoglycemic Agents; Insulin Resistance; Lipid Metabolism; Lipids; Liver; Mice; Mice, Inbred C57BL; Molecular Docking Simulation; Palmitic Acid; Proprotein Convertase 9; Proprotein Convertases; Protein Binding; Protein Conformation; Protein Serine-Threonine Kinases; Receptors, LDL; RNA Interference; Serine Endopeptidases; Stilbenes; Time Factors; Transfection | 2016 |
Cardiac Sirt1 mediates the cardioprotective effect of caloric restriction by suppressing local complement system activation after ischemia-reperfusion.
Caloric restriction (CR) confers cardioprotection against ischemia-reperfusion (I/R) injury. We previously found the essential roles of endothelial nitric oxide synthase in the development of CR-induced cardioprotection and Sirt1 activation during CR (Shinmura K, Tamaki K, Ito K, Yan X, Yamamoto T, Katsumata Y, Matsuhashi T, Sano M, Fukuda K, Suematsu M, Ishii I. Indispensable role of endothelial nitric oxide synthase in caloric restriction-induced cardioprotection against ischemia-reperfusion injury.Am J Physiol Heart Circ Physiol 308: H894-H903, 2015). However, the exact mechanism by which Sirt1 in cardiomyocytes mediates the cardioprotective effect of CR remains undetermined. We subjected cardiomyocyte-specific Sirt1 knockout (CM-Sirt1(-/-)) mice and the corresponding control mice to either 3-mo ad libitum feeding or CR (-40%). Isolated perfused hearts were subjected to 25-min global ischemia, followed by 60-min reperfusion. The recovery of left ventricle function after I/R was improved, and total lactate dehydrogenase release into the perfusate during reperfusion was attenuated in the control mice treated with CR, but a similar cardioprotective effect of CR was not observed in the CM-Sirt1(-/-)mice. The expression levels of cardiac complement component 3 (C3) at baseline and the accumulation of C3 and its fragments in the ischemia-reperfused myocardium were attenuated by CR in the control mice, but not in the CM-Sirt1(-/-)mice. Resveratrol treatment also attenuated the expression levels of C3 protein in cultured neonatal rat ventricular cardiomyocytes. Moreover, the degree of myocardial I/R injury in conventional C3 knockout (C3(-/-)) mice treated with CR was similar to that in the ad libitum-fed C3(-/-)mice, although the expression levels of Sirt1 were enhanced by CR. These results demonstrate that cardiac Sirt1 plays an essential role in CR-induced cardioprotection against I/R injury by suppressing cardiac C3 expression. This is the first report suggesting that cardiac Sirt1 regulates the local complement system during CR. Topics: Animals; Antioxidants; Caloric Restriction; Cells, Cultured; Complement Activation; Complement C3; Disease Models, Animal; Genotype; Isolated Heart Preparation; Mice, Inbred C57BL; Mice, Knockout; Myocardial Reperfusion Injury; Myocytes, Cardiac; Nitric Oxide Synthase Type III; Oxidative Stress; Phenotype; Phosphorylation; Rats, Sprague-Dawley; Resveratrol; Sirtuin 1; Stilbenes; Time Factors; Ventricular Function, Left | 2016 |
Resveratrol provides neuroprotection by inhibiting phosphodiesterases and regulating the cAMP/AMPK/SIRT1 pathway after stroke in rats.
Dysfunction of energy metabolism can be a significant and fundamental pathophysiological basis for strokes. In studies of both humans and rodents, resveratrol, a natural polyphenol, has been reported to provide protection from cerebral ischemic injury by regulating expression of silent mating type information regulation 2 homolog 1 (SIRT1). However, direct evidence demonstrating that resveratrol exerts neuroprotection from cerebral ischemia injury by decreasing energy consumption is still lacking. Therefore, the aim of this study was to elucidate the mechanisms and signaling pathways through which resveratrol regulates energy metabolism in the ischemic brain, and to identify potential targets of resveratrol. ATP levels in brain tissues were detected by high performance liquid chromatography. SIRT1 and the phosphorylation of adenosine-monophosphate-activated protein kinase (P-AMPK) expressiones were evaluated by western blot. Levels of phosphodiesterase (PDEs) and cAMP were quantitated by real-time PCR and ELISA, respectively. Results showed that resveratrol significantly reduced the harmful effects of cerebral ischemic injury in vivo. Moreover, levels of ATP, p-AMPK, SIRT1, and cAMP were increased by resveratrol and PDE inhibitors. In conclusion, our findings indicate that resveratrol provides neuroprotection by inhibiting PDEs and regulating the cAMP/AMPK/SIRT1 pathway, which reduces ATP energy consumption during ischemia. Topics: Adenosine Triphosphate; AMP-Activated Protein Kinases; Animals; Brain; Brain Infarction; Cyclic AMP; Disease Models, Animal; Dose-Response Relationship, Drug; Enzyme Inhibitors; Gene Expression Regulation; Male; Neuroprotective Agents; Phosphoric Diester Hydrolases; Phosphorylation; Rats; Rats, Sprague-Dawley; Resveratrol; Rolipram; Signal Transduction; Sirtuin 1; Stilbenes; Stroke | 2016 |
Neuroprotection by combination of resveratrol and enriched environment against ischemic brain injury in rats.
Both resveratrol (RV) and enriched environment (EE) exert beneficial effects on neurological functional recovery after an ischemic brain injury.. The neuroprotective effect of combined treatment of RV and EE was examined in a rat model of middle cerebral artery occlusion (MCAO), aiming to further promote neurological functional recovery.. The combined therapy of RV and EE clearly improved locomotor activity and behaviour examination, compared to the monotherapy of RV or EE alone. Stroke severity was also markedly ameliorated by the co-treatment. Mechanistic study revealed that the combined treatment reduced oxidative stress. Moreover, the detrimental ERK1/2 signalling upregulated by MCAO injury was markedly suppressed by the co-treatment, compared to RV or EE monotherapy.. Altogether, the combined therapy of RV and EE showed a clearly enhanced neuroprotective effect, compared to RV or EE monotherapy, which might be a new strategy for the treatment of ischemic brain injury. Topics: Analysis of Variance; Animals; Brain Edema; Brain Infarction; Brain Injuries; Disease Models, Animal; Environment; Hydrogen Peroxide; Infarction, Middle Cerebral Artery; Locomotion; Male; MAP Kinase Signaling System; Neurologic Examination; Neuroprotective Agents; Nitric Oxide; Oxidative Stress; Rats; Rats, Wistar; Resveratrol; Stilbenes | 2016 |
Identification of sirtuin 1 as a promising therapeutic target for hypertrophic scars.
Sirtuin1 (SIRT1), the founding member of mammalian class III histone deacetylases, is reported to be a drug target involved in fibrotic diseases. However, whether it is an effective drug target in hypertrophic scar treatment is still not known.. In the present study, we observed that SIRT1 localized to both the epidermis and the dermis of skin tissues by immunohistochemistry. After knock-down of SIRT1 by shRNA or up-regulating SIRT1 by resveratrol, the expression of α-SMA, Col1 and Col3 in fibroblasts were detected by western blots. A mouse excision wound healing model was used to observe the changes in collagen fibre associated with the different expression levels of SIRT1.. SIRT1 expression was inhibited in hypertrophic scar tissue. The down-regulation of SIRT1 resulted in an increased expression of α-SMA, Col1 and Col3 in hypertrophic scar-derived fibroblasts. In contrast, the up-regulation of SIRT1 not only inhibited the expression of α-SMA, Col1 and Col3 in hypertrophic scar-derived fibroblasts but also blocked the activation of TGFβ1-induced normal skin-derived fibroblasts. In the mouse model of wound healing, the deletion of SIRT1 resulted in denser collagen fibres and a more disordered structure, whereas resveratrol treatment led to a more organized and thinner collagen fibre, which was similar to that observed during normal wound healing.. The results revealed that SIRT1 negatively regulates TGFβ1-induced fibroblast activation and inhibits excessive scar formation and is, therefore, a promising drug target for hypertrophic scar formation. Topics: Animals; Cells, Cultured; Cicatrix, Hypertrophic; Disease Models, Animal; Humans; Mice; Mice, Inbred BALB C; Resveratrol; RNA, Small Interfering; Sirtuin 1; Stilbenes | 2016 |
Effectiveness and mode of action of a combination therapy for heterotopic ossification with a retinoid agonist and an anti-inflammatory agent.
Heterotopic ossification (HO) consists of ectopic cartilage and bone formation following severe trauma or invasive surgeries, and a genetic form of it characterizes patients with Fibrodysplasia Ossificans Progressiva (FOP). Recent mouse studies showed that HO was significantly inhibited by systemic treatment with a corticosteroid or the retinoic acid receptor γ agonist Palovarotene. Because these drugs act differently, the data raised intriguing questions including whether the drugs affected HO via similar means, whether a combination therapy would be more effective or whether the drugs may hamper each other's action. To tackle these questions, we used an effective HO mouse model involving subcutaneous implantation of Matrigel plus rhBMP2, and compared the effectiveness of prednisone, dexamathaosone, Palovarotene or combination of. Each corticosteroid and Palovarotene reduced bone formation at max doses, and a combination therapy elicited similar outcomes without obvious interference. While Palovarotene had effectively prevented the initial cartilaginous phase of HO, the steroids appeared to act more on the bony phase. In reporter assays, dexamethasone and Palovarotene induced transcriptional activity of their respective GRE or RARE constructs and did not interfere with each other's pathway. Interestingly, both drugs inhibited the activity of a reporter construct for the inflammatory mediator NF-κB, particularly in combination. In good agreement, immunohistochemical analyses showed that both drugs markedly reduced the number of mast cells and macrophages near and within the ectopic Matrigel mass and reduced also the number of progenitor cells. In sum, corticosteroids and Palovarotene appear to block HO via common and distinct mechanisms. Most importantly, they directly or indirectly inhibit the recruitment of immune and inflammatory cells present at the affected site, thus alleviating the effects of key HO instigators. Topics: Animals; Anti-Inflammatory Agents; Body Weight; Cartilage; Cell Movement; Dexamethasone; Disease Models, Animal; Drug Therapy, Combination; Genes, Reporter; Macrophages; Mast Cells; Mice, Inbred C57BL; NF-kappa B; Ossification, Heterotopic; Prednisone; Pyrazoles; Retinoids; Stilbenes; Transfection; Treatment Outcome | 2016 |
Palovarotene Inhibits Heterotopic Ossification and Maintains Limb Mobility and Growth in Mice With the Human ACVR1(R206H) Fibrodysplasia Ossificans Progressiva (FOP) Mutation.
Fibrodysplasia ossificans progressiva (FOP), a rare and as yet untreatable genetic disorder of progressive extraskeletal ossification, is the most disabling form of heterotopic ossification (HO) in humans and causes skeletal deformities, movement impairment, and premature death. Most FOP patients carry an activating mutation in a bone morphogenetic protein (BMP) type I receptor gene, ACVR1(R206H) , that promotes ectopic chondrogenesis and osteogenesis and, in turn, HO. We showed previously that the retinoic acid receptor γ (RARγ) agonist palovarotene effectively inhibited HO in injury-induced and genetic mouse models of the disease. Here we report that the drug additionally prevents spontaneous HO, using a novel conditional-on knock-in mouse line carrying the human ACVR1(R206H) mutation for classic FOP. In addition, palovarotene restored long bone growth, maintained growth plate function, and protected growing mutant neonates when given to lactating mothers. Importantly, palovarotene maintained joint, limb, and body motion, providing clear evidence for its encompassing therapeutic potential as a treatment for FOP. © 2016 American Society for Bone and Mineral Research. Topics: Activin Receptors, Type I; Animals; Bone and Bones; Cell Proliferation; Chondrocytes; Disease Models, Animal; Disease Progression; Extremities; Growth Plate; Homeostasis; Humans; Mice, Transgenic; Movement; Mutation; Myositis Ossificans; Ossification, Heterotopic; Osteogenesis; Pyrazoles; Stilbenes | 2016 |
Resveratrol ameliorates fibrosis and inflammation in a mouse model of nonalcoholic steatohepatitis.
The natural polyphenol compound resveratrol (RSV) is considered to have a broad spectrum of beneficial biological activities upon human health. However, the exact effect of RSV on steatosis (a phenotype of non-alcoholic fatty liver [NAFL]) or fibrosis and inflammation (major phenotypes of non-alcoholic steatohepatitis [NASH]) is not known. Our data showed that administration of RSV (2 or 20 mg/kg/day) did not suppress steatosis in a high-fat diet-induced model of NAFL in mice. In contrast, identical concentrations of RSV dramatically inhibited inflammation and fibrosis in a low-dose lipopolysaccharide-induced model of NASH. These data suggested that RSV administration-mediated improvement of inflammation and fibrosis was due to the inhibition of LPS reactivity controlled by CD14 expression in Kupffer cells. These findings suggest that RSV could be a candidate agent for the treatment of NASH. Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Cell Line; Disease Models, Animal; Fibrosis; Fluorescent Antibody Technique; Gene Expression; Humans; Immunoblotting; Inflammation; Interleukin-6; Lipopolysaccharide Receptors; Lipopolysaccharides; Male; Mice, Inbred C57BL; Non-alcoholic Fatty Liver Disease; Resveratrol; Reverse Transcriptase Polymerase Chain Reaction; Signal Transduction; STAT3 Transcription Factor; Stilbenes; Tumor Necrosis Factor-alpha | 2016 |
Perinatal Resveratrol Supplementation to Spontaneously Hypertensive Rat Dams Mitigates the Development of Hypertension in Adult Offspring.
This study was undertaken to determine whether perinatal maternal resveratrol (Resv)--a phytoalexin known to confer cardiovascular protection--could prevent the development of hypertension and improve vascular function in adult spontaneously hypertensive rat offspring. Dams were fed either a control or Resv-supplemented diet (4 g/kg diet) from gestational day 0.5 until postnatal day 21. Indwelling catheters were used to assess blood pressure and vascular function in vivo; wire myography was used to assess vascular reactivity ex vivo. Perinatal Resv supplementation in dams had no effect on fetal body weights, albeit continued maternal treatment postnatally resulted in growth restriction in offspring by postnatal day 21; growth restriction was no longer evident after 5 weeks of age. Maternal perinatal Resv supplementation prevented the onset of hypertension in adult offspring (-18 mm Hg; P=0.007), and nitric oxide synthase inhibition (with L-NG-nitroarginine methyl ester) normalized these blood pressure differences, suggesting improved nitric oxide bioavailability underlies the hemodynamic alterations in the Resv-treated offspring. In vivo and ex vivo, vascular responses to methylcholine were not different between treatment groups, but prior treatment with L-NG-nitroarginine methyl ester attenuated the vasodilation in untreated, but not Resv-treated adult offspring, suggesting a shift toward nitric oxide-independent vascular control mechanisms in the treated group. Finally, bioconversion of the inactive precursor big endothelin-1 to active endothelin-1 in isolated mesenteric arteries was reduced in Resv-treated offspring (-28%; P<0.05), and this difference could be normalized by L-NG-nitroarginine methyl ester treatment. In conclusion, perinatal maternal Resv supplementation mitigated the development of hypertension and causes persistent alterations in vascular responsiveness in spontaneously hypertensive rats. Topics: Adult; Adult Children; Animals; Animals, Newborn; Dietary Supplements; Disease Models, Animal; Female; Humans; Hypertension; Male; Perinatal Care; Pregnancy; Pregnancy, Animal; Random Allocation; Rats; Rats, Inbred SHR; Reference Values; Resveratrol; Stilbenes | 2016 |
Assessment of resveratrol, apocynin and taurine on mechanical-metabolic uncoupling and oxidative stress in a mouse model of duchenne muscular dystrophy: A comparison with the gold standard, α-methyl prednisolone.
Antioxidants have a great potential as adjuvant therapeutics in patients with Duchenne muscular dystrophy, although systematic comparisons at pre-clinical level are limited. The present study is a head-to-head assessment, in the exercised mdx mouse model of DMD, of natural compounds, resveratrol and apocynin, and of the amino acid taurine, in comparison with the gold standard α-methyl prednisolone (PDN). The rationale was to target the overproduction of reactive oxygen species (ROS) via disease-related pathways that are worsened by mechanical-metabolic impairment such as inflammation and over-activity of NADPH oxidase (NOX) (taurine and apocynin, respectively) or the failing ROS detoxification mechanisms via sirtuin-1 (SIRT1)-peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) (resveratrol). Resveratrol (100mg/kg i.p. 5days/week), apocynin (38mg/kg/day per os), taurine (1g/kg/day per os), and PDN (1mg/kg i.p., 5days/week) were administered for 4-5 weeks to mdx mice in parallel with a standard protocol of treadmill exercise and the outcome was evaluated with a multidisciplinary approach in vivo and ex vivo on pathology-related end-points and biomarkers of oxidative stress. Resveratrol≥taurine>apocynin enhanced in vivo mouse force similarly to PDN. All the compounds reduced the production of superoxide anion, assessed by dihydroethidium staining, with apocynin being as effective as PDN, and ameliorated electrophysiological biomarkers of oxidative stress. Resveratrol also significantly reduced plasma levels of creatine kinase and lactate dehydrogenase. Force of isolated muscles was little ameliorated. However, the three compounds improved histopathology of gastrocnemius muscle more than PDN. Taurine>apocynin>PDN significantly decreased activated NF-kB positive myofibers. Thus, compounds targeting NOX-ROS or SIRT1/PGC-1α pathways differently modulate clinically relevant DMD-related endpoints according to their mechanism of action. With the caution needed in translational research, the results show that the parallel assessment can help the identification of best adjuvant therapies. Topics: Acetophenones; Animals; Antioxidants; Disease Models, Animal; Male; Methylprednisolone; Mice; Mice, Inbred mdx; Muscle, Skeletal; Muscular Dystrophy, Duchenne; NADPH Oxidases; NF-kappa B; Oxidative Stress; Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha; Physical Conditioning, Animal; Reactive Oxygen Species; Resveratrol; Sirtuin 1; Stilbenes; Taurine | 2016 |
Comparison between resveratrol and cabergoline in preventing ovarian hyperstimulation syndrome in a rat model.
The aim of this study is to investigate the effects of resveratrol in a rat model of ovarian hyperstimulation syndrome (OHSS) and compare with cabergoline.. Randomized controlled, animal study.. Female Wistar rats.. A rat OHSS model was used to investigate the effects of resveratrol compare with cabergoline administration for preventing OHSS. Body weight, ovary weight, diameter, vascular permeability (VP), vascular endothelial growth factor (VEGF), cyclooxygenase-2 (COX-2) expression (immunohistochemistry), and serum estradiol (E2) levels were then compared.. The ovarian VEGF concentration was significantly increased in the OHSS Groups (Groups 3-5) compared with the control groups (1 and 2). But vascular permeability, VEGF, and COX-2 expressions were reduced in animals treated with the resveratrol group compared with the cabergoline group (group 5) and the severe OHSS (group 3) group. Blood E2 levels were decreased in group treated with the resveratrol group compared with the cabergoline group (group 5) and severe the OHSS (group 3) group.. Our results in a rat model suggest that resveratrol has a beneficial effect on OHSS by reducing the increases in ovarian daimeter, VP, and VEGF expression associated with OHSS. These effects may be mediated by the COX-2 inhibitory capacity of resveratrol. Topics: Animals; Antioxidants; Cabergoline; Disease Models, Animal; Dopamine Agonists; Ergolines; Female; Ovarian Hyperstimulation Syndrome; Ovary; Random Allocation; Rats; Rats, Wistar; Resveratrol; Stilbenes | 2016 |
Protective effect of resveratrol against chronic intermittent hypoxia-induced spatial memory deficits, hippocampal oxidative DNA damage and increased p47Phox NADPH oxidase expression in young rats.
Long-term intermittent hypoxia (IH) is a characteristic hallmark of obstructive sleep apnea (OSA) and causes most of the neurological aspects of OSA, such as spatial memory and learning deficits. These deficits are accompanied by an increase in oxidative stress and inflammation in brain areas involved in cognition, such as the hippocampus, particularly in children. Resveratrol is a natural polyphenolic compound with potent antioxidant, anti-inflammatory and neuroprotective properties.. The aim of this work is to study the possible protective effect of resveratrol against IH-induced neurobehavioral deficits and to investigate the possible mechanism of this protective effect in the young rat model of OSA.. The effect of resveratrol (5 and 10mg/kg, orally) on anxiety, spatial memory and learning deficits in young rats exposed to IH for 6 weeks and the corresponding biochemical changes were studied.. Resveratrol attenuated IH-induced anxiety and spatial memory deficits, as indicated by the elevated plus maze and Morris water maze tests, respectively, in a dose-dependent manner. In addition, resveratrol antagonized IH-induced increases in hippocampal glutamate, TBARS and 8-OHdG levels and p47Phox expression and decreases in GSH levels and GSH-Px activity in the hippocampus of IH-exposed young rats.. Resveratrol ameliorates IH-induced anxiety and spatial learning deficits through multiple beneficial effects on hippocampal oxidative pathways that involve decreased expression of the p47Phox subunit of NADPH oxidase. Hence, the potential therapeutic role of resveratrol in OSA may be utilized in the near future and deserves further exploration. Topics: 8-Hydroxy-2'-Deoxyguanosine; Animals; Deoxyguanosine; Disease Models, Animal; DNA Damage; Dose-Response Relationship, Drug; Glutamic Acid; Glutathione; Glutathione Reductase; Hemoglobins; Hippocampus; Hypoxia; Male; Maze Learning; Memory Disorders; NADPH Oxidases; Neuroprotective Agents; Rats; Rats, Wistar; Reaction Time; Resveratrol; Stilbenes; Thiobarbituric Acid Reactive Substances | 2016 |
Trans-Resveratrol Enhances the Anticoagulant Activity of Warfarin in a Mouse Model.
Resveratrol is a popular ingredient in dietary supplements. Some patients concomitantly use dietary supplements and medicines in Japan. In the present study, we determined whether trans-resveratrol and melinjo (Gnetum gnemon L.) seed extract (MSE), which contains resveratrol dimers, interacted with drugs using a mouse model.. Male C57BL/6J mice were fed experimental diets containing 0.005%, 0.05%, or 0.5% (w/w) trans-resveratrol or MSE for 1 or 12 weeks. The expression of liver cytochrome P-450 (CYP) mRNA and activity of liver microsomal CYP were measured. To determine the influence of resveratrol or MSE on drug efficacy, the anticoagulant activity of warfarin was examined in mice that were fed diets containing trans-resveratrol or MSE for 12 weeks.. When the mice were fed experimental diets for 1 week, none of the doses of trans-resveratrol and MSE affected body weight, liver weight, or plasma AST and ALT levels. Trans-resveratrol also did not affect CYP1A1, CYP1A2, CYP2C, or CYP3A activities. In contrast, 0.5% MSE slightly increased CYP1A1 activity. When the mice were fed experimental diets for 12 weeks, 0.05% trans-resveratrol increased CYP1A1, CYP2C, and CYP3A activities, whereas 0.5% MSE suppressed CYP3A activity. Under these conditions, 0.5% trans-resveratrol enhanced the anticoagulant activity of warfarin, although CYP2C activity increased. However, MSE did not affect the anticoagulant activity of warfarin.. The 0.05% trans-resveratrol did not interact with warfarin in a mouse model, whereas 0.5% trans-resveratrol may have enhanced the anticoagulant activity of warfarin. Topics: Animals; Anticoagulants; Antioxidants; Blood Coagulation; Cytochrome P-450 Enzyme System; Disease Models, Animal; Drug Combinations; Drug Synergism; Gene Expression Regulation, Enzymologic; Gnetum; Male; Mice; Mice, Inbred C57BL; Microsomes, Liver; Plant Extracts; Real-Time Polymerase Chain Reaction; Resveratrol; Seeds; Stilbenes; Warfarin | 2016 |
Combination Therapy using Co-encapsulated Resveratrol and Paclitaxel in Liposomes for Drug Resistance Reversal in Breast Cancer Cells in vivo.
Multidrug resistance (MDR) is a major impediment to cancer treatment. A promising strategy for treating MDR is the joint delivery of combined anticancer agents to tumor cells in a single nanocarrier. Here, for the first time, Resveratrol (Res) was co-encapsulated with paclitaxel (PTX) in a PEGylated liposome to construct a carrier-delivered form of combination therapy for drug-resistant tumors. The composite liposome had an average diameter of 50 nm with encapsulated efficiencies of above 50%. The studies demonstrated that the composite liposome could generate potent cytotoxicity against the drug-resistant MCF-7/Adr tumor cells in vitro and enhance the bioavailability and the tumor-retention of the drugs in vivo. Moreover, systemic therapy with the composite liposome effectively inhibited drug-resistant tumor in mice (p < 0.01), without any notable increase in the toxicity. These results suggested that the co-delivery of Res and a cytotoxic agent in a nanocarrier may potentially improve the treatment of drug-resistant tumors. Topics: Animals; Antineoplastic Agents, Phytogenic; Breast Neoplasms; Cell Line, Tumor; Cell Survival; Disease Models, Animal; Drug Carriers; Drug Resistance, Multiple; Female; Liposomes; Mice, Inbred BALB C; Paclitaxel; Resveratrol; Stilbenes; Treatment Outcome; Tubulin Modulators | 2016 |
Silencing of USP22 suppresses high glucose-induced apoptosis, ROS production and inflammation in podocytes.
Ubiquitin-specific protease 22 (USP22) has been reported to mediate various cellular processes, including cell proliferation and apoptosis. However, its role in high glucose-induced podocytes and diabetic rats remains unknown. In the current study, podocytes were treated with different concentrations of d-glucose to establish a high glucose-induced injury model. Additionally, intravenous tail injection of rats with 65 mg kg(-1) of streptozotocin (STZ) was performed to establish a diabetic rat model. Our findings showed that the treatment of podocytes with high d-glucose significantly increased the USP22 expression level. Silencing of USP22 in podocytes attenuated high d-glucose-induced apoptosis and inflammatory responses, evidenced by increases in proliferation and MMP levels and decreases in the apoptotic rate, ROS production, the Bax/Bcl-2 ratio, caspase-3 expression and secretion of TNF-α, IL-1β, IL-6 and TGF-β1. In addition, podocytes with USP22 overexpression significantly enhanced the effect of high d-glucose-induced apoptosis and inflammatory responses. Similar to the protective effect of USP22 knockdown, resveratrol (RSV) depressed not only high d-glucose- and USP22 overexpression-induced cytotoxicity, but also the secretion of TNF-α, IL-1β, IL-6 and TGF-β1. Notably, silencing of USP22 in diabetic rats conferred a similar protective effect against high glucose-induced apoptosis and inflammation. Taken together, the findings of the present study have demonstrated for the first time that USP22 inhibition attenuates high glucose-induced podocyte injuries and inflammation. Topics: Animals; Apoptosis; bcl-2-Associated X Protein; Cell Cycle Checkpoints; Cell Proliferation; Cytokines; Diabetes Mellitus, Experimental; Disease Models, Animal; Endopeptidases; Gene Expression; Gene Silencing; Glucose; Inflammation Mediators; Matrix Metalloproteinases; Mice; Podocytes; Proto-Oncogene Proteins c-bcl-2; Rats; Reactive Oxygen Species; Resveratrol; Stilbenes; Ubiquitin Thiolesterase | 2016 |
Resveratrol attenuates neuropathic pain through balancing pro-inflammatory and anti-inflammatory cytokines release in mice.
Anti-inflammatory activity of resveratrol has been widely studied, while its beneficial effect on the management of neuropathic pain, a refractory chronic syndrome with pro-inflammation implicated in, is very little investigated. In the present study, the effects of different doses and various time window of administration of resveratrol were explored in a neuropathic mouse model of chronic constriction injury (CCI) of the sciatic nerve. It was demonstrated that pretreatment of resveratrol (5, 10, 20 and 40 mg/kg) for 7 consecutive days before CCI did not alleviate neuropathic pain, while it clearly relieved the pain when administrated after CCI and such pain relief effect was more pronounced when administrated right after the peak of pain symptom at day 7 after CCI, as evidenced by the alleviation of thermal hyperalgesia and mechanical allodynia. Such a beneficial effect of resveratrol was in a dose-dependent manner. Mechanistic study showed that resveratrol repressed the expression of pro-inflammatory cytokines, including TNF-α, IL-1β and IL-6, and promoted the expression of anti-inflammatory cytokine IL-10 at the same time, which was further confirmed in a cell model of microglia. It was also shown that neuropathic pain inversely correlated with pro-inflammatory cytokines, such as TNF-α, IL-1β and IL-6, but not with anti-inflammatory cytokine IL-10 in all experimental mice from Spearman correlation coefficient. Our study reveals that resveratrol displays a significant neuropathic pain relief effect and paved a way for novel treatment of chronic pain. Topics: Animals; Anti-Inflammatory Agents; Cells, Cultured; Cytokines; Disease Models, Animal; Female; Humans; Hyperalgesia; Mice; Mice, Inbred BALB C; Microglia; Neuralgia; Neurogenic Inflammation; Resveratrol; Sciatic Nerve; Stilbenes; Th1-Th2 Balance | 2016 |
Resveratrol and fenofibrate ameliorate fructose-induced nonalcoholic steatohepatitis by modulation of genes expression.
To evaluate the effect of resveratrol, alone and in combination with fenofibrate, on fructose-induced metabolic genes abnormalities in rats.. Giving a fructose-enriched diet (FED) to rats for 12 wk was used as a model for inducing hepatic dyslipidemia and insulin resistance. Adult male albino rats (150-200 g) were divided into a control group and a FED group which was subdivided into 4 groups, a control FED, fenofibrate (FENO) (100 mg/kg), resveratrol (RES) (70 mg/kg) and combined treatment (FENO + RES) (half the doses). All treatments were given orally from the 9(th) week till the end of experimental period. Body weight, oral glucose tolerance test (OGTT), liver index, glucose, insulin, insulin resistance (HOMA), serum and liver triglycerides (TGs), oxidative stress (liver MDA, GSH and SOD), serum AST, ALT, AST/ALT ratio and tumor necrosis factor-α (TNF-α) were measured. Additionally, hepatic gene expression of suppressor of cytokine signaling-3 (SOCS-3), sterol regulatory element binding protein-1c (SREBP-1c), fatty acid synthase (FAS), malonyl CoA decarboxylase (MCD), transforming growth factor-β1 (TGF-β1) and adipose tissue genes expression of leptin and adiponectin were investigated. Liver sections were taken for histopathological examination and steatosis area were determined.. Rats fed FED showed damaged liver, impairment of glucose tolerance, insulin resistance, oxidative stress and dyslipidemia. As for gene expression, there was a change in favor of dyslipidemia and nonalcoholic steatohepatitis (NASH) development. All treatment regimens showed some benefit in reversing the described deviations. Fructose caused deterioration in hepatic gene expression of SOCS-3, SREBP-1c, FAS, MDA and TGF-β1 and in adipose tissue gene expression of leptin and adiponectin. Fructose showed also an increase in body weight, insulin resistance (OGTT, HOMA), serum and liver TGs, hepatic MDA, serum AST, AST/ALT ratio and TNF-α compared to control. All treatments improved SOCS-3, FAS, MCD, TGF-β1 and leptin genes expression while only RES and FENO + RES groups showed an improvement in SREBP-1c expression. Adiponectin gene expression was improved only by RES. A decrease in body weight, HOMA, liver TGs, AST/ALT ratio and TNF-α were observed in all treatment groups. Liver index was increased in FENO and FENO + RES groups. Serum TGs was improved only by FENO treatment. Liver MDA was improved by RES and FENO + RES treatments. FENO + RES group showed an increase in liver GSH content.. When resveratrol was given with half the dose of fenofibrate it improved NASH-related fructose-induced disturbances in gene expression similar to a full dose of fenofibrate. Topics: Animals; Disease Models, Animal; Drug Therapy, Combination; Energy Metabolism; Fenofibrate; Fructose; Gene Expression Regulation; Liver; Male; Non-alcoholic Fatty Liver Disease; Rats; Resveratrol; Stilbenes; Time Factors | 2016 |
The effect of resveratrol on beta amyloid-induced memory impairment involves inhibition of phosphodiesterase-4 related signaling.
Resveratrol, a natural polyphenol found in red wine, has wide spectrum of pharmacological properties including antioxidative and antiaging activities. Beta amyloid peptides (Aβ) are known to involve cognitive impairment, neuroinflammatory and apoptotic processes in Alzheimer's disease (AD). Activation of cAMP and/or cGMP activities can improve memory performance and decrease the neuroinflammation and apoptosis. However, it remains unknown whether the memory enhancing effect of resveratrol on AD associated cognitive disorders is related to the inhibition of phosphodiesterase 4 (PDE4) subtypes and subsequent increases in intracellular cAMP and/or cGMP activities. This study investigated the effect of resveratrol on Aβ1-42-induced cognitive impairment and the participation of PDE4 subtypes related cAMP or cGMP signaling. Mice microinfused with Aβ1-42 into bilateral CA1 subregions displayed learning and memory impairment, as evidenced by reduced memory acquisition and retrieval in the water maze and retention in the passive avoidance tasks; it was also significant that neuroinflammatory and pro-apoptotic factors were increased in Aβ1-42-treated mice. Aβ1-42-treated mice also increased in PDE4A, 4B and 4D expression, and decreased in PKA level. However, PKA inhibitor H89, but not PKG inhibitor KT5823, prevented resveratrol's effects on these parameters. Resveratrol also reversed Aβ1-42-induced decreases in phosphorylated cAMP response-element binding protein (pCREB), brain derived neurotrophic factor (BDNF) and anti-apoptotic factor BCl-2 expression, which were reversed by H89. These findings suggest that resveratrol reversing Aβ-induced learning and memory disorder may involve the regulation of neuronal inflammation and apoptosis via PDE4 subtypes related cAMP-CREB-BDNF signaling. Topics: Alzheimer Disease; Amyloid beta-Peptides; Animals; Apoptosis; Cyclic Nucleotide Phosphodiesterases, Type 4; Disease Models, Animal; Male; Memory Disorders; Mice; Mice, Inbred ICR; Peptide Fragments; Phosphodiesterase 4 Inhibitors; Resveratrol; Signal Transduction; Stilbenes | 2016 |
Effect of Resveratrol on Preventing Steroid-induced Osteonecrosis in a Rabbit Model.
Prevention of osteonecrosis (ON) has seldom been addressed. The purpose of this study was to evaluate the effect of resveratrol on preventing steroid-induced ON in rabbits.. Seventy-two rabbits were divided into four groups: (1) NEC (ON) group: thirty rabbits were treated with lipopolysaccharide (LPS) once, then with methylprednisolone (MPS) daily for 3 days; (2) PRE (prevention) group: thirty rabbits were given one dose of LPS, then MPS daily for 3 days, and resveratrol on day 0 and daily for 2 weeks; (3) RES (resveratrol) group: six rabbits were given resveratrol for 2 weeks but without LPS/MPS; (4) CON (control) group: six rabbits were given alcohol for 2 weeks but without LPS/MPS. Levels of plasma tissue-type plasminogen activator (t-PA), plasminogen activator inhibitor 1 (PAI-1), thrombomodulin (TM), vascular endothelial growth factor (VEGF), maximum enhancement (ME) by magnetic resonance imaging, and ON incidence were evaluated.. The PRE group had a lower ON incidence than the NEC group, but with no significant differences at 2 weeks and 12 weeks. The RES and CON groups did not develop ON. TM and VEGF were significantly higher in the NEC group compared with the PRE group at weeks 1, 2, and 4 (TM: 1 week, P = 0.029; 2 weeks, P = 0.005; and 4 weeks, P = 0.047; VEGF: 1 week, P = 0.039; 2 weeks, P = 0.021; 4 weeks, P = 0.014), but the difference disappeared at 12 weeks. The levels of t-PA and PAI-1 were not significantly different between the NEC and PRE groups. The TM, t-PA, PAI-1, and VEGF concentrations in the RES and CON groups did not change over time. Compared to the baseline, ME in the NEC group decreased significantly (P = 0.025) at week 1, increased significantly (P = 0.021) at week 2, and was decreased at week 12. The variance was insignificant in the PRE group.. Resveratrol may improve blood supply to bone in a rabbit model of ON of the femoral head via anti-inflammatory effects to protect the vascular endothelium and reduce thrombosis. Topics: Animals; Disease Models, Animal; Femur Head Necrosis; Lipopolysaccharides; Magnetic Resonance Imaging; Methylprednisolone; Plasminogen Activator Inhibitor 1; Rabbits; Resveratrol; Stilbenes; Thrombomodulin; Tissue Plasminogen Activator; Vascular Endothelial Growth Factor A | 2016 |
Modulatory effects of resveratrol on endoplasmic reticulum stress-associated apoptosis and oxido-inflammatory markers in a rat model of rotenone-induced Parkinson's disease.
The mechanisms leading to neuronal death in Parkinson's disease (PD) are not fully elucidated; however, mounting evidence implicates endoplasmic reticulum (ER) stress, oxidative damage, and inflammatory changes are the crucial factors in its pathogenesis. This study was undertaken to investigate the modulatory effects of resveratrol on ER stress-mediated apoptosis, inflammatory and oxidative stress markers in a rat model of rotenone-induced PD. mRNA expression levels of ER stress markers; C/EBP homologous protein (CHOP) and glucose-regulated protein 78 (GRP78), were estimated in the rat brain using quantitative real-time PCR. Caspase-3 activity, IL-1β levels and Nuclear Factor Erythroid 2-related factor (Nrf2) DNA-binding activity were estimated by ELISA, while glutathione peroxidase and Xanthine oxidase activities, as well as protein carbonyl contents in the rat brain were evaluated spectrophotometrically. Our data revealed that Resveratrol ameliorated rotenone-induced ER stress by downregulating CHOP and GRP78 genes expression and hampered caspase-3 activity in the brain of rotenone exposed rats. It also restored redox balance as evident by suppressing Xanthine oxidase activity and protein carbonyls formation; in addition to preservation of intracellular antioxidants status via activating glutathione peroxidase and Nrf2 signaling pathway. In conclusion; our study launched promising avenues for the potential use of resveratrol as a neuroprotective therapeutic agent in Parkinson's disease. Topics: Animals; Apoptosis; Biomarkers; Caspase 3; Chemically-Induced Disorders; Disease Models, Animal; Endoplasmic Reticulum Stress; Enzyme Activation; Gene Expression Regulation; HSP70 Heat-Shock Proteins; Inflammation; Male; Membrane Proteins; Parkinson Disease; Rats; Rats, Wistar; Real-Time Polymerase Chain Reaction; Resveratrol; Rotenone; Stilbenes; Transcription Factor CHOP | 2016 |
Hippocampal Sirtuin 1 Signaling Mediates Depression-like Behavior.
Although depression is the leading cause of disability worldwide, its pathophysiology is poorly understood. Recent evidence has suggested that sirtuins (SIRTs) play a key role in cognition and synaptic plasticity, yet their role in mood regulation remains controversial. Here, we aimed to investigate whether SIRT function is associated with chronic stress-elicited depression-like behaviors and neuronal atrophy.. We measured SIRT expression and activity in a mouse model of depression. We injected mice with a SIRT1 activator or inhibitor and measured their depression-like behaviors and dendritic spine morphology. To assess the role of SIRT1 directly, we used a viral-mediated gene transfer to overexpress the wild-type SIRT1 or dominant negative SIRT1 and evaluated their depression-like behaviors. Finally, we examined the role of extracellular signal-regulated protein kinases 1 and 2, a potential downstream target of SIRT1, in depression-like behavior.. We found that chronic stress reduced SIRT1 activity in the dentate gyrus of the hippocampus. Pharmacologic and genetic inhibition of hippocampal SIRT1 function led to an increase in depression-like behaviors. Conversely, SIRT1 activation blocked both the development of depression-related phenotypes and aberrant dendritic structures elicited by chronic stress exposure. Furthermore, hippocampal SIRT1 activation increased the phosphorylation level of extracellular signal-regulated protein kinases 1 and 2 in the stressed condition, and viral-mediated activation and inhibition of hippocampal extracellular signal-regulated protein kinase 2 led to antidepressive and prodepressive behaviors, respectively.. Our results suggest that the hippocampal SIRT1 pathway contributes to the chronic stress-elicited depression-related phenotype and aberrant dendritic atrophy. Topics: Animals; Antidepressive Agents, Tricyclic; Benzamides; Dendrites; Dentate Gyrus; Depression; Disease Models, Animal; Enzyme Inhibitors; Heterocyclic Compounds, 2-Ring; Hippocampus; Imipramine; Male; Mice; Mice, Inbred BALB C; Mice, Inbred C57BL; Naphthols; Resveratrol; Signal Transduction; Sirtuin 1; Stilbenes; Stress, Psychological | 2016 |
Resveratrol lowers blood pressure in spontaneously hypertensive rats via calcium-dependent endothelial NO production.
Resveratrol, a polyphenol of natural compounds, has beneficial cardiovascular effects, many of which are mediated by nitric oxide (NO). Resveratrol increases intracellular calcium and activates AMP-activated protein kinase (AMPK), all of which could increase NO production. We hypothesized that resveratrol via a calcium-dependent NO production lowers blood pressure (BP) in spontaneously hypertensive rats (SHR).. Acetylcholine (Ach)-induced endothelium-dependent relaxations in rat aortas were examined by organ chamber. Blood pressures were determined by radiotelemetry methods.. Incubation of isolated aortas from SHR with resveratrol dramatically improved vasorelaxation induced by Ach. Preincubation of aortas with endothelial NO synthase (eNOS) inhibitor or calcium chelant blunted the effects of resveratrol on Ach-induced relaxation, as wells as NO production and eNOS phosphorylation. In animal studies, administration of resveratrol significantly lowered systemic BP in SHR.. Resveratrol increases endothelial NO production to improve endothelial dysfunction and lowers BP in hypertensive rats, which depends on calcium-eNOS activation. Topics: Acetylcholine; Animals; Antioxidants; Aorta; Blood Pressure; Calcium; Disease Models, Animal; Hypertension; Male; Nitric Oxide; Nitric Oxide Synthase Type III; Rats; Rats, Inbred SHR; Resveratrol; Stilbenes; Vasodilation | 2016 |
Protective effects of resveratrol on aging-induced cognitive impairment in rats.
Resveratrol, a polyphenol phytoalexine, has been shown to play a neuroprotective role in the neurodegenerative process in Alzheimer's disease (AD) and improve memory function in dementia. However, the in vivo effect of resveratrol in normal aging models of learning and memory has not yet been evaluated. Therefore, the present neurobehavioral study was undertaken to evaluate the effect of resveratrol on cognitive impairment induced by aging in passive avoidance and Morris water maze (MWM) tests. Male Wistar albino rats were divided into four groups: young control (4month), young resveratrol (4month+RESV), old control (24month) and old resveratrol (24month+RESV). Resveratrol (50mg/kg/day) was given to the 4month+RESV and 24month+RESV groups orally for 12weeks. There was no significant difference between the groups for the first day of latency, while in aged rats, the second day of latency was significantly shortened compared to the young group in the passive avoidance test (p<0.05). Additionally, in the MWM test, the results showed a decrease in the time spent in the escape platform's quadrant in the probe test in aged rats (p<0.05). The administration of resveratrol at 50mg/kg/day increased the retention scores in the passive avoidance test and the time spent in the escape platform's quadrant in the MWM task (p<0.05). Furthermore resveratrol attenuated the protein levels of TNFα and IL1β in the 24-month group. These findings indicate that aging impairs emotional and spatial learning-memory and resveratrol reverses the effect of age-related learning and memory impairment. The results of this study suggest that resveratrol is effective in preventing cognitive deficit in aged rats by inhibiting the production of inflammatory cytokines. Topics: Aging; Animals; Anti-Inflammatory Agents, Non-Steroidal; Avoidance Learning; Behavior, Animal; Cognitive Dysfunction; Cytokines; Disease Models, Animal; Inflammation; Male; Rats, Wistar; Resveratrol; Spatial Learning; Stilbenes | 2016 |
Synergistic effects of resveratrol (free and inclusion complex) and sulfamethoxazole-trimetropim treatment on pathology, oxidant/antioxidant status and behavior of mice infected with Toxoplasma gondii.
This study aimed to investigate the synergistic effects of resveratrol and sulfamethoxazole-trimethoprim (ST) on the treatment of mice experimentally infected by Toxoplasma gondii during the chronic phase of the disease considering infection, behavior, and oxidative/antioxidants profile aspects. For the study, 60 mice were initially divided into two groups: uninfected (n = 24) and infected by T. gondii (n = 36). These two groups were later subdivided into other groups and treated with resveratrol (free and inclusion complex containing resveratrol) alone and co-administered with ST: groups A to D were composed by healthy mice and groups E to J were consisted of animals infected by T. gondii (VEG strain). Treatments began 20 days post-infection for 10 consecutive days with oral doses of 0.5 mg kg(-1) of ST (groups B and F), 100 mg kg(-1) of free resveratrol (groups C and G) and inclusion complex of resveratrol (nanoparticles containing resveratrol) (groups D and H), and lastly an co-administration of both drugs (groups I and J). Behavioral tests (memory, anxiety and locomotion) were performed after treatment. Liver and brain fragments were collected to evaluate pathological changes, brain cysts counts, as well as oxidant and antioxidant levels. A reduction on the number of cysts in the brain of animals treated with both drugs combined was observed; there was also reduced number of lesions on both organs. This drug combined effect was also able to reduce oxidative and increase antioxidant levels in infected mice, which might be interpreted as a resveratrol protective effect. In addition, the combination of ST and resveratrol was able to prevent behavioral changes in infected mice. Therefore, the use of co-administration drugs enhances the therapeutic effect acting on a synergic way, reducing the oxidizing effects of the chemical treatment for toxoplasmosis. In addition, resveratrol in inclusion complex when co-administered with ST showed an improved therapeutic effect of ST reducing oxidative damage, liver damage and the number of cysts in the brain of T. gondii infected mice. Topics: Animals; Anti-Infective Agents; Anti-Inflammatory Agents, Non-Steroidal; Antioxidants; Behavior, Animal; Brain; Disease Models, Animal; Drug Synergism; Drug Therapy, Combination; Liver; Mice; Oxidants; Oxidative Stress; Resveratrol; Stilbenes; Toxoplasmosis, Animal; Treatment Outcome; Trimethoprim, Sulfamethoxazole Drug Combination | 2016 |
Resveratrol preconditioning protects hepatocytes against hepatic ischemia reperfusion injury via Toll-like receptor 4/nuclear factor-κB signaling pathway in vitro and in vivo.
The purpose of this study was to investigate the protective effect of resveratrol against hepatic ischemia reperfusion injury (HIRI) and explore the potential underlying mechanism. Resveratrol-pretreated BRL-3A (rat liver) cells and rats underwent hypoxia/reoxygenation and hepatic ischemia/reperfusion, respectively. BRL-3A cell damage was evaluated, and the mRNA and protein expression of related signal molecules was assessed in cell model. The protein expression of related signal molecules was also assessed in rat model. Inflammatory cytokines levels were determined in the cell supernatant and rat serum while rat liver function and hepatocyte apoptosis were assessed. The results revealed that resveratrol significantly enhanced cell viability, inhibited cell apoptosis, and decreased levels of lactate dehydrogenase (LDH) and production of tumor necrosis factor-α (TNF-α) and interleukin-(IL)-1β in the cell supernatant. In addition, resveratrol ameliorated elevated Toll-like receptor 4 (TLR4) and nuclear factor (NF)-κB, and the depressed inhibitor of NF-κB (IκB)-α caused by hypoxia/reoxygenation stimulation in BRL-3A cells. Moreover, resveratrol inhibited the translocation of NF-κB p65 after the stimulation of hypoxia/reoxygenation in BRL-3A cells. In vivo assays revealed that resveratrol reduced levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), and liver pathological changes, while it alleviated hepatocyte apoptosis, negatively mediated the production of TNF-α and IL-1β in serum, and reversed TLR4/NF-κB signaling pathway caused by hepatic ischemia/reperfusion stimulation in liver tissues. The results indicate that resveratrol protected hepatocytes against HIRI, which may be mediated in part via the TLR4/NF-κB signaling pathway. Topics: Alanine Transaminase; Animals; Anti-Inflammatory Agents; Apoptosis; Cell Line; Disease Models, Animal; Hepatocytes; Humans; Interleukin-1beta; Male; NF-kappa B; Rats; Rats, Sprague-Dawley; Reperfusion Injury; Resveratrol; Signal Transduction; Stilbenes; Toll-Like Receptor 4; Tumor Necrosis Factor-alpha | 2016 |
Polydatin ameliorates injury to the small intestine induced by hemorrhagic shock via SIRT3 activation-mediated mitochondrial protection.
Previously, we demonstrated that sirtuin (SIRT)1 plays vital roles in the small intestine (SI), protecting against severe hemorrhagic shock (HS), and that polydatin (PD) can attenuate SI injury via SIRT1 activation.. To explore the role of SIRT3 and mitochondria in SI injury after HS, and explore SIRT3 as a therapeutic target of PD in HS.. An H2O2-induced model of oxidative stress and an HS model were created in IEC-6 cells and Sprague-Dawley rats, respectively. Protein content and activity of SIRT1/3 and SOD2, acetylated-SOD2 level, and mitochondrial morphology/function were determined.. Expression and activity of SIRT1/3 were reduced in SI tissue and IEC-6 cells after HS or oxidative stress, accompanied by an increased acetylated-SOD2 level and damaged mitochondria. Treatment with PD or resveratrol restored SIRT1/3 activity considerably, restored SIRT1/3 expression slightly, and reduced acetylated-SOD2 levels, which lead to elevated SOD2 activity and ameliorated mitochondrial function. The addition of 3-TYP (SIRT3 inhibitor) partially blocked the mitochondrial-protective effects of PD, but did not affect increased SIRT1 activity.. The SIRT3-SOD2 signaling pathway is involved in mitochondrial dysfunction induced by HS. PD attenuates mitochondrial dysfunction via activation of the SIRT3-SOD2 pathway, and may be a new approach for HS treatment. Topics: Animals; Disease Models, Animal; Female; Glucosides; Hydrogen Peroxide; Intestine, Small; Male; Mitochondria; Oxidative Stress; Rats; Rats, Sprague-Dawley; Resveratrol; Shock, Hemorrhagic; Signal Transduction; Sirtuins; Stilbenes; Superoxide Dismutase | 2016 |
Resveratrol suppresses glial activation and alleviates trigeminal neuralgia via activation of AMPK.
Glial activation and neuroinflammation in the spinal trigeminal nucleus (STN) play a pivotal role in the genesis and maintenance of trigeminal neuralgia (TN). Resveratrol, a natural compound from grape and red wine, has a potential anti-inflammatory effect. We hypothesized that resveratrol could significantly suppress neuroinflammation in the STN mediated by glial activation and further relieve TN. In this study, we evaluated whether resveratrol could alleviate trigeminal allodynia and explore the mechanism underlying the antinociceptive effect of resveratrol.. Animals were orally injected with resveratrol after chronic constriction injury (CCI) of the infraorbital nerve. Mechanical thresholds of the affected whisker pad were measured to assess nociceptive behaviors. The STN was harvested to quantify the changing levels of p-NR1, p-PKC, TNF-α, and IL1-β by western blotting and detect the expression of calcitonin gene-related peptide (CGRP) and c-Fos by immunofluorescence. Glial activation was observed by immunofluorescence and western blotting. Mitogen-activated protein kinase (MAPK) phosphorylation in vivo and in vitro was examined by western blotting.. We found that resveratrol significantly attenuated trigeminal allodynia dose-dependently and decreased the increased expression of CGRP and c-Fos in the STN. Additionally, resveratrol showed an inhibitory effect on CCI-evoked astrocyte and microglia activation and reduced production of pro-inflammatory cytokines in the STN. Furthermore, the antinociceptive effect of resveratrol was partially mediated by reduced phosphorylation of MAP kinases via adenosine monophosphate-activated protein kinase (AMPK) activation.. AMPK activation in the STN glia via resveratrol has utility in the treatment of CCI-induced neuroinflammation and further implicates AMPK as a novel target for the attenuation of trigeminal neuralgia. Topics: AMP-Activated Protein Kinases; Animals; Anti-Inflammatory Agents; Blotting, Western; Disease Models, Animal; Enzyme Activation; Fluorescent Antibody Technique; Hyperalgesia; Male; Neuroglia; Rats; Rats, Sprague-Dawley; Resveratrol; Stilbenes; Trigeminal Neuralgia | 2016 |
A new co-micronized composite containing palmitoylethanolamide and polydatin shows superior oral efficacy compared to their association in a rat paw model of carrageenan-induced inflammation.
Palmitoylethanolamide (PEA), a special food for medical purposes, has anti-inflammatory and neuroprotective effects. Nevertheless, PEA lacks direct ability to prevent free radical formation. Polydatin (PLD), a natural precursor of resveratrol, has antioxidant activity. The combination of PEA and PLD could have beneficial effects on oxidative stress induced by inflammatory processes. In the present study, we compared the effects of micronized PEA (PEA-m) and PLD association (PEA-m+PLD) with a new co-micronized composite containing PEA and PLD (m(PEA/PLD)) in the rat paw model of carrageenan (CAR)-induced acute inflammation. Intraplantar injection of CAR led to a time-dependent development of peripheral inflammation, in terms of paw edema, cytokine release in paw exudates, nitrotyrosine formation, inducible nitric oxide synthase and cyclooxygenase-2 expression. m(PEA/PLD) reduced all measured parameters. Thermal hyperalgesia and mechanical allodynia were also markedly reduced. At the spinal cord level, manganese superoxide dismutase (MnSOD) was found to be nitrated and subsequently deactivated. Further, m(PEA/PLD) treatment increased spinal MnSOD expression, prevented IkB-α degradation and nuclear factor-κB translocation, suggesting a possible role on central sensitization. m(PEA/PLD) showed more robust anti-inflammatory and anti-hyperalgesic effects compared to the simple association of PEA-m and PLD. This composite formulation approach opens a new therapeutic strategy for the development of novel non-narcotic anti-hyperalgesic agents. Topics: Active Transport, Cell Nucleus; Administration, Oral; Amides; Animals; Carrageenan; Cell Line, Tumor; Cell Nucleus; Cyclooxygenase 2; Cytokines; Disease Models, Animal; Drug Compounding; Drug Interactions; Edema; Ethanolamines; Gene Expression Regulation, Enzymologic; Glucosides; Hyperalgesia; Inflammation; Male; Neutrophil Infiltration; NF-KappaB Inhibitor alpha; Nitric Oxide Synthase Type II; Palmitic Acids; Proteolysis; Rats; Rats, Sprague-Dawley; Stilbenes; Superoxide Dismutase; Transcription Factor RelA; Tyrosine | 2016 |
Resveratrol enhances HBV replication through activating Sirt1-PGC-1α-PPARα pathway.
The population of hepatitis B combined with a number of metabolic disorders is increasing significantly. Resveratrol (RSV) has been used as a preclinical drug for the treatment of the metabolic disorders. However, the impact of RSV on HBV replication remains unknown. In this study, the HBV-expressing hepatocelluar carcinoma cell line and mouse model created by hydrodynamic injection of viral DNA were used. We found that RSV activates Sirt1, which in turn deacetylates PGC-1α and subsequently increases the transcriptional activity of PPARα, leading to the enhanced HBV transcription and replication in vitro and in vivo. In addition, we found that this pathway is also required for fasting-induced HBV transcription. Taken together, this study identifies that RSV enhances HBV transcription and replication especially acting on the core promoter, which depends on Sirt1-PGC-1α-PPARα pathway. We conclude that RSV may exacerbate the progression of hepatitis B and that patients with hepatitis B infection should be cautious taking RSV as a dietary supplement. Topics: Animals; Cell Line; Disease Models, Animal; Hepatitis B; Hepatitis B virus; Hepatocytes; Humans; Mice; Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha; PPAR alpha; Promoter Regions, Genetic; Resveratrol; Signal Transduction; Sirtuin 1; Stilbenes; Transcriptional Activation; Virus Replication | 2016 |
Resveratrol Ameliorates Cardiac Hypertrophy by Down-regulation of miR-155 Through Activation of Breast Cancer Type 1 Susceptibility Protein.
The polyphenol resveratrol (Rev) has been reported to exhibit cardioprotective effects, such as inhibition of TAC (transverse aortic constriction) or isoprenaline (ISO)-induced hypertrophy. MicroRNA-155 (miR-155) was found to be decreased in hypertrophic myocardium, which could be further reduced by pretreatment of Rev. The study was designed to investigate the molecular effects of miR-155 on cardiac hypertrophy, focusing on the role of breast cancer type 1 susceptibility protein (BRCA1).. We demonstrated that Rev alleviated severity of hypertrophic myocardium in a mice model of cardiac hypertrophy by TAC treatment. Down-regulation of miR-155 was observed in pressure overload- or ISO-induced hypertrophic cardiomyoctyes. Interestingly, administration of Rev substantially attenuated miR-155 level in cardiomyocytes. In agreement with its miR-155 reducing effect, Rev relieved cardiac hypertrophy and restored cardiac function by activation of BRCA1 in cardiomyoctyes. Our results further revealed that forkhead box O3a (FoxO3a) was a miR-155 target in the heart. And miR-155 directly repressed FoxO3a, whose expression was mitigated in miR-155 agomir and mimic treatment in vivo and in vitro.. We conclude that BRCA1 inactivation can increase expression of miR-155, contributing to cardiac hypertrophy. And Rev produces their beneficial effects partially by down-regulating miR-155 expression, which might be a novel strategy for treatment of cardiac hypertrophy. Topics: Animals; Blotting, Western; BRCA1 Protein; Cardiomegaly; Cells, Cultured; Disease Models, Animal; Down-Regulation; Enzyme Inhibitors; Gene Expression Regulation; Immunohistochemistry; Male; Mice; MicroRNAs; Myocytes, Cardiac; Resveratrol; Reverse Transcriptase Polymerase Chain Reaction; RNA; Stilbenes | 2016 |
Resveratrol ameliorates renal injury in spontaneously hypertensive rats by inhibiting renal micro-inflammation.
Micro-inflammation plays an important role in the pathogenesis of spontaneously hypertensive rat (SHR). In the present study, we investigated the therapeutic potential of resveratrol (RSV), a polyphenol with anti-fibrosis activity in hypertensive renal damage model. In SHR renal damage model, RSV treatment blunted the increase in urine albumin excretion, urinary β2-microglobulin (β2-MG), attenuated the decrease in creatinine clearance rate (CCR). The glomerular sclerosis index (1.54±0.33 compared with 0.36±0.07) and tubulointerstitial fibrosis (1.57±0.31 compared with 0.19±0.04) were significantly higher in SHRs compared with Wistar Kyoto rats (WKYs), which were significantly lower by RSV treatment. The increases in mesangium accumulation and the expression of renal collagen type I (Col I), fibronectin (Fn), plasminogen activator inhibitor-1 (PAI-1) and transforming growth factor-β1 (TGF-β1) in SHR were also reduced by RSV treatment. Nuclear factor κB (NF-κB) expression was increased in the cytoplasm and nuclei of the SHR kidneys, which was significantly decreased by RSV treatment. Furthermore, the protein level of IκB-α significantly decreased in the kidneys of the SHR when compared with the WKYs. RSV treatment partially restored the decreased IκB-α level. In SHR kidney, increased expression of interleukin-6 (IL-6), intercellular adhesion molecule-1 (ICAM-1) and monocyte chemoattractant protein 1 (MCP-1) were observed. These changes were attenuated by RSV treatment. No changes in blood pressure were detected between SHR group and SHR + RSV group. Taken together, the present study demonstrated that RSV treatment may significantly attenuate renal damage in the SHR model of chronic kidney disease (CKD). The renal protective effect is associated with inhibition of IL-6, ICAM-1 and MCP-1 expression via the regulation of the nuclear translocation of NF-κB, which suggesting that micro-inflammation may be a potential therapeutic target of hypertensive renal damage. Topics: Acute Kidney Injury; Animals; beta 2-Microglobulin; Blood Pressure; Collagen Type I; Disease Models, Animal; Fibronectins; Fibrosis; Gene Expression Regulation; Humans; Hypertension; Inflammation; Kidney; Plasminogen Activator Inhibitor 1; Rats; Resveratrol; Stilbenes; Transforming Growth Factor beta1 | 2016 |
Resveratrol Inhibition of Rac1-Derived Reactive Oxygen Species by AMPK Decreases Blood Pressure in a Fructose-Induced Rat Model of Hypertension.
Recent studies have reported that the activation of AMP-activated protein kinase (AMPK) suppressed oxidative stress. The aim of this study was to examine whether the activation of AMPK in the brain decreased Rac1-induced ROS generation, thereby reducing blood pressure (BP) in rats with fructose-induced hypertension. The inhibition of ROS by treatment with an AMPK activator (oral resveratrol, 10 mg/kg/day) for 1 week decreased the BP and increased the NO production in the rostral ventrolateral medulla (RVLM) of fructose-fed rats but not in control Wistar-Kyoto (WKY) rats. In addition, resveratrol treatment abolished the Rac1-induced increases in the activity of the NADPH oxidase subunits p22-phox and reduced the activity of SOD2, while treatment with an AMPK inhibitor (compound C, 40 μM/day) had the opposite effect, in the fructose-fed rats. Interestingly, the activation of AMPK abolished Rac1 activation and decreased BP by inducing the activities of extracellular signal-regulated kinases 1 and 2 (ERK1/2) and ribosomal protein S6 kinase (RSK) and nNOS phosphorylation in the fructose-fed rats. We conclude that the activation of AMPK decreased BP, abolished ROS generation, and enhanced ERK1/2-RSK-nNOS pathway activity by negatively regulating Racl-induced NADPH oxidase levels in the RVLM during oxidative stress-associated hypertension. Topics: AMP-Activated Protein Kinases; Animals; Antioxidants; Blood Pressure; Disease Models, Animal; Enzyme Activators; Fructose; Hypertension; rac1 GTP-Binding Protein; Rats, Inbred WKY; Reactive Oxygen Species; Resveratrol; Stilbenes | 2016 |
Caloric restriction blocks neuropathology and motor deficits in Machado-Joseph disease mouse models through SIRT1 pathway.
Machado-Joseph disease (MJD) is a neurodegenerative disorder characterized by an abnormal expansion of the CAG triplet in the ATXN3 gene, translating into a polyglutamine tract within the ataxin-3 protein. The available treatments only ameliorate symptomatology and do not block disease progression. In this study we find that caloric restriction dramatically rescues the motor incoordination, imbalance and the associated neuropathology in transgenic MJD mice. We further show that caloric restriction rescues SIRT1 levels in transgenic MJD mice, whereas silencing SIRT1 is sufficient to prevent the beneficial effects on MJD pathology. In addition, the re-establishment of SIRT1 levels in MJD mouse model, through the gene delivery approach, significantly ameliorates neuropathology, reducing neuroinflammation and activating autophagy. Furthermore, the pharmacological activation of SIRT1 with resveratrol significantly reduces motor incoordination of MJD mice. The pharmacological SIRT1 activation could provide important benefits to treat MJD patients. Topics: Animals; Ataxin-3; Autophagy; Caloric Restriction; Cell Line, Tumor; Cerebellum; Disease Models, Animal; Gait; Inflammation; Machado-Joseph Disease; Mice, Inbred C57BL; Mice, Transgenic; Motor Activity; Mutant Proteins; Nervous System; Neurons; Resveratrol; RNA, Messenger; Sirtuin 1; Stilbenes | 2016 |
Resveratrol Pretreatment Protected against Cerebral Ischemia/Reperfusion Injury in Rats via Expansion of T Regulatory Cells.
It is well accepted that repetitive resveratrol (RV) pretreatment (PRC) exerts neuroprotective effect on ischemic stroke. RV was shown to be able to enhance the production of T regulatory cells (Tregs) in autoimmune diseases whereas Tregs are considered to be the cerebroprotective immunomodulator in ischemic stroke. Thus, we hypothesized whether Tregs contributed to PRC-induced neuroprotection against cerebral ischemia/reperfusion (I/R) injury.. Cerebral I/R injury was induced by middle cerebral artery occlusion for 90 minutes in rats. Adult male Sprague-Dawley rats were randomly assigned to 2 groups: I/R and RV I/R. RV (50 mg/kg) was administrated intraperitoneally once a day for 7 days prior to ischemia onset.. PRC significantly ameliorated neurological defects and reduced cerebral infarct volume, accompanied by the significantly increased frequencies of Tregs in the spleens and ischemic hemisphere, the significantly increased levels of interleukin-10 (IL-10) in the plasma and ischemic hemisphere, and the significantly decreased levels of tumor necrosis factor-α and IL-6 in the plasma and ischemic hemisphere at 24 hours after ischemia onset. In addition, we also found that PRC significantly improved the frequency and suppressive function of Tregs in the spleens prior to ischemia onset.. Thus, PRC-induced neuroprotection was in part mediated by more Treg accumulation and activation in vivo prior to ischemia onset except for less inflammation response at 24 hours after ischemia onset. Topics: Animals; Antioxidants; Brain; Cytokines; Disease Models, Animal; Drug Administration Schedule; Flow Cytometry; Infarction, Middle Cerebral Artery; Male; Rats; Rats, Sprague-Dawley; Reperfusion Injury; Resveratrol; Spleen; Stilbenes; T-Lymphocytes, Regulatory | 2016 |
Preclinical development of Ramizol, an antibiotic belonging to a new class, for the treatment of Clostridium difficile colitis.
Antibiotic-resistant bacteria is a major threat to human health and is predicted to become the leading cause of death from disease by 2050. Despite the recent resurgence of research and development in the area, few antibiotics have reached the market, with most of the recently approved antibiotics corresponding to new uses for old antibiotics, or structurally similar derivatives thereof. We have recently reported an in silico approach that led to the design of an entirely new class of antibiotics for the bacteria-specific mechanosensitive ion channel of large conductance: MscL. Here, we present the preclinical development of one such antibiotic, Ramizol, a first generation antibiotic belonging to that class. We present the lack of interaction between Ramizol and other mammalian channels adding credibility to its MscL selectivity. We determine the pharmacokinetic profile in a rat model and show <0.1% of Ramizol is absorbed systemically. We show this non-systemic nature of the antibiotic translates to over 70% survival of hamsters in a Clostridium difficile colitis model. Lastly, initial in vitro data indicate that resistance to Ramizol occurs at a low frequency. In conclusion, we establish the potential of Ramizol as an effective new treatment for C. difficile associated disease. Topics: Animals; Anti-Bacterial Agents; Benzoates; Clostridioides difficile; Clostridium Infections; Colitis; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Evaluation, Preclinical; Drug Resistance, Multiple, Bacterial; Male; Mesocricetus; Microbial Sensitivity Tests; Rats; Rats, Sprague-Dawley; Stilbenes | 2016 |
Cardioprotective effect of resveratrol analogue isorhapontigenin versus omega-3 fatty acids in isoproterenol-induced myocardial infarction in rats.
Myocardial infarction (MI) is a common cause of mortality worldwide. Isorhapontigenin is a derivative of stilbene with chemical structure similar to resveratrol. The omega-3 fatty acids (FA) have beneficial effects on neurodegenerative, inflammatory, and cardiovascular diseases. The aim of this study was to investigate the effects of pretreatment with isorhapontigenin and omega-3 FA on rat model of isoproterenol-induced MI. Fifty-six rats were divided into seven groups: normal, normal + isorhapontigenin, normal + omega-3 FA, MI, MI + isorhapontigenin, MI + omega-3 FA, and MI + isorhapontigenin + omega-3 FA. Serum levels of cardiac marker enzymes [lactate dehydrogenase (LDH) and creatine kinase-MB (CK-MB)], cardiac troponin I (cTnI), inflammatory markers [tumor necrosis factor-alpha (TNF-α) and interleukin-6], and lipid profile [triglycerides, total cholesterol (T.Ch), high and low density lipoproteins (HDL, LDL), and phospholipids] as well as cardiac levels of malondialdehyde and anti-oxidants [reduced glutathione (GSH), superoxide dismutase (SOD), and catalase)] were measured in all rats. ECG and histopathological examination were performed. Isoproterenol caused a significant elevation of ST segment, decreased R wave amplitude, HDL, and anti-oxidants, and increased LDH, CK-MB, cTnI, TNF-α, interleukin-6, malondialdehyde, triglycerides, T.Ch, LDL, and phospholipids. Omega-3 FA or isorhapontigenin significantly decreased the ST segment elevation, LDH, CK-MB, cTnI, TNF-α, interleukin-6, malondialdehyde, and phospholipids and increased R wave amplitude and anti-oxidants. The effects of combined omega-3 FA and isorhapontigenin were more significant than either of them alone. Therefore, we conclude that omega-3 FA and isorhapontigenin have a cardioprotective effect on rats with isoproterenol-induced MI through their anti-oxidant and anti-inflammatory actions. Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Antioxidants; Biomarkers; Cardiotonic Agents; Dietary Supplements; Disease Models, Animal; Fatty Acids, Omega-3; Heart; Inflammation Mediators; Isoproterenol; Lipid Peroxidation; Lipids; Male; Myocardial Infarction; Myocardium; Oxidative Stress; Random Allocation; Rats, Sprague-Dawley; Stilbenes | 2016 |
Solid Tumor Therapy Using a Cannon and Pawn Combination Strategy.
Nanocarrier-based anti-tumor drugs hold great promise for reducing side effects and improving tumor-site drug retention in the treatment of solid tumors. However, therapeutic outcomes are still limited, primarily due to a lack of drug penetration within most tumor tissues. Herein, we propose a strategy using a nanocarrier-based combination of vascular disrupting agents (VDAs) and cytotoxic drugs for solid tumor therapy. Specifically, combretastatin A-4 (CA4) serves as a "cannon" by eradicating tumor cells at a distance from blood vessels; concomitantly, doxorubicin (DOX) serves as a "pawn" by killing tumor cells in close proximity to blood vessels. This "cannon and pawn" combination strategy acts without a need to penetrate every tumor cell and is expected to eliminate all tumor cells in a solid tumor. In a murine C26 colon tumor model, this strategy proved effective in eradicating greater than 94% of tumor cells and efficiently inhibited tumor growth with a weekly injection. In large solid tumor models (C26 and 4T1 tumors with volumes of approximately 250 mm(3)), this strategy also proved effective for inhibiting tumor growth. These results showing remarkable inhibition of tumor growth provide a valuable therapeutic choice for solid tumor therapy. Topics: Animals; Antineoplastic Agents, Phytogenic; Colonic Neoplasms; Disease Models, Animal; Doxorubicin; Drug Carriers; Drug Therapy, Combination; Mice; Nanoparticles; Stilbenes; Treatment Outcome | 2016 |
[Effect of Resveratrol Preconditioning on Myocardial Dysfunction after Cardiac Arrest in Rats].
To investigate the protective effects and its potential mechanism of resveratrol preconditioning on rat cardiac arrest after return of spontaneous circulation (ROSC) with the study of hemodynamic parameters and nitrative stress in myocardium.. Cardiac arrest SPF SD rat model was established by transoesophageal cardiac alternating current stimulation. Intervention was implemented 15 min before cardiac arrest. Twenty four rats with ROSC after cardiac arrest were randomly assigned into five groups: vehicle, sham, resveratrol 2.3 mg/kg (A group), resveratrol 0.23 mg/kg (B group) and resveratrol 0.023 mg/kg (C group). Heart rate, mean arterial pressure, and left ventricular variables (+ dp/dtmax and - dp/dtmin) were recorded in 0.5 h, 1.0 h, 2.0 h, 3.0 h, and 4.0 h respectively. Rats were sacrificed at 4 h after ROSC, and hearts were removed for determining expression of inducible nitric oxide synthase (iNOS) protein, myocardial peroxynitrite, and nitrotyrosine.. Global ROSC rate was 72.7% after the induction of cardiac arrest. Resveratrol preconditioning did not improve ROSC rate significantly. Heart rate and blood pressure declined at early phase of ROSC, then heart rate recovered to the baseline value, but blood pressure still declined progressively. There were no significant differences between resveratrol groups and vehicle group. Myocardial function worsened progressively even after ROSC. Resveratrol improved cardiac function significantly, especially in lower concentration groups. Myocardial iNOS expression, peroxynitrite, and nitrotyrosine content increased significantly after ROSC. Resveratrol decreased these products significantly, and lower concentration groups did better.. Resveratrol preconditioning could improve cardiac dysfunction after ROSC, which may be associated with its inhibitory effect on nitrative stress. Topics: Animals; Disease Models, Animal; Heart; Heart Arrest; Ischemic Preconditioning; Nitric Oxide Synthase Type II; Peroxynitrous Acid; Rats; Rats, Sprague-Dawley; Resveratrol; Stilbenes; Tyrosine | 2016 |
Resveratrol Inhibits Aortic Root Dilatation in the Fbn1C1039G/+ Marfan Mouse Model.
Marfan syndrome (MFS) is a connective tissue disorder caused by mutations in the fibrillin-1 gene. Patients with MFS are at risk of aortic aneurysm formation and dissection. Usually, blood pressure-lowering drugs are used to reduce aortic events; however, this is not sufficient for most patients. In the aorta of smooth muscle cell-specific sirtuin-1-deficient mice, spontaneous aneurysm formation and senescence are observed. Resveratrol is known to enhance sirtuin-1 activity and to reduce senescence, which prompted us to investigate the effectiveness of resveratrol in inhibition of aortic dilatation in the Fbn1(C1039G/+) MFS mouse model.. Aortic senescence strongly correlates with aortic root dilatation rate in MFS mice. However, although resveratrol inhibits aortic dilatation, it only shows a trend toward reduced aortic senescence. Resveratrol enhances nuclear localization of sirtuin-1 in the vessel wall and, in contrast to losartan, does not affect leukocyte infiltration nor activation of SMAD2 and extracellular signal-regulated kinases 1/2 (ERK1/2). Interestingly, specific sirtuin-1 activation (SRT1720) or inhibition (sirtinol) in MFS mice does not affect aortic root dilatation rate, although senescence is changed. Resveratrol reduces aortic elastin breaks and decreases micro-RNA-29b expression coinciding with enhanced antiapoptotic Bcl-2 expression and decreased number of terminal apoptotic cells. In cultured smooth muscle cells, the resveratrol effect on micro-RNA-29b downregulation is endothelial cell and nuclear factor κB-dependent.. Resveratrol inhibits aortic root dilatation in MFS mice by promoting elastin integrity and smooth muscle cell survival, involving downregulation of the aneurysm-related micro-RNA-29b in the aorta. On the basis of these data, resveratrol holds promise as a novel intervention strategy for patients with MFS. Topics: Active Transport, Cell Nucleus; Animals; Aorta; Aortic Aneurysm; Apoptosis; Cells, Cultured; Cellular Senescence; Dilatation, Pathologic; Disease Models, Animal; Elastin; Female; Fibrillin-1; Genetic Predisposition to Disease; Human Umbilical Vein Endothelial Cells; Humans; Male; Marfan Syndrome; Mice, Inbred C57BL; Mice, Mutant Strains; MicroRNAs; Muscle, Smooth, Vascular; Myocytes, Smooth Muscle; Phenotype; Proto-Oncogene Proteins c-bcl-2; Resveratrol; Sirtuin 1; Stilbenes | 2016 |
Resveratrol alleviates MPTP-induced motor impairments and pathological changes by autophagic degradation of α-synuclein via SIRT1-deacetylated LC3.
The accumulation of misfolded α-synuclein in dopaminergic neurons is the leading cause of Parkinson's disease (PD). Resveratrol (RV), a polyphenolic compound derived from grapes and red wine, exerts a wide range of beneficial effects via activation of sirtuin 1 (SIRT1) and induction of vitagenes. Here, we assessed the role of RV in a 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) induced mouse model of PD and explored its potential mechanisms.. RV and EX527, a specific inhibitor of SIRT1, were administered before and after MPTP treatment. RV protected against MPTP-induced loss of dopaminergic neurons, and decreases in tyrosine hydroxylase and dopamine levels, as well as behavioral impairments. Meanwhile, RV administration activated SIRT1. Microtubule-associated protein 1 light chain 3 (LC3) was then deacetylated and redistributed from the nucleus to the cytoplasm, which provoked the autophagic degradation of α-synuclein in dopaminergic neurons. Furthermore, EX527 antagonized the neuroprotective effects of RV by reducing LC3 deacetylation and subsequent autophagic degradation of α-synuclein.. We showed that RV ameliorated both motor deficits and pathological changes in MPTP-treated mice via activation of SIRT1 and subsequent LC3 deacetylation-mediated autophagic degradation of α-synuclein. Our observations suggest that RV may be a potential prophylactic and/or therapeutic agent for PD. Topics: 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine; Acetylation; alpha-Synuclein; Animals; Autophagy; Behavior, Animal; Corpus Striatum; Disease Models, Animal; Dopamine; Male; Mice, Inbred C57BL; Microtubule-Associated Proteins; Neuroprotective Agents; Parkinson Disease, Secondary; Resveratrol; Sirtuin 1; Stilbenes | 2016 |
[Effect of polydatin on miR-214 expression and liver function in ApoE-/- mice].
To study the effect of polydatin on the expression level of miR-214 and liver function in atherosclerotic mice.. Forty male ApoE(-/-) mice were randomly allocated into 4 groups (n=10), namely the model group, low- and high-dose polydatin groups, and simvastin group, with 10 male C57BL/6J mice serving as the normal control group. Mouse models of atherosclerosis were established by feeding the ApoE(-/-) mice with a high-fat diet. After 12 weeks of treatment, blood levels of glucose, lipids, AST, and ALT and the contents of T-SOD and MDA in the liver tissue were detected. The pathologies of the liver were examined with HE staining, and miR-214 expression in the liver was detected using quantitative real-time PCR.. Compared with the normal control mice, the mice in the model group showed significantly increased blood glucose, serum TC, TG, LDL-C, ALT, and AST levels, and MDA contents in the liver (P<0.01), with significantly decreased serum HDL-C level and SOD and miR-214 levels in liver (P<0.01). Polydatin treatment significantly ameliorated such changes in blood glucose, serum ALT, AST, TC, TG, LDL-C, and HDL-C levels, and MDA, SOD, and miR-214 contents in liver tissue (P<0.05).. s Polydatin can reduce blood glucose and lipid levels and protect the liver function in atherosclerotic mice possibly by up-regulating the expression of miR-214 and T-SOD and down-regulating MDA in the liver. Topics: Animals; Apolipoproteins E; Atherosclerosis; Blood Glucose; Diet, High-Fat; Disease Models, Animal; Drugs, Chinese Herbal; Glucosides; Lipids; Liver; Male; Malondialdehyde; Mice; Mice, Inbred C57BL; Mice, Knockout; MicroRNAs; Stilbenes; Superoxide Dismutase | 2016 |
Effect of Resveratrol on the Prevention of Intra-Abdominal Adhesion Formation in a Rat Model.
Intra-abdominal adhesions are a very common complication following abdominal surgery. Our previous studies have demonstrated that the inhibition of inflammation at the sites of peritoneal injury can prevent the formation of intra-abdominal adhesions. Resveratrol is a natural extract with a broad range of anti-inflammatory effects. Therefore, we propose that resveratrol can reduce the formation of intra-abdominal adhesions after surgery. The aim of this study was to investigate the effect of resveratrol on intra-abdominal adhesion prevention in a rat model with surgery-induced peritoneal adhesions.. The cecum wall and its opposite parietal peritoneum were abraded following laparotomy to induce intra-abdominal adhesion formation. Varying doses of resveratrol were administered to the animals. On the eighth day after surgery, the adhesion score was assessed using a visual scoring system. Picrosirius red staining and a hydroxyproline assay were used to assess the amount of collagen deposition in the adhesion tissues. The levels of serum interleukin-6 (IL-6), tumor necrosis factor (TNF-α), and transforming growth factor beta-1 (TGF-β1) were determined by an enzyme-linked immunosorbent assay (ELISA). Western blotting was performed to determine the protein expression of TGF-β1, fibrinogen, and α-smooth muscle actin (α-SMA) in rat peritoneal adhesion tissue. Real-time RT-PCR was performed to quantify the mRNA expression of TGF-β1, fibrinogen, and α-SMA.. Resveratrol significantly reduced intra-abdominal adhesion formation and fibrin deposition in the rat model. Furthermore, resveratrol significantly reduced the serum levels of IL-6, TNF-α, and TGF-β1. The protein and mRNA expression of TGF-β1, fibrinogen, and α-SMA in the rat peritoneum and adhesion tissues were also down-regulated due to resveratrol intervention.. Resveratrol can effectively prevent the formation of postoperative intra-abdominal adhesions in a rat model. This effect may be related to the suppression of inflammatory cytokine expression in the injured peritoneum by resveratrol. This study suggests that resveratrol may be a new and effective anti-adhesive agent that is worthy of further study and has potential application value. Topics: Abdomen; Actins; Animals; Anti-Inflammatory Agents, Non-Steroidal; Blotting, Western; Collagen; Disease Models, Animal; Enzyme-Linked Immunosorbent Assay; Fibrinogen; Interleukin-6; Male; Peritoneum; Postoperative Complications; Rats, Sprague-Dawley; Resveratrol; Reverse Transcriptase Polymerase Chain Reaction; Stilbenes; Tissue Adhesions; Transforming Growth Factor beta1; Tumor Necrosis Factor-alpha | 2016 |
Optically Pure Diphenoxy Derivatives as More Flexible Probes for β-Amyloid Plaques.
The highly rigid and planar scaffold with π-conjugated systems has been widely considered to be indispensable for Aβ binding probes. However, the flexible benzyloxybenzene derivative [(125)I]BOB-4 represents an excellent lead candidate for targeting Aβ in AD brains. Based on that, we designed two pairs of more flexible and optically pure diphenoxy derivatives with a chiral center as novel Aβ probes. These compounds possessed high affinity (Ki = 15.8-45.0 nM) for Aβ1-42 aggregates, and (R)-enantiomers showed slightly better binding ability than (S)-enantiomers. In addition, the competition binding assay implied that the optically pure diphenoxy derivatives with more flexible geometry shared the same binding site as IMPY, a classical rigid and planar Aβ probe. For (125)I-radiolabeled enantiomers, (S)-[(125)I]5 and (R)-[(125)I]5, specific plaque labeling on brain sections of Tg mice and AD patients were observed in in vitro autoradiography, persuasively proving the excellent affinity of the probes. In biodistribution, (S)-[(125)I]5 and (R)-[(125)I]5 with relatively low lipophilicity exhibited moderate initial brain uptake (4.37% and 3.72% ID/g at 2 min, respectively) and extremely fast washout from normal mice brain (brain2min/brain60min = 19.0 and 17.7, respectively). In summary, the separate enantiomers displayed similar properties in vitro and in vivo, and (S/R)-[(123)I]5 may be potential SPECT probes for recognizing Aβ plaques in AD brains. Topics: Alzheimer Disease; Amyloid beta-Peptides; Aniline Compounds; Animals; Autoradiography; Brain; Crystallography, X-Ray; Disease Models, Animal; Dose-Response Relationship, Drug; Humans; Magnetic Resonance Imaging; Mice; Mice, Inbred ICR; Mice, Transgenic; Peptide Fragments; Plaque, Amyloid; Protein Binding; Pyridines; Stilbenes; Thyroid Gland; Tissue Distribution | 2016 |
Cardiac stem cell transplantation with 2,3,5,4'-tetrahydroxystilbehe-2-O-β-d-glucoside improves cardiac function in rat myocardial infarction model.
Cardiac stem cells (CSCs)-transplanted therapy provides a promising therapy for the ischemic heart disease (IHD), especially in the epidemic of myocardial infarction (MI). The compound 2,3,5,4'-tetrahydroxystilbene-2-O-β-d-glucoside (THSG) can induce CSC proliferation in vitro based on our previous study, so we aimed to study the induce effect of THSG on CSCs-transplanted MI rat in vivo.. Using a murine model of MI, this study was designed to evaluate the impact of THSG (30, 60, 120mg/kg) on CSCs-based therapy for MI and the underlying mechanism in this process.. The results showed that THSG on CSCs-transplanted therapy groups (THSG+CSCs groups) can significantly reduce S-T segment elevation, and increase heart rate compared with MI group. The left ventricular ejection fraction (LVEF) and the left ventricular fractional shortening (LVFS) were significantly reduced in THSG+CSCs groups compared to the MI group. The levels of enzyme expression (CK-MB, LDH), the heart weight index (HWI) and myocardial infarct size (IS) were all reduced in THSG+CSCs groups. Moreover, other changes noted during these 28days post-MI, included pathologic changes, as well as increased stem cell antigen-1 (Sca-1) expression, or expression of Nkx2.5, GATA-4, and Connexin 43 in myocardial tissue, and reduced the Caspase-3 expression.. Our findings indicated that THSG facilitated CSCs-transplanted therapy in MI. These observations may be associated with the inducted of THSG on the proliferation of CSCs in vivo and also, with the subsequent differentiation of additional intrinsic neonatal cardiomyocytes to replace damaged heart tissue. Topics: Animals; Disease Models, Animal; Glucosides; Heart Rate; Male; Myocardial Infarction; Myocytes, Cardiac; Rats; Rats, Sprague-Dawley; Stem Cell Transplantation; Stilbenes | 2016 |
Hepatocellular Carcinoma: Intra-arterial Delivery of Doxorubicin-loaded Hollow Gold Nanospheres for Photothermal Ablation-Chemoembolization Therapy in Rats.
Purpose To determine if combretastatin A-4 phosphate disodium (CA4P) can enhance the tumor uptake of doxorubicin (Dox)-loaded, polyethylene glycol (PEG)-coated hollow gold nanospheres (HAuNS) mixed with ethiodized oil for improved photothermal ablation (PTA)-chemoembolization therapy (CET) of hepatocellular carcinoma (HCC) in rats. Materials and Methods Animal experiments were approved by the institutional animal care and use committee and performed from February 2014 to April 2015. Male Sprague-Dawley rats (n = 45; age, 12 weeks) were inoculated with N1S1 HCC cells in the liver, and 8 days later, were randomly divided into two groups of 10 rats. Group 1 rats received intrahepatic arterial injection of PEG-HAuNS and ethiodized oil alone; group 2 received pretreatment with CA4P and injection of PEG-HAuNS and ethiodized oil 5 minutes later. The gold content of tumor and liver tissue at 1 hour or 24 hours after injection was quantified by using neutron activation analysis (n = 5 per time point). Five rats received pretreatment CA4P, PEG-copper 64-HAuNS, and ethiodized oil and underwent micro-positron emission tomography (PET)/computed tomography (CT). In a separate study, three groups of six rats with HCC were injected with saline solution (control group); CA4P, Dox-loaded PEG-coated HAuNS (Dox@PEG-HAuNS), and ethiodized oil (CET group); or CA4P, Dox@PEG-HAuNS, ethiodized oil, and near-infrared irradiation (PTA-CET group). Temperature was recorded during laser irradiation. Findings were verified at postmortem histopathologic and/or autoradiographic examination. Wilcoxon rank-sum test and Pearson correlation analyses were performed. Results PEG-HAuNS uptake in CA4P-pretreated HCC tumors was significantly higher than that in non-CA4P-pretreated tumors at both 1 hour (P < .03) and 24 hours (P < .01). Mean ± standard deviation of tumor-to-liver PEG-HAuNS uptake ratios at 1 hour and 24 hours, respectively, were 5.63 ± 3.09 and 1.68 ± 0.77 in the CA4P-treated group and 1.29 ± 2.40 and 0.14 ± 0.11 in the non-CA4P-treated group. Micro-PET/CT allowed clear delineation of tumors, enabling quantitative imaging analysis. Laser irradiation increased temperature to 60°C and 43°C in the tumor and adjacent liver, respectively. Mean HCC tumor volumes 10 days after therapy were 1.68 cm Topics: Animals; Carcinoma, Hepatocellular; Cell Line, Tumor; Chemoembolization, Therapeutic; Disease Models, Animal; Doxorubicin; Drug Carriers; Ethiodized Oil; Gold; Hyperthermia, Induced; Liver Neoplasms; Male; Nanospheres; Polyethylene Glycols; Positron Emission Tomography Computed Tomography; Random Allocation; Rats; Rats, Sprague-Dawley; Stilbenes | 2016 |
Polydatin possesses notable anti‑osteoporotic activity via regulation of OPG, RANKL and β‑catenin.
This study was designed to investigate the anti‑osteoporotic activity of polydatin and its possible underlying mechanism. Osteoporosis was induced in mice by ovariectomy (OVX) and the mice were divided into 5 groups: An OVX only group, polydatin groups (10, 20 and 40 mg/kg) and a sham group (n=10/group). After 12 weeks of treatment, body weight, uterine index and the dry weight of thigh‑bones were recorded. In addition, the serum calcium, serum phosphorus, alkaline phosphatase (ALP) and osteoprotegerin (OPG) levels were also determined. Western blot analysis was then conducted to investigate the possible mechanism underlying the effect of polydatin via determining the expression of OPG, receptor activators of nuclear factor‑κB ligand (RANKL) and β‑catenin in the ST2 cell line. The results indicated that intraperitoneal injection of polydatin (10, 20 and 40 mg/kg/day) decreased body weight, and increased uterine index and dry weights of thigh‑bones of ovariectomized mice (P<0.05), and polydatin also significantly increased the serum calcium, phosphorus, ALP and OPG of ovariectomized mice (P<0.05). Results of western blot analysis showed that polydatin upregulated the ratio of OPG/RANKL (P<0.05) and β‑catenin protein in ST2 cells. In conclusion, the results demonstrated that polydatin exhibits anti‑osteoporotic activity via regulating osteoprotegerin, RANKL and β‑catenin. Topics: Alkaline Phosphatase; Animals; beta Catenin; Biomarkers; Body Weight; Bone and Bones; Calcium; Cell Line; Disease Models, Animal; Female; Gene Expression Regulation; Glucosides; Mice; Osteoporosis; Osteoprotegerin; Ovariectomy; RANK Ligand; Stilbenes | 2016 |
Targeted stimulation of retinoic acid receptor-γ mitigates the formation of heterotopic ossification in an established blast-related traumatic injury model.
Heterotopic ossification (HO) involves formation of endochondral bone at non-skeletal sites, is prevalent in severely wounded service members, and causes significant complications and delayed rehabilitation. As common prophylactic treatments such as anti-inflammatory drugs and irradiation cannot be used after multi-system combat trauma, there is an urgent need for new remedies. Previously, we showed that the retinoic acid receptor γ agonist Palovarotene inhibited subcutaneous and intramuscular HO in mice, but those models do not mimic complex combat injury. Thus, we tested Palovarotene in our validated rat trauma-induced HO model that involves blast-related limb injury, femoral fracture, quadriceps crush injury, amputation and infection with methicillin-resistant Staphylococcus aureus from combat wound infections. Palovarotene was given orally for 14days at 1mg/kg/day starting on post-operative day (POD) 1 or POD-5, and HO amount, wound dehiscence and related processes were monitored for up to 84days post injury. Compared to vehicle-control animals, Palovarotene significantly decreased HO by 50 to 60% regardless of when the treatment started and if infection was present. Histological analyses showed that Palovarotene reduced ectopic chondrogenesis, osteogenesis and angiogenesis forming at the injury site over time, while fibrotic tissue was often present in place of ectopic bone. Custom gene array data verified that while expression of key chondrogenic and osteogenic genes was decreased within soft tissues of residual limb in Palovarotene-treated rats, expression of cartilage catabolic genes was increased, including matrix metalloproteinase-9. Importantly, Palovarotene seemed to exert moderate inhibitory effects on wound healing, raising potential safety concerns related to dosing and timing. Our data show for the first time that Palovarotene significantly inhibits HO triggered by blast injury and associated complications, strongly indicating that it may prevent HO in patients at high risk such as those sustaining combat injuries and other forms of blast trauma. Topics: Animals; Blast Injuries; Chondrogenesis; Disease Models, Animal; Gene Expression Regulation; Male; Ossification, Heterotopic; Osteogenesis; Pyrazoles; Rats, Sprague-Dawley; Receptors, Retinoic Acid; Retinoic Acid Receptor gamma; Stilbenes; Wound Healing; Wounds and Injuries | 2016 |
Novel multifunctional pH-sensitive nanoparticles loaded into microbubbles as drug delivery vehicles for enhanced tumor targeting.
This study fabricated novel multifunctional pH-sensitive nanoparticles loaded into microbubbles (PNP-MB) with the combined advantages of two excellent drug delivery vehicles, namely, pH-sensitive nanoparticles and microbubbles. As an antitumor drug, resveratrol (RES) was loaded into acetylated β-cyclodextrin nanoparticles (RES-PNP). The drug-loaded nanoparticles were then encapsulated into the internal space of the microbubbles. The characterization and morphology of this vehicle were investigated through dynamic light scattering and confocal laser scanning microscopy, respectively. In vitro drug release was performed to investigate the pH sensitivity of RES-PNP. The antitumor property of RES-loaded PNP-MB (RES-PNP-MB) was also analyzed in vivo to evaluate the antitumor effect of RES-PNP-MB. Results suggested that PNP exhibited pH sensitivity, and was successfully encapsulated into the microbubbles. RES-PNP-MB exhibit effective tumor growth suppressing in vivo. Therefore, such drug delivery vehicle should be of great attention in tumor therapy. Topics: Animals; Antineoplastic Agents; Carcinoma, Hepatocellular; Cell Line, Tumor; Disease Models, Animal; Drug Carriers; Hydrogen-Ion Concentration; Mice; Microbubbles; Molecular Targeted Therapy; Nanoparticles; Neoplasm Transplantation; Neoplasms; Resveratrol; Stilbenes; Treatment Outcome | 2016 |
The Neuroprotective Effects of Resveratrol Preconditioning in Transient Global Cerebral Ischemia-Reperfusion in Mice.
This study was designed to elucidate the neuroprotective effect of resveratrol in a mouse model of bilateral common carotid artery occlusion (BCCAO).. Sixty male C57BL/6 mice, weighing 20-24 g, were used in our experiments. The mice were randomly assigned into three groups: control group, BCCAO group and BCCAO+Resveratrol group. Neurological score was assessed 24h, 48h, 72h after BCCAO, respectively. Hematoxylin and eosin (H&E) staining, NeuN and TUNEL were performed to detect the neuronal death and survival. The expression of Bcl-2, Bax, caspase-3, and cleaved caspase-3 were also detected to assess the anti-apoptotic effect of resveratrol by Western Blot.. Resveratrol significantly improved neurological score in BCCAO mice. Besides, it attenuates neuronal apoptosis via increasing the expression of Bcl-2 and decreasing the expression of Bax, caspase-3, and cleaved caspase-3. Resveratrol promotes neuronal survival in mice subjected to BCCAO.. Resveratrol is beneficial in the model of BCCAO, which is associated with its anti-apoptotic effect. Topics: Animals; Apoptosis; Caspase 3; Cell Survival; Disease Models, Animal; Ischemic Attack, Transient; Male; Mice; Mice, Inbred C57BL; Neuroprotective Agents; Reperfusion Injury; Resveratrol; Stilbenes | 2016 |
Vascular Smooth Muscle Sirtuin-1 Protects Against Diet-Induced Aortic Stiffness.
Arterial stiffness, a major cardiovascular risk factor, develops within 2 months in mice fed a high-fat, high-sucrose (HFHS) diet, serving as a model of human metabolic syndrome, and it is associated with activation of proinflammatory and oxidant pathways in vascular smooth muscle (VSM) cells. Sirtuin-1 (SirT1) is an NAD(+)-dependent deacetylase regulated by the cellular metabolic status. Our goal was to study the effects of VSM SirT1 on arterial stiffness in the context of diet-induced metabolic syndrome. Overnight fasting acutely decreased arterial stiffness, measured in vivo by pulse wave velocity, in mice fed HFHS for 2 or 8 months, but not in mice lacking SirT1 in VSM (SMKO). Similarly, VSM-specific genetic SirT1 overexpression (SMTG) prevented pulse wave velocity increases induced by HFHS feeding, during 8 months. Administration of resveratrol or S17834, 2 polyphenolic compounds known to activate SirT1, prevented HFHS-induced arterial stiffness and were mimicked by global SirT1 overexpression (SirT1 bacterial artificial chromosome overexpressor), without evident metabolic improvements. In addition, HFHS-induced pulse wave velocity increases were reversed by 1-week treatment with a specific, small molecule SirT1 activator (SRT1720). These beneficial effects of pharmacological or genetic SirT1 activation, against HFHS-induced arterial stiffness, were associated with a decrease in nuclear factor kappa light chain enhancer of activated B cells (NFκB) activation and vascular cell adhesion molecule (VCAM-1) and p47phox protein expressions, in aorta and VSM cells. In conclusion, VSM SirT1 activation decreases arterial stiffness in the setting of obesity by stimulating anti-inflammatory and antioxidant pathways in the aorta. SirT1 activators may represent a novel therapeutic approach to prevent arterial stiffness and associated cardiovascular complications in overweight/obese individuals with metabolic syndrome. Topics: Animals; Blotting, Western; Cardiovascular Diseases; Diet, High-Fat; Disease Models, Animal; Glucose Tolerance Test; Male; Metabolic Syndrome; Mice; Mice, Inbred C57BL; Mice, Knockout; Mice, Transgenic; Muscle, Smooth, Vascular; Obesity; Pulse Wave Analysis; Random Allocation; Real-Time Polymerase Chain Reaction; Resveratrol; Sirtuin 1; Stilbenes; Vascular Cell Adhesion Molecule-1; Vascular Stiffness | 2016 |
Live fast, die young.
Topics: Africa; Aging; Alzheimer Disease; Amyloid; Animal Feed; Animal Husbandry; Animals; Animals, Laboratory; Breeding; Caloric Restriction; CRISPR-Cas Systems; Crosses, Genetic; Disease Models, Animal; Female; Fundulidae; Genetic Engineering; Genomics; Iron; Life Cycle Stages; Longevity; Male; Mice; Models, Animal; Neurosciences; Resveratrol; Stilbenes; Time Factors | 2016 |
Grape compounds suppress colon cancer stem cells in vitro and in a rodent model of colon carcinogenesis.
We have previously shown that the grape bioactive compound resveratrol (RSV) potentiates grape seed extract (GSE)-induced colon cancer cell apoptosis at physiologically relevant concentrations. However, RSV-GSE combination efficacy against colon cancer stem cells (CSCs), which play a key role in chemotherapy and radiation resistance, is not known.. We tested the anti-cancer efficacy of the RSV-GSE against colon CSCs using isolated human colon CSCs in vitro and an azoxymethane-induced mouse model of colon carcinogenesis in vivo.. RSV-GSE suppressed tumor incidence similar to sulindac, without any gastrointestinal toxicity. Additionally, RSV-GSE treatment reduced the number of crypts containing cells with nuclear β-catenin (an indicator of colon CSCs) via induction of apoptosis. In vitro, RSV-GSE suppressed - proliferation, sphere formation, nuclear translocation of β-catenin (a critical regulator of CSC proliferation) similar to sulindac in isolated human colon CSCs. RSV-GSE, but not sulindac, suppressed downstream protein levels of Wnt/β-catenin pathway, c-Myc and cyclin D1. RSV-GSE also induced mitochondrial-mediated apoptosis in colon CSCs characterized by elevated p53, Bax/Bcl-2 ratio and cleaved PARP. Furthermore, shRNA-mediated knockdown of p53, a tumor suppressor gene, in colon CSCs did not alter efficacy of RSV-GSE.. The suppression of Wnt/β-catenin signaling and elevated mitochondrial-mediated apoptosis in colon CSCs support potential clinical testing/application of grape bioactives for colon cancer prevention and/or therapy. Topics: Animals; Antineoplastic Agents, Phytogenic; Apoptosis; beta Catenin; Cell Proliferation; Colonic Neoplasms; Disease Models, Animal; Grape Seed Extract; Male; Mice; Neoplastic Stem Cells; Resveratrol; Signal Transduction; Stilbenes; Vitis | 2016 |
Resveratrol counteracts lipopolysaccharide-induced depressive-like behaviors via enhanced hippocampal neurogenesis.
Radial glial-like cells (RGLs) in the adult dentate gyrus (DG) function as progenitor cells for adult hippocampal neurogenesis, a process involved in the stress-related pathophysiology and treatment efficiency of depression. Resveratrol (RSV) has been demonstrated to be a potent activator of neurogenesis. The present study investigated whether chronic RSV treatment has antidepressant potential in relation to hippocampal neurogenesis. Mice received two weeks of RSV (20 mg/kg) or dimethylsulfoxide (DMSO) treatment, followed by lipopolysaccharide (LPS; 1 mg/kg) or saline injections for 5 days. We found that RSV treatment abrogated the increased immobility in the forced swimming test and tail suspension test induced by LPS. Immunohistochemical staining revealed that RSV treatment reversed the increase in microglial activation and the inhibition in DG neurogenesis. RSV treatment also attenuated LPS-induced defects in the expanding of RGLs through promoting symmetric division. In addition, RSV ameliorated LPS-induced NF-κB activation in the hippocampus coincides with the up-regulation levels of Sirt1 and Hes1. Taken together, these data indicated that RSV-induced Sirt1 activation counteracts LPS-induced depression-like behaviors via a neurogenic mechanism. A new model to understand the role of RSV in treating depression may result from these findings. Topics: Animals; Antioxidants; Behavior, Animal; Cell Proliferation; Dentate Gyrus; Depression; Dimethyl Sulfoxide; Disease Models, Animal; Ependymoglial Cells; Hippocampus; Humans; Immunohistochemistry; Lipopolysaccharides; Male; Mice; Mice, Inbred C57BL; Microglia; Neurogenesis; NF-kappa B; Resveratrol; Signal Transduction; Sirtuin 1; Stilbenes; Stress, Psychological; Transcription Factor HES-1; Up-Regulation | 2016 |
Neuroprotective actions of pterostilbene on hypoxic-ischemic brain damage in neonatal rats through upregulation of heme oxygenase-1.
Neonatal hypoxic-ischemic (HI) brain damage causes acute mortality and morbidity in newborns and long-term neurological disorders in the survivors. Pterostilbene (PTE) is a natural compound possessing various biological and pharmacological activities. In the present study, we aimed to investigate the effect of PTE on neonatal HI brain damagein P7 rat model and to explore the possible mechanisms. Neonatal HI brain damage was induced in rat pups (P7). Prior to the induction of HI injury, PTE was injected with or without zinc protoporphyrin IX (ZnPP), an inhibitor of heme oxygenase-1 (HO-1). ZnPP was used to test whether abnormal changes of HO-1 expression were involved in the effect of PTE. The results showed that PTE exhibited excellent neuroprotective effects against neonatal HI brain injury, as evidenced by the decrease of brain infarct volume, brain edema, neurological score, and improvement in motor coordination motor deficit and working memory deficit. PTE pretreatment decreased the expression of several proinflammatory cytokines, including TNFα, IL-1β, IL-6, and key transcription factor p65 NF-κB, and reduced the number of TUNEL-stained neurons, indicating the inhibition of inflammation and programmed cell death. Moreover, PTE pretreatment decreased thiobarbituric acid reactive substances content, increased superoxide dismutase activity and decreased reactive oxygen species level, indicating that PTE played an important antioxidant role. Furthermore, ZnPP was able to inhibit PTE-induced suppression of oxidative stress, programmed cell death, inflammation and brain damage. In conclusion, PTE pretreatment prevented HI-induced brain injury in newborns through HO-1-mediated reduction of oxidative stress, programmed cell death, and inflammation, and final improvement of histological and functional injury. Overall, the data that obtained in rat model provide novel insights into the pathogenesis of neonatal HI brain injury and may be translational to human clinical intervention for HI-associated brain injury in newborns. Topics: Animals; Animals, Newborn; Brain; Brain Edema; Brain Injuries; Cell Death; Cytokines; Disease Models, Animal; Enzyme Inhibitors; Female; Gait Disorders, Neurologic; Heme Oxygenase (Decyclizing); Hypoxia-Ischemia, Brain; Male; Memory Disorders; Neuroprotective Agents; Oxidative Stress; Protoporphyrins; Psychomotor Disorders; Rats; Stilbenes; Up-Regulation | 2016 |
Resveratrol lacks protective activity against acute seizures in mouse models.
Resveratrol (3,4',5-stilbenetriol) is a natural product having diverse anti-inflammatory and antioxidant properties. The compound has a wide spectrum of pharmacological and metabolic activity, including cardioprotective, neuroprotective, anticarcinogenic and anti-aging effects reported in numerous studies. Some reports also suggest potential anticonvulsant properties of resveratrol. In the present study, we used in mice three different seizure models which are routinely applied in preclinical drug discovery. The protective effects of resveratrol were evaluated in the pentylenetetrazole (PTZ), maximal electroshock (MES) and 6-Hz electrical seizure models. Resveratrol (up to 300mg/kg) administered ip (5-60min pre-treatment time) remained without any protective activity against seizures induced in these models. There was only a trend towards a delay in seizure latency, which reached statistical significance after treatment with resveratrol (100mg/kg; 15min) in case of tonic convulsions induced by PTZ. Phenobarbital (PHB, ip, 45min), used as a reference compound, displayed a clear-cut and dose-dependent protection against seizures in all the models. The ED50 values obtained with PHB were as follows: 7.3mg/kg (PTZ model), 13.3mg/kg (MES model) and 29.7mg/kg (6-Hz model). The present data demonstrate that an acute treatment with resveratrol does not provide any significant protection in three seizure models which collectively are able to detect anticonvulsants with diverse mechanisms of action. However, it cannot be excluded that chronic treatment with resveratrol may offer some protection in these or other seizure models. Topics: Animals; Anticonvulsants; Antioxidants; Disease Models, Animal; Dose-Response Relationship, Drug; Electroshock; Male; Mice; Pentylenetetrazole; Resveratrol; Seizures; Stilbenes; Treatment Failure | 2016 |
Effect of quercetin and resveratrol co-incorporated in liposomes against inflammatory/oxidative response associated with skin cancer.
The present investigation reports the development of liposomes for the co-delivery of naturally occurring polyphenols, namely quercetin and resveratrol. Small, spherical, uni/bilamellar vesicles were produced, as demonstrated by light scattering, cryo-TEM, SAXS. The incorporation of quercetin and resveratrol in liposomes did not affect their intrinsic antioxidant activity, as DPPH radical was almost completely inhibited. The cellular uptake of the polyphenols was higher when they were formulated in liposomes, and especially when co-loaded rather than as single agents, which resulted in a superior ability to scavenge ROS in fibroblasts. The in vivo efficacy of the polyphenols in liposomes was assessed in a mouse model of skin lesion. The topical administration of liposomes led to a remarkable amelioration of the tissue damage, with a significant reduction of oedema and leukocyte infiltration. Therefore, the proposed approach based on polyphenol vesicular formulation may be of value in the treatment of inflammation/oxidative stress associated with pre-cancerous/cancerous skin lesions. Topics: Administration, Topical; Animals; Antioxidants; Disease Models, Animal; Drug Combinations; Drug Delivery Systems; Dynamic Light Scattering; Female; Fibroblasts; Humans; Inflammation; Liposomes; Mice; Oxidative Stress; Quercetin; Reactive Oxygen Species; Resveratrol; Skin Neoplasms; Stilbenes | 2016 |
Resveratrol Ameliorates Alcoholic Fatty Liver by Inducing Autophagy.
Alcoholic fatty liver (AFL) is early stage of alcoholic liver disease, which can progress to steatohepatitis, fibrosis, and cirrhosis if alcohol consumption is continued. The pathogenesis of AFL is associated with excessive lipid accumulation in hepatocytes. Resveratrol (RES), a dietary polyphenol found in red wines and grapes, has been shown to have a hepatoprotective effect. Autophagy is a crucial physiological process in cellular catabolism that involves the regulation of lipid droplets. Autophagy maintains a balance between protein synthesis, degradation and self-recycling. In the present study, we evaluated the protective effects of RES (10[Formula: see text]mg/kg, 30[Formula: see text]mg/kg, 100[Formula: see text]mg/kg) on AFL mice fed with an ethanol Lieber-DeCarli liquid diet, and HepG2 cells in the presence of oleic acid and alcohol to investigate whether resveratrol could induce autophagy to attenuate lipid accumulation. The results showed that RES (30[Formula: see text]mg/kg and 100[Formula: see text]mg/kg) treatment significantly attenuated hepatic steatosis and lowered the activities of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), triglyceride (TG), low density lipoprotein cholesterol (LDL-C). H&E staining showed that RES reduced hepatic lipid accumulation. Transmission electron microscopy (TEM) images showed that RES treatment increased the number of autophagosomes and promoted the formation of autophagy. Western blot analysis showed that RES treatment increased the levels of microtubule-associated protein light chain3- II (LC3-II) and Beclin1, decreased expression of p62 protein. In addition, in vitro studies also demonstrated that RES led to the formation of acidic vesicular organelles (AVOs), however, 3-Methyladenine (3-MA), a specific inhibitor of autophagy, obviously inhibited the above effects of RES. In conclusion, RES has protective effects on alcoholic hepatic steatosis, and the potential mechanism might be involved in inducing autophagy. Topics: Animals; Autophagy; Disease Models, Animal; Fatty Liver, Alcoholic; Hep G2 Cells; Hepatocytes; Humans; Lipid Droplets; Male; Mice, Inbred C57BL; Phytotherapy; Resveratrol; Stilbenes; Vitis; Wine | 2016 |
Resveratrol Ameliorates the Depressive-Like Behaviors and Metabolic Abnormalities Induced by Chronic Corticosterone Injection.
Chronic glucocorticoid exposure is known to cause depression and metabolic disorders. It is critical to improve abnormal metabolic status as well as depressive-like behaviors in patients with long-term glucocorticoid therapy. This study aimed to investigate the effects of resveratrol on the depressive-like behaviors and metabolic abnormalities induced by chronic corticosterone injection. Male ICR mice were administrated corticosterone (40 mg/kg) by subcutaneous injection for three weeks. Resveratrol (50 and 100 mg/kg), fluoxetine (20 mg/kg) and pioglitazone (10 mg/kg) were given by oral gavage 30 min prior to corticosterone administration. The behavioral tests showed that resveratrol significantly reversed the depressive-like behaviors induced by corticosterone, including the reduced sucrose preference and increased immobility time in the forced swimming test. Moreover, resveratrol also increased the secretion of insulin, reduced serum level of glucose and improved blood lipid profiles in corticosterone-treated mice without affecting normal mice. However, fluoxetine only reverse depressive-like behaviors, and pioglitazone only prevent the dyslipidemia induced by corticosterone. Furthermore, resveratrol and pioglitazone decreased serum level of glucagon and corticosterone. The present results indicated that resveratrol can ameliorate depressive-like behaviors and metabolic abnormalities induced by corticosterone, which suggested that the multiple effects of resveratrol could be beneficial for patients with depression and/or metabolic syndrome associated with long-term glucocorticoid therapy. Topics: Animals; Antidepressive Agents; Behavior, Animal; Blood Glucose; Body Weight; Corticosterone; Depression; Disease Models, Animal; Drug Administration Schedule; Fluoxetine; Lipids; Male; Mice; Mice, Inbred ICR; Pioglitazone; Resveratrol; Stilbenes; Swimming; Thiazolidinediones | 2016 |
Diet-induced non-alcoholic fatty liver disease affects expression of major cytochrome P450 genes in a mouse model.
Non-alcoholic fatty liver disease (NAFLD) is associated with impaired liver function, and resveratrol could suppress NAFLD progression. This study examined the effects of NAFLD on the expression of major cytochrome P450 (CYP) subtypes in the liver and whether the expression could be attenuated by resveratrol.. C57BL/6 mice (male, 10 weeks of age) were fed a high-fat and high-sucrose (HFHS) diet to induce NAFLD. Major Cyp subtype mRNA expression in the liver was measured by real-time RT-PCR.. Body and liver weights at 4 and 12 weeks were significantly higher in mice fed the HFHS diet compared with control. The HFHS diet significantly increased the accumulation of cholesterol and triglycerides at 12 weeks. Under this condition, the HFHS diet increased the expression of Cyp1a2 and decreased that of Cyp3a11 at 1 week and thereafter. On the other hand, Cyp1a1, 2b10 and 2c29 mRNA expression levels in the liver were significantly increased at 12 weeks only. Resveratrol (0.05% (w/w) in diet) slightly suppressed lipid accumulation in the liver, but failed to recover impaired Cyp gene expression levels in NAFLD.. Drug metabolism may be impaired in NAFLD, and each Cyp subtype is regulated in a different manner. Topics: Animals; Cytochrome P-450 Enzyme System; Diet, High-Fat; Dietary Sucrose; Disease Models, Animal; Gene Expression Regulation, Enzymologic; Isoenzymes; Lipids; Liver; Male; Mice, Inbred C57BL; Non-alcoholic Fatty Liver Disease; Resveratrol; RNA, Messenger; Stilbenes; Time Factors | 2016 |
SIRT1-PGC1α-NFκB Pathway of Oxidative and Inflammatory Stress during Trypanosoma cruzi Infection: Benefits of SIRT1-Targeted Therapy in Improving Heart Function in Chagas Disease.
Chronic chagasic cardiomyopathy (CCM) is presented by increased oxidative/inflammatory stress and decreased mitochondrial bioenergetics. SIRT1 senses the redox changes and integrates mitochondrial metabolism and inflammation; and SIRT1 deficiency may be a major determinant in CCM. To test this, C57BL/6 mice were infected with Trypanosoma cruzi (Tc), treated with SIRT1 agonists (resveratrol or SRT1720), and monitored during chronic phase (~150 days post-infection). Resveratrol treatment was partially beneficial in controlling the pathologic processes in Chagas disease. The 3-weeks SRT1720 therapy provided significant benefits in restoring the left ventricular (LV) function (stroke volume, cardiac output, ejection fraction etc.) in chagasic mice, though cardiac hypertrophy presented by increased thickness of the interventricular septum and LV posterior wall, increased LV mass, and disproportionate synthesis of collagens was not controlled. SRT1720 treatment preserved the myocardial SIRT1 activity and PGC1α deacetylation (active-form) that were decreased by 53% and 9-fold respectively, in chagasic mice. Yet, SIRT1/PGC1α-dependent mitochondrial biogenesis (i.e., mitochondrial DNA content, and expression of subunits of the respiratory complexes and mtDNA replication machinery) was not improved in chronically-infected/SRT1720-treated mice. Instead, SRT1720 therapy resulted in 2-10-fold inhibition of Tc-induced oxidative (H2O2 and advanced oxidation protein products), nitrosative (inducible nitric oxide synthase, 4-hydroxynonenal, 3-nitrotyrosine), and inflammatory (IFNγ, IL1β, IL6 and TNFα) stress and inflammatory infiltrate in chagasic myocardium. These benefits were delivered through SIRT1-dependent inhibition of NFκB transcriptional activity. We conclude that Tc inhibition of SIRT1/PGC1α activity was not a key mechanism in mitochondrial biogenesis defects during Chagas disease. SRT1720-dependent SIRT1 activation led to suppression of NFκB transcriptional activity, and subsequently, oxidative/nitrosative and inflammatory pathology were subdued, and antioxidant status and LV function were enhanced in chronic chagasic cardiomyopathy. Topics: Animals; Antioxidants; Blotting, Western; Chagas Cardiomyopathy; Disease Models, Animal; Heart; Heterocyclic Compounds, 4 or More Rings; Humans; Inflammation; Mice; Mice, Inbred C57BL; NF-kappa B; Oxidative Stress; Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha; Resveratrol; Signal Transduction; Sirtuin 1; Stilbenes; Transcriptome; Trypanosoma cruzi | 2016 |
Resveratrol alleviates sepsis‑induced myocardial injury in rats by suppressing neutrophil accumulation, the induction of TNF‑α and myocardial apoptosis via activation of Sirt1.
Sepsis is a severe inflammatory response to systemic infection that frequently affects the myocardium. Previous studies have suggested that resveratrol (RESV) is protective in sepsis. The present study aimed to investigate the role of sirtuin 1 (Sirt1) signaling in the protective effect of intraperitoneally administered RESV against sepsis‑induced myocardial injury. Cecal ligation and puncture, or a sham operation, were performed in male Sprague‑Dawley rats, and the levels of tumor necrosis factor (TNF)‑α and myeloperoxidase (MPO) were assessed by ELISA and an MPO activity kit, respectively. The extent of myocardial apoptosis was assessed by TUNEL staining. The protein expression levels of Sirt1, acetylated (Ac)‑Forkhead box O1 (FoxO1), B cell lymphoma 2 apoptosis regulator (Bcl‑2) and Bcl‑2 associated protein X apoptosis regulator (Bax) were detected by western blot analysis. RESV was demonstrated to attenuate myocardial apoptosis and decrease the production of TNF‑α and MPO. Additionally, RESV upregulated the expression of Sirt1 and Bcl‑2, and downregulated the expression of Ac‑FoxO1 and Bax. The protective effects of RESV were abolished by EX527, a Sirt1 inhibitor. RESV has therefore been demonstrated to attenuate myocardial injury in sepsis by decreasing neutrophil accumulation, TNF‑α expression, and myocardial apoptosis via activation of Sirt1 signaling. These results suggest a novel therapeutic strategy for the clinical treatment of sepsis. Topics: Animals; Apoptosis; Cardiomyopathies; Disease Models, Animal; Male; Neutrophil Infiltration; Neutrophils; Rats; Resveratrol; Sepsis; Sirtuin 1; Stilbenes; Tumor Necrosis Factor-alpha | 2016 |
Resveratrol Reverses Functional Chagas Heart Disease in Mice.
Chronic chagasic cardiomyopathy (CCC) develops years after acute infection by Trypanosoma cruzi and does not improve after trypanocidal therapy, despite reduction of parasite burden. During disease, the heart undergoes oxidative stress, a potential causative factor for arrhythmias and contractile dysfunction. Here we tested whether antioxidants/ cardioprotective drugs could improve cardiac function in established Chagas heart disease. We chose a model that resembles B1-B2 stage of human CCC, treated mice with resveratrol and performed electrocardiography and echocardiography studies. Resveratrol reduced the prolonged PR and QTc intervals, increased heart rates and reversed sinus arrhythmia, atrial and atrioventricular conduction disorders; restored a normal left ventricular ejection fraction, improved stroke volume and cardiac output. Resveratrol activated the AMPK-pathway and reduced both ROS production and heart parasite burden, without interfering with vascularization or myocarditis intensity. Resveratrol was even capable of improving heart function of infected mice when treatment was started late after infection, while trypanocidal drug benznidazole failed. We attempted to mimic resveratrol's actions using metformin (AMPK-activator) or tempol (SOD-mimetic). Metformin and tempol mimicked the beneficial effects of resveratrol on heart function and decreased lipid peroxidation, but did not alter parasite burden. These results indicate that AMPK activation and ROS neutralization are key strategies to induce tolerance to Chagas heart disease. Despite all tissue damage observed in established Chagas heart disease, we found that a physiological dysfunction can still be reversed by treatment with resveratrol, metformin and tempol, resulting in improved heart function and representing a starting point to develop innovative therapies in CCC. Topics: Animals; Antioxidants; Chagas Cardiomyopathy; Cyclic N-Oxides; Disease Models, Animal; Female; Male; Metformin; Mice; Mice, Inbred BALB C; Oxidative Stress; Resveratrol; Spin Labels; Stilbenes | 2016 |
Piceatannol Exerts Anti-Obesity Effects in C57BL/6 Mice through Modulating Adipogenic Proteins and Gut Microbiota.
Obesity is a global health concern. Piceatannol (Pic), an analog of resveratrol (Res), has many reported biological activities. In this study, we investigated the anti-obesity effect of Pic in a high-fat diet (HFD)-induced obese animal model. The results showed that Pic significantly reduced mouse body weight in a dose-dependent manner without affecting food intake. Serum total cholesterol (TC), low-density lipoprotein (LDL), high-density lipoprotein (HDL) levels, and blood glucose (GLU) were significantly lowered in Pic-treated groups. Pic significantly decreased the weight of liver, spleen, perigonadal and retroperitoneal fat compared with the HFD group. Pic significantly reduced the adipocyte cell size of perigonadal fat and decreased the weight of liver. Pic-treated mice showed higher phosphorylated adenosine 5'-monophosphate-activated protein kinase (pAMPK) and phosphorylated acetyl-CoA carboxylase (pACC) protein levels and decreased protein levels of CCAAT/enhancer-binding protein C/EBPα, peroxisome proliferator-activated receptor PPARγ and fatty acid synthase (FAS), resulting in decreased lipid accumulation in adipocytes and the liver. Pic altered the composition of the gut microbiota by increasing Firmicutes and Topics: Adipogenesis; Animals; Anti-Obesity Agents; Body Weight; Cholesterol; Diet, High-Fat; Disease Models, Animal; Dose-Response Relationship, Drug; Eating; Gastrointestinal Microbiome; Gene Expression Regulation; Lipoproteins, HDL; Lipoproteins, LDL; Mice; Mice, Inbred C57BL; Obesity; Organ Size; Stilbenes | 2016 |
Resveratrol changes spermatogonial stem cells (SSCs) activity and ameliorates their loss in busulfan-induced infertile mouse.
The decline of quantity and quality of sperm are correlated with the increasing age and some anti-cancer compounds such as busulfan. Previous studies have shown that Resveratrol (Res) inhibits tumorigenesis and metastasis of many cancers including mammary tumor, prostate and pancreatic cancers. It acts as anti-age in mouse and human, however, little is known about its protective effect on aged spermatogonial stem cells (SSCs). Here, we investigated the effects of Res in vitro on SSCs using C18-4 cells and in vivo in busulfan-induced azoospermia mice model. The results showed that Res at different concentrations had different effects on C18-4 cells. Treatment with 2 μM of Res promotes cell proliferation and inhibits apoptosis, but stimulates apoptosis with a higher concentration (20 μM) in C18-4 cells. Using busulfan-induced infertility mice model, we demonstrated that Res (30 mg/kg/d and 100 mg/kg/d) clearly ameliorated SSCs loss to recover the spermatogenesis. Taken together, our data suggest that Res might be an approach for therapeutic intervention to promote SSC proliferation and cease SSCs loss in azoospermia mice model induced by busulfan. Topics: Adult Germline Stem Cells; Animals; Apoptosis; Azoospermia; Busulfan; Cell Line; Cell Proliferation; Cell Survival; Cytoprotection; Disease Models, Animal; Dose-Response Relationship, Drug; Fertility; Male; Mice, Inbred ICR; Resveratrol; Spermatogenesis; Stilbenes; Time Factors | 2016 |
A Prospective Experimental Study on the Protective Effect of Resveratrol against Amikacin-Induced Ototoxicity in Rats.
The purpose of this study was to evaluate the protective effect of resveratrol against amikacin-induced ototoxicity in rats by otoacoustic emission and histopathology of the cochlea.. This study was conducted with 31 Sprague Dawley adult female rats that were 20-21 weeks old and 190-245 g in weight. Before the drug administration, distortion product otoacoustic emission (DPOAE) tests were performed in both ears of each rat. The rats were divided into four groups. Group 1 (n=7) received ethanol 1cc 4%, Group 2 (n=8) received 600 mg/kg amikacin, Group 3 (n=8) received 10 mg/kg resveratrol and 600 mg/kg amikacin, and Group 4 (n=8) received 1cc resveratrol at 10 mg/kg. The drugs were administered once a day for 21 consecutive days. Control DPOAE tests were performed at the 7th, 14th, and 21st days after the administration of drugs. At the end of the study, the rats were sacrificed and their cochleae were dissected. The cochleae were evaluated for histopathologic changes.. There was no statistically significant difference in the DPOAE measurements before the procedure between groups. The DPOAE measurements significantly decreased after the procedure in the amikacin group. There was no statistically significant difference in DPOAE measurements after the procedure in the amikacin + resveratrol, resveratrol, and ethanol groups. The histopathologic findings supported these results.. We found that if resveratrol is administered with amikacin, the severity of amikacin-induced hearing loss is decreased. These findings suggest that resveratrol, a strong antioxidant, has a protective effect in amikacin ototoxicity. Topics: Amikacin; Animals; Anti-Bacterial Agents; Antioxidants; Disease Models, Animal; Female; Hearing Loss; Otoacoustic Emissions, Spontaneous; Rats; Rats, Sprague-Dawley; Resveratrol; Stilbenes | 2016 |
Resveratrol post-treatment protects against neonatal brain injury after hypoxia-ischemia.
Neonatal hypoxic-ischemic brain injury is a devastating disease with limited treatment options. Preventive treatment with resveratrol has indicated to be well tolerated and has lower toxicity in both experimental models and human patients. However, whether resveratrol administration post-hypoxic-ischemic protects against neonatal hypoxic-ischemic injury is not known. Here we reported that post-treatment with resveratrol significantly reduced brain damage at 7-day after the injury. We found that resveratrol reduced the expression levels of key inflammatory factors at the mRNA and protein levels, and at least partially via inhibiting microglia activation. Moreover, resveratrol exerted an anti-apoptotic effect, as assessed by TUNEL staining, and altered the expression of the apoptosis-related genes Bax, Bcl-2 and caspase3. Our data indicate that post-treatment with resveratrol protects against neonatal hypoxic-ischemic brain injury and suggest a promising therapeutic strategy to this disease. Topics: Animals; Animals, Newborn; bcl-2-Associated X Protein; Brain Injuries; Caspase 3; Cytokines; Disease Models, Animal; Gene Expression Regulation; Hypoxia-Ischemia, Brain; Male; Microglia; Neuroprotective Agents; Proto-Oncogene Proteins c-bcl-2; Rats; Resveratrol; Stilbenes | 2016 |
Effective treatment of polydatin weakens the symptoms of collagen-induced arthritis in mice through its anti-oxidative and anti-inflammatory effects and the activation of MMP-9.
Polydatin is a natural extract used in traditional Chinese medicine, which leads to a marked improvement in the microcirculation perfusion and enhances the animal myocardial contraction force. The present study aimed to determine whether an effective treatment of polydatin ameliorates the symptoms of collagen‑induced arthritis (CIA), and also to explore the potential mechanism. Male DBA/1J mice were induced into CIA model mice. The administration of polydatin effectively suppressed CIA in mice. The serum levels of malondialdehyde (MDA), superoxide dismutase (SOD), tumor necrosis factor‑α (TNF‑α) and interleukin 1β (IL‑1β) were effectively increased following the induction of CIA in the model mice compared with the control group. The elevated serum levels of MDA, SOD, TNF‑α and IL‑1β were markedly suppressed by the effective treatment of polydatin in CIA mice, compared with the CIA model group. However, an increase in the level of matrix metalloproteinase‑9 (MMP‑9) was markedly induced in the CIA mice compared with the control group. As compared with the CIA group, the expression of MMP‑9 was substantially reduced by the effective treatment of polydatin. Taken together, the effective treatment of polydatin ameliorated the symptoms of CIA through an exertion of its antioxidative and anti‑inflammatory effects, and also via activation of the expression of matrix metalloproteinase-9 (MMP-9) in mice. Topics: Animals; Anti-Inflammatory Agents; Antioxidants; Arthritis, Experimental; Arthritis, Rheumatoid; bcl-2-Associated X Protein; Biomarkers; Caspase 3; Caspase 9; Disease Models, Animal; Glucosides; Glutathione; Male; Malondialdehyde; Matrix Metalloproteinase 9; Mice; Oxidative Stress; Proto-Oncogene Proteins c-bcl-2; Stilbenes; Superoxide Dismutase | 2016 |
Neuroprotective effects of polydatin against mitochondrial-dependent apoptosis in the rat cerebral cortex following ischemia/reperfusion injury.
The neuroprotective effect of polydatin (PD) against hemorrhagic shock-induced mitochondrial injury has been described previously, and mitochondrial dysfunction and apoptosis were reportedly involved in ischemic stroke. In the present study the neuroprotective effect of PD in preventing apoptosis was evaluated following induction of focal cerebral ischemia by middle cerebral artery occlusion (MCAO) in rats. PD (30 mg/kg) was administered by caudal vein injection 10 min prior to ischemia/reperfusion (I/R) injury. 24 h following I/R injury, ameliorated modified neurological severity scores (mNSS) and reduced infarct volume were observed in the PD treated group. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining and Annexin V/propidium iodide assays demonstrated the anti-apoptotic effect of PD in the ischemic cortex. In addition, PD improved I/R injury‑induced mitochondrial dysfunction, reflected by morphological observations and measurements of mitochondrial membrane potential and intracellular ATP measurement. Western blot analysis revealed an increase in B‑cell lymphoma 2 apoptosis regulator (Bcl-2) expression, and a decrease in Bcl‑2‑associated protein X apoptosis regulator expression in the PD group in comparison with the vehicle treated group. PD treatment also prevented the release of cytochrome c from mitochondria into the cytoplasm, and blunted the activities of caspase‑9 and caspase‑3. Furthermore, PD treatment decreased the levels of reactive oxygen species in neurons isolated from the ischemic cortex. The findings of this study, therefore, suggest that PD has a dual effect, ameliorating both oxidative stress and mitochondria‑dependent apoptosis, making it a promising new therapy for the treatment of ischemic stroke. Topics: Adenosine Triphosphate; Animals; Apoptosis; bcl-2-Associated X Protein; Biomarkers; Brain Ischemia; Cerebral Cortex; Cytochromes c; Disease Models, Animal; Glucosides; Male; Membrane Potential, Mitochondrial; Mitochondria; Neurons; Neuroprotective Agents; Proto-Oncogene Proteins c-bcl-2; Rats; Reactive Oxygen Species; Reperfusion Injury; Signal Transduction; Stilbenes | 2016 |
Efficiacy of resveratrol and quercetin after experimental spinal cord injury.
The aim of this study was to investigate the effect of natural antioxidants resveratrol and quercetin on oxidative stress and secondary cell damage in rats with acute spinal cord injury.. In this experimental study, 42 male Sprague-Dawley rats were used. Spinal cord injury was performed with clip compression method at level of T4-5. The study was conducted using 6 groups: control, trauma, trauma and solvent, trauma and resveratrol, trauma and quercetin, and trauma with combined resveratrol and quercetin. All rats were euthanized 48 hours after the procedure. Effects of resveratrol and quercetin on serum and tissue total antioxidant capacity and paraoxanase activity level were examined.. Compared to trauma group, there was a significant increase in total antioxidant capacity and paraoxanase activity level in resveratrol, quercetin, and combined treatment groups. There was no significant difference between resveratrol and quercetin groups with regard to total antioxidant capacity and paraoxanase activity level. Total antioxidant capacity and paraoxanase activity level were significantly higher in solvent group than trauma group. In histopathological evaluation, there was a decrease in polymorphonuclear leukocyte infiltration in solvent, resveratrol, quercetin, and combined treatment groups.. Biochemical and histological staining results of present study showed that resveratrol and quercetin may be effective in preventing secondary damage in spinal cord injury. Topics: Animals; Antioxidants; Disease Models, Animal; Inflammation; Male; Oxidative Stress; Quercetin; Rats; Rats, Sprague-Dawley; Resveratrol; Spinal Cord Injuries; Stilbenes | 2016 |
Effect of Resveratrol on periodontal pathogens during experimental periodontitis in rats.
The objective of this study was to investigate the antibacterial effect of resveratrol against putative periodontal pathogens during the progression of experimental periodontitis in rats. Periodontitis was induced in rats in one of the first molars chosen to receive a ligature. Animals were assigned to one of two groups: daily administration of the placebo solution (control group, n = 12) or 10 mg/Kg of resveratrol (RESV group, n = 12). The therapies were administered systemically for 30 days, for 19 days before periodontitis induction and then for another 11 days. Then, the presence and concentrations of Porphyromonas gingivalis, Tannerella forsythia and Aggregatibacter actinomycetemcomitans in the cotton ligatures collected from the first molars were evaluated using real-time PCR. Inter-group comparisons of the microbiological outcomes revealed that no differences were detected for P. gingivalis, T. forsythia and A. actinomycetemcomitans levels (p > 0.05). Continuous use of resveratrol did not promote additional benefits in microbiological outcomes during experimental periodontitis in rats. Topics: Aggregatibacter actinomycetemcomitans; Animals; Anti-Bacterial Agents; Disease Models, Animal; Male; Periodontitis; Periodontium; Porphyromonas gingivalis; Rats; Rats, Wistar; Real-Time Polymerase Chain Reaction; Reproducibility of Results; Resveratrol; Stilbenes; Tannerella forsythia; Time Factors; Treatment Outcome | 2016 |
SIRT1/3 Activation by Resveratrol Attenuates Acute Kidney Injury in a Septic Rat Model.
Sepsis often results in damage to multiple organ systems, possibly due to severe mitochondrial dysfunction. Two members of the sirtuin family, SIRT1 and SIRT3, have been implicated in the reversal of mitochondrial damage. The aim of this study was to determine the role of SIRT1/3 in acute kidney injury (AKI) following sepsis in a septic rat model. After drug pretreatment and cecal ligation and puncture (CLP) model reproduction in the rats, we performed survival time evaluation and kidney tissue extraction and renal tubular epithelial cell (RTEC) isolation. We observed reduced SIRT1/3 activity, elevated acetylated SOD2 (ac-SOD2) levels and oxidative stress, and damaged mitochondria in RTECs following sepsis. Treatment with resveratrol (RSV), a chemical SIRT1 activator, effectively restored SIRT1/3 activity, reduced acetylated SOD2 levels, ameliorated oxidative stress and mitochondrial function of RTECs, and prolonged survival time. However, the beneficial effects of RSV were greatly abrogated by Ex527, a selective inhibitor of SIRT1. These results suggest a therapeutic role for SIRT1 in the reversal of AKI in septic rat, which may rely on SIRT3-mediated deacetylation of SOD2. SIRT1/3 activation could therefore be a promising therapeutic strategy to treat sepsis-associated AKI. Topics: Acetylation; Acute Kidney Injury; Animals; Apoptosis; Carbazoles; Cecum; Disease Models, Animal; Enzyme Activation; Epithelial Cells; Female; Histone Deacetylase Inhibitors; Kidney Tubules; Ligation; Male; Mitochondria; Oxidative Stress; Punctures; Rats, Sprague-Dawley; Resveratrol; Sepsis; Signal Transduction; Sirtuin 1; Sirtuins; Stilbenes; Superoxide Dismutase | 2016 |
Resveratrol Improves Cognitive Impairment by Regulating Apoptosis and Synaptic Plasticity in Streptozotocin-Induced Diabetic Rats.
To investigate the effects of resveratrol on cognitive impairment in streptozotocin (STZ)-induced diabetic rats and to explore the mechanisms of that phenomenon.. Sixty healthy male Sprague Dawley rats were randomly divided into four groups: normal control group (Con group, n = 15), Res group (normal Sprague Dawley rats treated with resveratrol, n = 15), diabetes mellitus group (DM group, n = 15) and DM + Res group (diabetic rats treat with resveratrol, n = 15). Streptozotocin (STZ) was injected intraperitoneally to establish the diabetic model. One week after diabetic model induction, the animals in the Res group and the DM + Res group received resveratrol intraperitoneally once a day for consecutive 4 weeks. The Morris water maze test was applied to assess the effect of resveratrol on learning and memory. To explore the mechanisms of resveratrol on cognition, we detected the protein expression levels of Caspase-3, Bcl-2, Bax, NMDAR1 (N-Methyl-d-Aspartate receptor) and BDNF (Brain Derived Neurotrophic Factor) via western blotting analysis.. Resveratrol has no obvious effect on normal SD rats. Compared to Con group, cognitive ability was significantly impaired with increased expression of Caspase-3, Bax and down-regulation of Bcl-2, NMDAR1 and BDNF in diabetic rats. By contrast, resveratrol treatment improved the cognitive decline. Evidently, resveratrol treatment reversed diabetes-induced changes of protein expression.. Resveratrol significantly ameliorates cognitive decline in STZ-induced diabetic model rats. The potential mechanism underlying the protective effect could be attributed to the inhibition of hippocampal apoptosis through the Bcl-2, Bax and Caspase-3 signaling pathways and improvement of synaptic dysfunction. BDNF may also play an indispensable role in this mechanism. Topics: Animals; Apoptosis; bcl-2-Associated X Protein; Blood Glucose; Blotting, Western; Brain-Derived Neurotrophic Factor; Caspase 3; Cognition Disorders; Diabetes Mellitus, Experimental; Disease Models, Animal; Male; Maze Learning; Neuronal Plasticity; Rats, Sprague-Dawley; Receptors, N-Methyl-D-Aspartate; Resveratrol; Stilbenes; Streptozocin; Up-Regulation | 2016 |
Investigating the effects of resveratrol on chronically ischemic myocardium in a swine model of metabolic syndrome: a proteomics analysis.
Resveratrol has been shown to improve cardiac perfusion and ventricular function after chronic ischemic injury. Using proteomic analysis, we sought to objectively investigate potential mechanisms, by which resveratrol exerts its cardioprotective effects in the setting of metabolic syndrome and chronic myocardial ischemia. Yorkshire swine were divided into two groups based on diet: high cholesterol (n=7) or a high-cholesterol diet with supplemental resveratrol (n=6). Four weeks later, all animals underwent surgical placement of an ameroid constrictor to their left circumflex artery. Diets were continued for another 7 weeks, and then the ischemic myocardium was harvested for proteomics analysis. Proteomic analysis identified 669 common proteins between the two groups. Of these proteins, 76 were statistically different, of which 41 were characterized (P<.05). Pathway analysis demonstrated that in animals supplemented with resveratrol, there was a downregulation in several proteins involved with mitochondrial dysfunction, cell death, and unfavorable cardiac remodeling. Furthermore, there was an upregulation in proteins involved in free radical elimination. We conclude that resveratrol supplementation significantly alters several critical protein markers in the chronically ischemic myocardium. Further investigation of these proteins may help elucidate the mechanisms by which resveratrol exerts its cardioprotective effects. Topics: Animals; Antioxidants; Biomarkers; Cell Death; Cholesterol, Dietary; Coronary Vessels; Dietary Supplements; Disease Models, Animal; Heart; Male; Metabolic Syndrome; Mitochondria; Myocardial Ischemia; Myocardium; Phytotherapy; Plant Extracts; Proteins; Proteomics; Resveratrol; Signal Transduction; Stilbenes; Swine | 2015 |
Resveratrol ameliorates lipopolysaccharide-induced epithelial mesenchymal transition and pulmonary fibrosis through suppression of oxidative stress and transforming growth factor-β1 signaling.
Fibrotic changes seem to be responsible for the high mortality rate observed in patients with acute respiratory distress syndrome (ARDS). The present study aimed to determine whether resveratrol, a natural antioxidant polyphenol, had anti-fibrotic effects in the murine model of lipopolysaccharide (LPS)-induced pulmonary fibrosis.. Fibrosis was assessed by determination of collagen deposition, hydroxyproline and type I collagen levels in lung tissues. Development of epithelial-mesenchymal transition (EMT) was identified by the loss of E-cadherin accompanying by the acquisition of α-smooth muscle actin (α-SMA). Transforming growth factor (TGF)-β1 content, levels of phosphorylated Smad2/Smad3 and Smad4, malondialdehyde (MDA) content, total antioxidant capacity (T-AOC), superoxide dismutase (SOD) activity, and catalase (CAT) activity in lung tissues were determined.. LPS increased collagen deposition, hydroxyproline and type I collagen contents, and meanwhile induced EMT process, stimulated TGF-β1 production and Smad activation in lung tissues on day 21 to day 28 after LPS administration. In addition, LPS treatment resulted in a rapid induction of oxidative stress as evidenced by increase of MDA and decreases of T-AOC, CAT and SOD activities as early as 7 days after LPS treatment, which was persistent for at least 4 weeks. In contrast, resveratrol treatment attenuated LPS-induced EMT and pulmonary fibrosis, meanwhile it suppressed LPS-induced oxidative stress, TGF-β1 production and activation of Smad signaling pathway.. Resveratrol may ameliorate LPS-induced EMT and pulmonary fibrosis through suppression of oxidative stress and TGF-β1/Smad signaling pathway. Application of antioxidants may represent a useful adjuvant pharmacologic approach to reduce ARDS-associated pulmonary fibrosis. Topics: Animals; Catalase; Collagen Type I; Disease Models, Animal; Epithelial-Mesenchymal Transition; Lipopolysaccharides; Male; Malondialdehyde; Mice; Mice, Inbred ICR; Oxidative Stress; Pulmonary Fibrosis; Resveratrol; Signal Transduction; Stilbenes; Superoxide Dismutase; Transforming Growth Factor beta1 | 2015 |
Effect of resveratrol on visceral white adipose tissue inflammation and insulin sensitivity in a mouse model of sleep apnea.
Sleep fragmentation (SF) increases food intake and the risk of obesity, and recruits macrophages to visceral white adipose tissue (VWAT) promoting tissue inflammation and insulin resistance. Administration of resveratrol (Resv) has been associated with significant improvements in high-fat diet-induced obesity, inflammation and insulin resistance.. Male mice were subjected to SF or sleep control conditions for 8 weeks, and treated with either Resv or vehicle (Veh). Fasting plasma levels of glucose, insulin and leptin were obtained and VWAT insulin sensitivity tests were performed (phosphorylated AKT/total AKT), along with flow-cytometric assessments for VWAT macrophages (M1 and M2) and T-cell lymphocytes (CD4+, CD8+ and T regulatory cell (Treg)).. SF-Veh and SF-Resv mice showed increased food consumption and weight gain. However, although SF-Veh mice exhibited increased fasting insulin and leptin levels, and reduced VWAT p-AKT/AKT responses to insulin, such alterations were abrogated in SF-Resv-treated mice. Increases in M1, reduced M2 counts and increased tumor necrosis factor-α release emerged in SF-Veh macrophages compared with all other three groups. Similarly, increased CD8+ and reduced Treg lymphocyte counts were apparent in SF-Veh.. Resveratrol does not reverse the SF-induced increases in food intake and weight gain, but markedly attenuates VWAT inflammation and insulin resistance, thereby providing a potentially useful adjunctive therapy in the context of sleep disorders manifesting metabolic morbidity. Topics: Animals; Anti-Obesity Agents; Diet, High-Fat; Disease Models, Animal; Eating; Inflammation; Insulin Resistance; Intra-Abdominal Fat; Male; Mice; Mice, Inbred C57BL; Obesity; Resveratrol; Sleep Apnea Syndromes; Stilbenes; Tumor Necrosis Factor-alpha; Weight Gain | 2015 |
Polydatin supplementation ameliorates diet-induced development of insulin resistance and hepatic steatosis in rats.
The pathophysiology of non-alcoholic fatty liver disease remains to be elucidated, and the currently available treatments are not entirely effective. Polydatin, a stilbenoid compound derived from the rhizome of Polygonum cuspidatum, has previously been demonstrated to possess hepatoprotective effects. The present study aimed to determine the effects of polydatin supplementation on hepatic fat accumulation and injury in rats fed a high-fat diet. In addition, the mechanisms underlying the protective effects of polydatin were examined. Male Sprague Dawley rats were randomly divided into four groups and received one of four treatment regimes for 12 weeks: Control diet, control diet supplemented with polydatin, high-fat diet, or high-fat diet supplemented with polydatin. Polydatin was supplemented in the drinking water at a concentration of 0.3% (wt/vol). The results of the present study showed that long-term high-fat feeding resulted in fatty liver in rats, which was manifested by excessive hepatic neutral fat accumulation and elevated plasma alanine aminotransferase and aspartate aminotransferase levels. Polydatin supplementation alleviated the hepatic pathological changes, and attenuated the insulin resistance, as shown by an improved homeostasis model assessment of basal insulin resistance values and a glucose tolerance test. Polydatin supplementation also corrected abnormal leptin and adiponectin levels. Specifically, polydatin supplementation enhanced insulin sensitivity in the liver, as shown by improved insulin receptor substrate 2 expression levels and Akt phosphorylation in the rat liver, following high-fat diet feeding. The results of the present study suggest that polydatin protects rats against high-fat feeding-induced insulin resistance and hepatic steatosis. Polydatin may be an effective hepatoprotective agent and a potential candidate for the prevention of fatty liver disease and insulin resistance. Topics: Adiponectin; Animals; Body Weight; Diet; Dietary Supplements; Disease Models, Animal; Fatty Liver; Gene Expression; Glucose Tolerance Test; Glucosides; Insulin; Insulin Receptor Substrate Proteins; Insulin Resistance; Leptin; Liver; Male; Rats; Stilbenes | 2015 |
Mutual exacerbation of peroxisome proliferator-activated receptor γ coactivator 1α deregulation and α-synuclein oligomerization.
Aggregation of α-synuclein (α-syn) and α-syn cytotoxicity are hallmarks of sporadic and familial Parkinson disease (PD), with accumulating evidence that prefibrillar oligomers and protofibrils are the pathogenic species in PD and related synucleinopathies. Peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), a key regulator of mitochondrial biogenesis and cellular energy metabolism, has recently been associated with the pathophysiology of PD. Despite extensive effort on studying the function of PGC-1α in mitochondria, no studies have addressed whether PGC-1α directly influences oligomerization of α-syn or whether α-syn oligomers impact PGC-1α expression.. We tested whether pharmacological or genetic activation of PGC-1α or PGC-11α knockdown could modulate the oligomerization of α-syn in vitro by using an α-syn -fragment complementation assay.. In this study, we found that both PGC-1α reference gene (RG-PGC-1α) and the central nervous system (CNS)-specific PGC-1α (CNS-PGC-1α) are downregulated in human PD brain, in A30P α-syn transgenic animals, and in a cell culture model for α-syn oligomerization. Importantly, downregulation of both RG-PGC-1α and CNS-PGC-1α in cell culture or neurons from RG-PGC-1α-deficient mice leads to a strong induction of α-syn oligomerization and toxicity. In contrast, pharmacological activation or genetic overexpression of RG-PGC-1α reduced α-syn oligomerization and rescued α-syn-mediated toxicity.. Based on our results, we propose that PGC-1α downregulation and α-syn oligomerization form a vicious circle, thereby influencing and/or potentiating each other. Our data indicate that restoration of PGC-1α is a promising approach for development of effective drugs for the treatment of PD and related synucleinopathies. Topics: Aged; Aged, 80 and over; alpha-Synuclein; Animals; Cells, Cultured; Cerebral Cortex; Disease Models, Animal; Embryo, Mammalian; Enzyme Inhibitors; Female; Gene Expression Regulation; Glioma; Humans; Macrolides; Male; Mice; Mice, Transgenic; Middle Aged; Neurons; Parkinson Disease; Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha; PPAR gamma; Resveratrol; RNA Polymerase II; Stilbenes; Substantia Nigra; TATA-Box Binding Protein; Transcription Factors | 2015 |
A potential novel treatment strategy: inhibition of angiogenesis and inflammation by resveratrol for regression of endometriosis in an experimental rat model.
The aim of our study was to evaluate the effectiveness of resveratrol in experimentally induced endometrial implants in rats through inhibiting angiogenesis and inflammation. Endometrial implants were surgically induced in 24 female Wistar-Albino rats in the first surgery. After confirmation of endometriotic foci in the second surgery, the rats were divided into resveratrol (seven rats), leuprolide acetate (eight rats), and control (seven rats) groups and medicated for 21 d. In the third surgery, the measurements of mean areas and histopathological analysis of endometriotic lesions, VEGF, and MCP-1 measurements in blood and peritoneal fluid samples, and immunohistochemical staining were evaluated. After treatment, significant reductions in mean areas of implants (p < 0.01) and decreased mean histopathological scores of the implants (p < 0.05), mean VEGF-staining scores of endometriotic implants (p = 0.01), and peritoneal fluid levels of VEGF and MCP-1 (p < 0.01, for VEGF and p < 0.01, for MCP-1) were found in the resveratrol and leuprolide acetate groups. Serum VEGF (p = 0.05) and MCP-1 (p = 0.01) levels after treatment were also significantly lower in the resveratrol and leuprolide acetate groups. Resveratrol appears to be a potential novel therapeutic agent in the treatment of endometriosis through inhibiting angiogenesis and inflammation. Further studies are needed to determine the optimum effective dose in humans and to evaluate other effects on reproductive physiology. Topics: Angiogenesis Inhibitors; Animals; Ascitic Fluid; Disease Models, Animal; Endometriosis; Endometrium; Female; Inflammation; Leuprolide; Neovascularization, Pathologic; Rats; Rats, Wistar; Resveratrol; Stilbenes; Therapeutics | 2015 |
Resveratrol treatment of mice with pressure-overload-induced heart failure improves diastolic function and cardiac energy metabolism.
Although resveratrol has multiple beneficial cardiovascular effects, whether resveratrol can be used for the treatment and management of heart failure (HF) remains unclear. In the current study, we determined whether resveratrol treatment of mice with established HF could lessen the detrimental phenotype associated with pressure-overload-induced HF and identified physiological and molecular mechanisms contributing to this.. C57Bl/6 mice were subjected to either sham or transverse aortic constriction surgery to induce HF. Three weeks post surgery, a cohort of mice with established HF (% ejection fraction <45) was administered resveratrol (≈320 mg/kg per day). Despite a lack of improvement in ejection fraction, resveratrol treatment significantly increased median survival of mice with HF, lessened cardiac fibrosis, reduced gene expression of several disease markers for hypertrophy and extracellular matrix remodeling that were upregulated in HF, promoted beneficial remodeling, and improved diastolic function. Resveratrol treatment of mice with established HF also restored the levels of mitochondrial oxidative phosphorylation complexes, restored cardiac AMP-activated protein kinase activation, and improved myocardial insulin sensitivity to promote glucose metabolism and significantly improved myocardial energetic status. Finally, noncardiac symptoms of HF, such as peripheral insulin sensitivity, vascular function, and physical activity, were improved with resveratrol treatment.. Resveratrol treatment of mice with established HF lessens the severity of the HF phenotype by lessening cardiac fibrosis, improving molecular and structural remodeling of the heart, and enhancing diastolic function, vascular function, and energy metabolism. Topics: Animals; Disease Models, Animal; Energy Metabolism; Heart Failure, Diastolic; Male; Mice; Mice, Inbred C57BL; Myocardial Contraction; Myocardium; Resveratrol; Ribonucleotide Reductases; Stilbenes; Stroke Volume; Vasodilator Agents; Ventricular Function, Left; Ventricular Remodeling | 2015 |
Resveratrol attenuates inflammation in the rat heart subjected to ischemia-reperfusion: Role of the TLR4/NF-κB signaling pathway.
It has been previously reported that Toll‑like receptor 4 (TLR4)/NF‑κB signaling mediates early inflammation during myocardial ischemia and reperfusion. It has additionally been suggested that resveratrol produces cardioprotective and anti‑inflammatory effects. The aim of the present study was to investigate whether resveratrol could modulate TLR4/NF‑κB signaling, reduce neutrophil accumulation and TNF‑α induction in an ischemia/reperfusion injured rat heart model. Rats were randomly exposed to a sham operation, myocardial ischemia and reperfusion (MI/R), MI/R + resveratrol or MI/R + resveratrol + L‑NAME. The data showed that following MI/R, the expression of myocardial TLR4 and NF‑κB increased significantly in the area of induced ischemia. As compared with MI/R, resveratrol significantly attenuated the expression of TLR4 and NF‑κB and reduced the levels of myeloperoxidase, serum and myocardial TNF‑α production, myocardial infarct size and myocardial apoptosis induced by MI/R. All the effects of resveratrol were abolished upon application of L‑NAME, a nitric oxide (NO) synthase inhibitor. These data provide evidence that resveratrol inhibits TLR4/NF‑κB signaling in the rat heart subjected to MI/R, and the anti‑inflammatory effect of resveratrol is associated with NO production. Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Apoptosis; Disease Models, Animal; Down-Regulation; Heart; Inflammation; Male; Myocardial Reperfusion Injury; Myocardium; Neutrophils; NF-kappa B; NG-Nitroarginine Methyl Ester; Nitric Oxide; Peroxidase; Rats; Rats, Sprague-Dawley; Resveratrol; Signal Transduction; Stilbenes; Toll-Like Receptor 4; Tumor Necrosis Factor-alpha | 2015 |
Possible role of resveratrol targeting estradiol and neprilysin pathways in lipopolysaccharide model of Alzheimer disease.
Alzheimer's disease (AD) is an irreversible, progressive neurodegenerative brain disease that slowly destroys memory and thinking skills. It is the most common cause of dementia among older people. One of the most important hallmarks of AD is the presence of amyloid beta (Aβ) peptide in the brain that suggests that it is the primary trigger for neuronal loss. Herbal extracts have been studied over the years for their potential therapeutic effect in AD. Resveratrol (RSV), one of the most important phytoestrogens, is considered to be useful as estrogen plays an important role in AD. One of the most important amyloid degrading enzymes is neprilysin (NEP), which plays a major role in degrading Aβ, and mainly affected by estrogen. So, the aim of the present study is investigating the possible role of resveratrol in lipopolysaccharide model of AD and the implication of its possible role in regulating the estradiol and neprilysin pathways. Mice were divided into four groups: Control group (0.9 % saline), LPS group (0.8 mg/kg i.p once), Treatment group with RSV (mice were once injected with LPS then after 30 min given a dose of {4 mg/kg} RSV for 7 days), and RSV group only (mice received 4 mg/kg i.p for 7 days only). After 7 days mice were subjected to different behavioral tests using Y-maze, object recognition test, and open field tests. Estradiol and NEP level were measured using ELISA kit. Results showed RSV was able to reverse the decline in different types of memory (working, nonspatial, and locomotor functions) caused by LPS induction in mice. Moreover RSV was able to significantly increase both the estradiol level and NEP level and that may have a great role to decrease Aβ deposition as it has been confirmed that there is a link between NEP and estradiol level; by upregulation of estradiol level this consequently leads to increase in the level of NEP level, and by increasing the NEP level in brain, this lead to decrease in Aβ deposition and enhancing its degradation by NEP. Topics: Alzheimer Disease; Amyloid beta-Peptides; Animals; Antineoplastic Agents, Phytogenic; Disease Models, Animal; Estradiol; Lipopolysaccharides; Memory; Mice; Motor Activity; Neprilysin; Random Allocation; Resveratrol; Signal Transduction; Stilbenes; Treatment Outcome | 2015 |
Estrogen receptor-mediated resveratrol actions on blood-brain barrier of ovariectomized mice.
To test whether resveratrol provides benefits via estrogen receptors (ERs) in the blood-brain barrier of estrogen-deficient females, ovariectomized mice were treated with resveratrol then were subjected to transient middle cerebral artery occlusion (MCAO). Compared with vehicle treatment, resveratrol reduced infarct volume and neurologic deficits after MCAO. Basal tight junction (TJ) protein levels in the brain were increased by resveratrol. After MCAO, blood-brain barrier breakdown reduced levels of TJ proteins, and induction of HIF-1α and VEGF were attenuated by resveratrol. These effects were reversed by the ERs antagonist, ICI182,780. In mouse brain, endothelial cells (bEnd.3) exposed to hypoxia, resveratrol treatment protected the cells against cytotoxicity, increases of paracellular permeability and changes in levels of TJ protein and HIF-1α/VEGF proteins. These effects were reversed by ICI182,780 but not by specific ERα or ERβ antagonists, indicating nonspecific ER mediated effects. Altogether, these results showed that neuroprotective effects of resveratrol in ovariectomized mice were mediated by ERs and associated with tightening of blood-brain barrier, suggesting that resveratrol can be an alternative to estrogens to protect the brains of estrogen-deficient females against ischemic insult. Topics: Animals; Blood-Brain Barrier; Brain; Cells, Cultured; Disease Models, Animal; Endothelial Cells; Female; Hypoxia-Inducible Factor 1, alpha Subunit; Infarction, Middle Cerebral Artery; Mice, Inbred C57BL; Neuroprotective Agents; Ovariectomy; Postmenopause; Receptors, Estrogen; Resveratrol; Stilbenes; Tight Junction Proteins; Vascular Endothelial Growth Factor A | 2015 |
Polydatin prevents hypertrophy in phenylephrine induced neonatal mouse cardiomyocytes and pressure-overload mouse models.
Recent evidence suggests that polydatin (PD), a resveratrol glucoside, may have beneficial actions on the cardiac hypertrophy. Therefore, the current study focused on the underlying mechanism of the PD anti-hypertrophic effect in cultured cardiomyocytes and in progression from cardiac hypertrophy to heart failure in vivo. Experiments were performed on cultured neonatal rat, ventricular myocytes as well as adult mice subjected to transverse aortic constriction (TAC). Treatment of cardiomyocytes with phenylephrine for three days produced a marked hypertrophic effect as evidenced by significantly increased cell surface area and atrial natriuretic peptide (ANP) protein expression. These effects were attenuated by PD in a concentration-dependent manner with a complete inhibition of hypertrophy at the concentration of 50 µM. Phenylephrine increased ROCK activity, as well as intracellular reactive oxygen species production and lipid peroxidation. The oxidizing agent DTDP similarly increased Rho kinase (ROCK) activity and induced hypertrophic remodeling. PD treatment inhibited phenylephrine-induced oxidative stress and consequently suppressed ROCK activation in cardiomyocytes. Hypertrophic remodeling and heart failure were demonstrated in mice subjected to 13 weeks of TAC. Upregulation of ROCK signaling pathway was also evident in TAC mice. PD treatment significantly attenuated the increased ROCK activity, associated with a markedly reduced hypertrophic response and improved cardiac function. Our results demonstrated a robust anti-hypertrophic remodeling effect of polydatin, which is mediated by inhibition of reactive oxygen species dependent ROCK activation. Topics: Adrenergic alpha-1 Receptor Agonists; Animals; Animals, Newborn; Atrial Natriuretic Factor; Cardiomegaly; Cardiotonic Agents; Cell Size; Cells, Cultured; Disease Models, Animal; Drugs, Chinese Herbal; Glucosides; Heart Failure; Heart Ventricles; Male; Mice, Inbred C57BL; Oxidative Stress; Phenylephrine; Rats; rho-Associated Kinases; Stilbenes; Ventricular Remodeling | 2015 |
Resveratrol exerts anti-inflammatory and neuroprotective effects to prevent memory deficits in rats exposed to chronic unpredictable mild stress.
A number of studies have recently focused on the neuroprotective and anti-inflammatory effects of resveratrol. In prior studies, we described its beneficial effects on scopolamine-induced learning deficits in rats. The aim of this study was to investigate the effects of resveratrol on emotional and spatial cognitive functions, neurotropic factor expression, and plasma levels of proinflammatory cytokines in rats exposed to chronic unpredictable mild stress (CUMS), which is known to induce cognitive deficits. Resveratrol (5 or 20mg/kg) was administered intraperitoneally for 35 days. Rats in the CUMS group and in the 5mg/kg resveratrol+CUMS group performed poorly in tasks designed to assess emotional and spatial learning and memory. The 20mg/kg resveratrol+CUMS group showed improved performance compared to the CUMS group. In addition, the CUMS procedure induced lower expression of brain-derived neurotrophic factor and c-Fos in hippocampal CA1 and CA3 and in the amygdala of stressed rats. These effects were reversed by chronic administration of resveratrol (20mg/kg). In addition, plasma levels of tumor necrosis factor-alpha and interleukin-1 beta were increased by CUMS, but were restored to normal by resveratrol. These results indicate that resveratrol significantly attenuates the deficits in emotional learning and spatial memory seen in chronically stressed rats. These effects may be related to resveratrol-mediated changes in neurotrophin factor expression in hippocampus and in levels of proinflammatory cytokines in circulation. Topics: Amygdala; Animals; Anti-Inflammatory Agents; Brain-Derived Neurotrophic Factor; Chronic Disease; Disease Models, Animal; Dose-Response Relationship, Drug; Emotions; Hippocampus; Injections, Intraperitoneal; Interleukin-1beta; Male; Memory Disorders; Neuroprotective Agents; Proto-Oncogene Proteins c-fos; Rats, Wistar; Resveratrol; Spatial Learning; Spatial Memory; Stilbenes; Stress, Psychological; Tumor Necrosis Factor-alpha; Uncertainty | 2015 |
Is resveratrol a potential substitute for leuprolide acetate in experimental endometriosis?
Resveratrol, a phytoalexin polyphenol, has anti-angiogenic, antioxidant, anti-inflammatory properties. We aimed to compare the anti-inflammatory and anti-angiogenic effects of resveratrol and leuprolide acetate (LA) in an experimental endometriosis model.. A prospective experimental study was conducted in a University Surgical Research Center. Thirty-three non-pregnant female Sprague-Dawley rats, in which experimental model of endometriosis were surgically induced were randomly divided into four groups. Group 1 was administered 30 mg/kg resveratrol i.m. for 14 days, group 2 was given 1mg/kg s.c. single dose LA, group 3 was administered both resveratrol and LA, and group 4 had no medication. After two weeks medication rats were sacrificed and size, histopathology and immunreactivity to matrix metalloproteinase (mmp)2, mmp9, vascular endothelial growth factor (VEGF) of the endometriotic implants were evaluated. Plasma and peritoneal fluid levels of interleukin (IL)-6, IL-8, and tumor necrosis factor-α (TNF-α) were analyzed.. The endometriotic implant volumes, histopathological grade and immunreactivity to mmp2, mmp9 and VEGF were significantly reduced (p<0.001), and plasma and peritoneal fluid levels of IL-6, IL-8 and TNF-α were significantly decreased in group 1 and group 2 in comparison to group 3 and group 4 (p < 0.001).. Resveratrol alone is a potential agent for the treatment of endometriosis and may be an alternative to LA. In contrast, the combination of LA and resveratrol decreased the anti-inflammatory and anti-angiogenic effects of each agent. Since resveratrol is widely used as an alternative therapy for a variety of conditions, it can undermine the effectiveness of LA. Therefore, caution should be exercised when used in combination with other agents. Topics: Angiogenesis Inhibitors; Animals; Anti-Inflammatory Agents, Non-Steroidal; Disease Models, Animal; Endometriosis; Endometrium; Female; Leuprolide; Matrix Metalloproteinase 2; Matrix Metalloproteinase 9; Rats; Rats, Sprague-Dawley; Resveratrol; Stilbenes; Treatment Outcome; Vascular Endothelial Growth Factor A | 2015 |
Effects of resveratrol on doxorubicin induced testicular damage in rats.
The purpose of this study was to evaluate the likely protective effect of resveratrol (RES) on doxorubicin (DOX) induced testicular damage. Rats were divided into five groups: control, RES, dimethyl sulfoxide (DMSO), DOX and DOX+RES. At the end of treatment, the rats were sacrificed. Plasma testosterone levels, oxidative status, epididymal sperm parameters and testicular apoptosis were evaluated. MDA levels, GP-x and GSH activities were higher in the DOX group than in the control group. MDA levels were lower in the DOX+RES group than in the DOX group. The DOX group exhibited a significant decrease in plasma testosterone levels, sperm concentration and motility, and a significant increase in abnormal sperm rate and TUNEL (+) cells in the testis. A significant increase was observed in plasma testosterone levels and sperm concentration and motility, and a significant decrease in the abnormal sperm rate and TUNEL (+) cells in the DOX+RES group compared to the DOX group. A marked improvement in severe degenerative alterations in the germinative epithelium was also observed following treatment with RES. In conclusion, RES makes a positive contribution to fertility by exhibiting anti-apoptotic and antiperoxidative effects against DOX-induced testicular damage. Topics: Animals; Antibiotics, Antineoplastic; Antioxidants; Apoptosis; Disease Models, Animal; Doxorubicin; In Situ Nick-End Labeling; Male; Rats; Rats, Sprague-Dawley; Resveratrol; Sperm Motility; Spermatozoa; Stilbenes; Testis | 2015 |
Trapping effect on a small molecular drug with vascular-disrupting agent CA4P in rodent H22 hepatic tumor model: in vivo magnetic resonance imaging and postmortem inductively coupled plasma atomic emission spectroscopy.
The aim of the present study is to verify the trapping effect of combretastatin A-4-phosphate (CA4P) on small molecular drugs in rodent tumors. Mice with H22 hepatocarcinoma were randomized into groups A and B. Magnetic resonance imaging (MRI) of T1WI, T2WI, and DWI was performed as baseline. Mice in group A were injected with Gd-DTPA and PBS. Mice in group B were injected with Gd-DTPA and CA4P. All mice undergo CE-T1WI at 0 h, 3 h, 6 h, 12 h, and 24 h. Enhancing efficacy of the two groups on CE-T1WI was compared with the signal-to-noise ratio (SNR) calculated. Concentrations of gadolinium measured by ICP-AES in the tumor were compared between groups. On the early CE-T1WI, tumors were equally enhanced in both groups. On the delayed CE-T1WI, the enhancing effect of group A was weaker than that of group B. The SNR and the concentration of gadolinium within the tumor of group A were lower than that of group B at 6 h, 12 h, and 24 h after administration. This study indicates that CA4P could improve the retention of Gd-DTPA in the tumor and MRI allowed dynamically monitoring trapping effects of CA4P on local retention of Gd-DTPA as a small molecular drug. Topics: Animals; Antineoplastic Agents, Phytogenic; Carcinoma, Hepatocellular; Contrast Media; Disease Models, Animal; Gadolinium DTPA; Liver Neoplasms; Magnetic Resonance Imaging; Male; Mice; Spectrophotometry, Atomic; Stilbenes; Time Factors; Tissue Distribution | 2015 |
Diffusion Efficiency and Bioavailability of Resveratrol Administered to Rat Brain by Different Routes: Therapeutic Implications.
Resveratrol possesses anti-tumor activities against central nervous system (CNS) tumors in vitro but has not yet been used clinically due to its low bioavailability, particularly in the CNS. This study thus aimed to elucidate brain bioavailability of trans-resveratrol by monitoring brain concentrations and dwell times following administration of resveratrol through intragastric, intraperitoneal, external carotid artery/ECA and intrathecal routes. In parallel, we evaluated the biological responses of rat RG2 glioblastoma cells as well as RG2-formed rat intracranial glioblastomas treated with resveratrol via intrathecal administration. The results revealed that resveratrol was detected in rat brains except when administered systemically. Intrathecal administration of reseveratrol led to abundant apoptotic foci and increased staining of the autophagy proteins, LC-3 and Beclin-1 and shrinkage of the intracranial tumors. In conclusion, the BBB penetrability of resveratrol is remarkably increased by intracthecal administration. Regular short-term resveratrol treatments suppress growth and enhance autophagic and apoptotic activities of rat RG2 glioblastoma cells in vitro and in vivo. Therefore, intrathecal administration of resveratrol could be an optimal intervention approach in the adjuvant management of brain malignancies. Topics: Analysis of Variance; Animals; Anticarcinogenic Agents; Brain; Brain Neoplasms; Cell Line, Tumor; Cell Survival; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Administration Routes; Female; Gene Expression Regulation, Neoplastic; Glioblastoma; Glucuronosyltransferase; Male; Rats; Rats, Sprague-Dawley; Resveratrol; Stilbenes | 2015 |
Therapeutic effects of resveratrol in a mouse model of HDM-induced allergic asthma.
Asthma is an inflammatory disease of the lungs characterized by airway remolding. In this study, we examined whether resveratrol exerts protective effects on allergic asthma in a murine model. To investigate the effects of resveratrol on allergic airway inflammation in house dust mite (HDM)-induced mouse asthma and explore its mechanism, a chronic asthma mouse model was established by intranasally administering extracts of HDM (25μg of protein in 10μl of saline) for 5days/week for up to 7 consecutive weeks. Resveratrol (50mg/kg body weight), dexamethasone (1mg/kg body weight) or a vehicle was administered orally 1h before antigen challenges for up to 2weeks. Compared with the HDM-induced mice, the level of TNF-α of the BALF in the resveratrol+HDM-treated mice had obviously decreased. Histological examination of the lung tissue revealed that the resveratrol treatments attenuated the fibrotic response and airway inflammation. In addition, resveratrol inhibited the expression of the Syk protein and degranulation in mast cells. The presented findings collectively suggest that resveratrol has a therapeutic effect on mouse allergic asthma, and its mechanism of action might be related to reducing the production of the Syk protein. Topics: Animals; Anti-Inflammatory Agents; Antigens, Dermatophagoides; Asthma; Cell Degranulation; Cell Line; Chronic Disease; Dexamethasone; Disease Models, Animal; Female; Gene Expression Regulation; Humans; Intracellular Signaling Peptides and Proteins; Lung; Mast Cells; Mice; Mice, Inbred BALB C; Protein-Tyrosine Kinases; Pyroglyphidae; Resveratrol; Stilbenes; Syk Kinase; Tumor Necrosis Factor-alpha | 2015 |
Resveratrol, a red wine antioxidant, reduces atrial fibrillation susceptibility in the failing heart by PI3K/AKT/eNOS signaling pathway activation.
Resveratrol has shown benefits in reducing ventricular remodeling and arrhythmias.. This study aimed to assess the therapeutic efficacy of resveratrol in reducing atrial fibrillation (AF) in a heart failure (HF) model and to explore the underlying mechanisms.. HF rabbits were created 4 weeks after undergoing coronary ligation. Group 1 (n = 6) was divided into subgroups of (a) normal rabbits, (b) HF sham rabbits, and (c) HF rabbits treated for 1 week with intraperitoneal injections of resveratrol, (d) resveratrol plus wortmannin, or (e) resveratrol plus diphenyleneiodonium chloride (DPI). All rabbits underwent epicardial catheter stimulation. Collagen content, messenger RNA and protein expression in ion channels, and phosphoinositide 3-kinase (PI3K)/AKT/endothelial nitric oxide synthase (eNOS) signaling pathways were studied in left atrial appendage (LAA) preparations. To investigate acute drug effects on left atrial electrophysiology, groups 2 a through 2e (n = 6 per group) were subjected to Langendorff perfusion.. Higher AF inducibility was found in the HF group and groups that were given PI3K and eNOS inhibitors than in the normal and resveratrol-treated groups (P < .001). Histologic analysis of the LAA revealed a decrease in fibrosis in resveratrol-treated groups compared with the HF group (8.95% ± 1.53% vs 26.62% ± 2.19%, P < .001). In real-time polymerase chain reaction analysis, ion channels including Kv1.4, Kv1.5, KvLQT1, Kir2.1, Nav1.5, Cav1.2, NCX, SERCA2a, and phospholamban were upregulated by resveratrol. PI3K, AKT, and eNOS messenger RNA and protein expression were upregulated by resveratrol but were inhibited by the coadministration of wortmannin and DPI.. Resveratrol decreases left atrial fibrosis and regulates variation in ion channels to reduce AF through the PI3K/AKT/eNOS signaling pathway. Topics: Androstadienes; Animals; Antioxidants; Atrial Fibrillation; Disease Models, Animal; Enzyme Activation; Enzyme Inhibitors; Nitric Oxide Synthase Type III; Onium Compounds; Phosphatidylinositol 3-Kinases; Phosphorylation; Proto-Oncogene Proteins c-akt; Rabbits; Resveratrol; Signal Transduction; Stilbenes; Wine; Wortmannin | 2015 |
Effects of Resveratrol on Ovarian Morphology, Plasma Anti-Mullerian Hormone, IGF-1 Levels, and Oxidative Stress Parameters in a Rat Model of Polycystic Ovary Syndrome.
To evaluate the effects of resveratrol in a rat model of polycystic ovarian syndrome (PCOS).. After PCOS model was formed by subcutaneous dihydrotestosterone pellets, rats were randomly divided into 2 groups. The first group (n = 7) was treated with 1 mL/kg/d isotonic saline and the second group (n = 7) was treated with 10 mg/kg/d resveratrol. Seven rats were taken as controls without any medication.. Our results showed (1) significant reduction in the number of antral follicle counts (P < .01); (2) significantly decreased plasma anti-Mullerian hormone and insulin-like growth factor 1 levels (P < .01 and P < .05, respectively); (3) significantly lower superoxide dismutase activity (P < .05); and (4) significantly increased glutathione peroxidase content (P < .01) following resveratrol treatment.. Resveratrol appears to be effective in the treatment of PCOS due to its antioxidant properties. Future clinical studies with different dosages might provide useful implementations to our practice. Topics: Animals; Anti-Mullerian Hormone; Antioxidants; Biomarkers; Dihydrotestosterone; Disease Models, Animal; Female; Glutathione Peroxidase; Insulin-Like Growth Factor I; Ovarian Follicle; Ovary; Oxidative Stress; Polycystic Ovary Syndrome; Rats, Sprague-Dawley; Resveratrol; Stilbenes; Superoxide Dismutase | 2015 |
Aging exacerbates hypertension-induced cerebral microhemorrhages in mice: role of resveratrol treatment in vasoprotection.
Recent studies demonstrate that aging exacerbates hypertension-induced cognitive decline, but the specific age-related mechanisms remain elusive. Cerebral microhemorrhages (CMHs) are associated with rupture of small intracerebral vessels and are thought to progressively impair neuronal function. To determine whether aging exacerbates hypertension-induced CMHs young (3 months) and aged (24 months) mice were treated with angiotensin II plus L-NAME. We found that the same level of hypertension leads to significantly earlier onset and increased incidence of CMHs in aged mice than in young mice, as shown by neurological examination, gait analysis, and histological assessment of CMHs in serial brain sections. Hypertension-induced cerebrovascular oxidative stress and redox-sensitive activation of matrix metalloproteinases (MMPs) were increased in aging. Treatment of aged mice with resveratrol significantly attenuated hypertension-induced oxidative stress, inhibited vascular MMP activation, significantly delayed the onset, and reduced the incidence of CMHs. Collectively, aging promotes CMHs in mice likely by exacerbating hypertension-induced oxidative stress and MMP activation. Therapeutic strategies that reduce microvascular oxidative stress and MMP activation may be useful for the prevention of CMHs, protecting neurocognitive function in high-risk elderly patients. Topics: Aging; Animals; Blood Pressure; Brain; Disease Models, Animal; Hypertension; Intracranial Hemorrhages; Male; Mice, Inbred C57BL; Oxidation-Reduction; Oxidative Stress; Resveratrol; Stilbenes | 2015 |
In vitro and in vivo inhibition of human Fanconi anemia head and neck squamous carcinoma by a phytonutrient combination.
Head and neck squamous cell carcinoma (HNSCC) and acute myeloid leukemia are the major causes of mortality and morbidity in Fanconi anemia (FA) patients. The objective of this study was to investigate the antineoplastic activity of PB, an antineoplastic nutrient mixture (containing quercetin, curcumin, green tea, cruciferex and resveratrol) on human FA HNSCC in vitro and in vivo. Human FA HNSCC cell line OHSU-974 (Fanconi Anemia Research Fund) was cultured in RPMI medium supplemented with 20% FBS and anti-biotics. At near confluence, cells were treated in triplicate with different concentrations of PB: 0, 10, 25, 50, 75 and 100 µg/ml. Cells were also treated with PMA to induce MMP-9 activity. Cell proliferation was detected by MTT assay, secretion of MMPs by gelatinase zymography, invasion through Matrigel, migration by scratch test and morphology by hematoxylin and eosin (H&E) staining. In vivo, athymic male nude mice (n=12) were inoculated with 3x106 OHSU-974 cells subcutaneously and randomly divided into two groups: group A was fed a regular diet and group B a regular diet supplemented with 1% PB. Four weeks later, the mice were sacrificed and their tumors were excised, weighed and processed for histology. NM inhibited the growth of OHSU-974 tumor by 67.6% (p<0.0001) and tumor burden by 63.6% (p<0.0001). PB demonstrated dose-dependent inhibition of cell proliferation, with 27% (p=0.0003) and 48% (p=0.0004) toxicity at 75 and 100 µg/ml, respectively. Zymography revealed MMP-2 and PMA-induced MMP-9 secretion. PB suppressed secretion of both MMPs in a dose-dependent manner, with total block of both at 50 µg/ml. PB inhibited cell migration (by scratch test) and OHSU-974 invasion through Matrigel in a dose-dependent fashion with total block at 50 µg/ml. H&E staining showed no morphological changes below 50 µg/ml. The results suggest that PB has potential therapeutic use in the treatment of human FA HNSCC. Topics: Animals; Antineoplastic Agents; Carcinoma, Squamous Cell; Cell Line, Tumor; Cell Proliferation; Cell Survival; Curcumin; Dietary Supplements; Disease Models, Animal; Fanconi Anemia; Head and Neck Neoplasms; Humans; Male; Mice; Mice, Nude; Phytochemicals; Phytotherapy; Quercetin; Resveratrol; Squamous Cell Carcinoma of Head and Neck; Stilbenes; Tea; Xenograft Model Antitumor Assays | 2015 |
Preclinical Comparison of the Amyloid-β Radioligands [(11)C]Pittsburgh compound B and [(18)F]florbetaben in Aged APPPS1-21 and BRI1-42 Mouse Models of Cerebral Amyloidosis.
The aim of this study was to compare [(11)C]Pittsburgh compound B ([(11)C]PiB) and [(18)F]florbetaben ([(18)F]FBB) for preclinical investigations of amyloid-β pathology.. We investigated two aged animal models of cerebral amyloidosis with contrasting levels of amyloid-β relating to "high" (APPPS1-21 n = 6, wild type (WT) n = 7) and "low" (BRI1-42 n = 6, WT n = 6) target states, respectively.. APPPS1-21 mice (high target state) demonstrated extensive fibrillar amyloid-β deposition that translated to significantly increased retention of [(11)C]PiB and [(18)F]FBB in comparison to their wild type. The retention pattern of [(11)C]PiB and [(18)F]FBB in this cohort displayed a significant correlation. However, the relative difference in tracer uptake between diseased and healthy mice was substantially higher for [(11)C]PiB than for [(18)F]FBB. Although immunohistochemistry confirmed the high plaque load in APPPS1-21 mice, correlation between tracer uptake and ex vivo quantification of amyloid-β was poor for both tracers. BRI1-42 mice (low target state) did not demonstrate increased tracer uptake.. In cases of high fibrillar amyloid-β burden, both tracers detected significant differences between diseased and healthy mice, with [(11)C]PiB showing a larger dynamic range. Topics: Alzheimer Disease; Amyloid beta-Peptides; Aniline Compounds; Animals; Disease Models, Animal; Immunohistochemistry; Mice; Positron-Emission Tomography; Radiopharmaceuticals; Stilbenes; Thiazoles | 2015 |
Resveratrol Reduces Myometrial Infiltration, Uterine Hyperactivity, and Stress Levels and Alleviates Generalized Hyperalgesia in Mice With Induced Adenomyosis.
In this study, we sought to determine whether resveratrol (RSV), a nonhormonal compound, would suppress the myometrial infiltration, improve pain behavior, lower stress level, improve the expression of some proteins known to be involved in adenomyosis, and reduce uterine contractility in a mice model of adenomyosis. Adenomyosis was induced in 28 female ICR mice neonatally dosed with tamoxifen, while another 12 (group C) were dosed with solvent only, serving as a blank control. Starting from 4 weeks after birth, hotplate test was administrated to all mice every 4 weeks. At the 16th week, all mice with induced adenomyosis were randomly divided into 3 groups: low-dose RSV (2 mg/kg), high-dose RSV (3 mg/kg), and untreated. Group C received no treatment. After 3 weeks of treatment, they were hotplate tested again, their uterine horns and brains were harvested, and a blood sample was taken to measure the plasma corticosterone (CORT) level by enzyme-linked immunosorbent assay. The left uterine horn was used for immunohistochemistry analysis. The brain stem nucleus raphe magnus (NRM) sections were subjected to immunofluorescence staining for glutamic acid decarboxylase isoform 65 (GAD65). The depth of myometrial infiltration and uterine contractility was evaluated. We found that RSV is well tolerated and that it dose dependently suppressed myometrial infiltration, improved generalized hyperalgesia, reduced uterine contractility and lowered plasma CORT levels, and improved the expression of some proteins known to be involved in adenomyosis. It also elevated the number of GAD65-expressing neurons in the brain stem NRM, possibly boosting the GABAergic inhibition of pain due to adenomyosis. Therefore, RSV appears to be a promising compound for treating adenomyosis. Topics: Adenomyosis; Animals; Animals, Newborn; Behavior, Animal; Cluster Analysis; Corticosterone; Disease Models, Animal; Dose-Response Relationship, Drug; Female; Glutamate Decarboxylase; Hyperalgesia; Mice, Inbred ICR; Myometrium; Nucleus Raphe Magnus; Pain Threshold; Phenotype; Reaction Time; Resveratrol; Stilbenes; Tamoxifen; Time Factors; Uterine Contraction; Uterus | 2015 |
Cross-sectional comparison of small animal [18F]-florbetaben amyloid-PET between transgenic AD mouse models.
We aimed to compare [18F]-florbetaben PET imaging in four transgenic mouse strains modelling Alzheimer's disease (AD), with the main focus on APPswe/PS2 mice and C57Bl/6 mice serving as controls (WT). A consistent PET protocol (N = 82 PET scans) was used, with cortical standardized uptake value ratio (SUVR) relative to cerebellum as the endpoint. We correlated methoxy-X04 staining of β-amyloid with PET results, and undertook ex vivo autoradiography for further validation of a partial volume effect correction (PVEC) of PET data. The SUVR in APPswe/PS2 increased from 0.95±0.04 at five months (N = 5) and 1.04±0.03 (p<0.05) at eight months (N = 7) to 1.07±0.04 (p<0.005) at ten months (N = 6), 1.28±0.06 (p<0.001) at 16 months (N = 6) and 1.39±0.09 (p<0.001) at 19 months (N = 6). SUVR was 0.95±0.03 in WT mice of all ages (N = 22). In APPswe/PS1G384A mice, the SUVR was 0.93/0.98 at five months (N = 2) and 1.11 at 16 months (N = 1). In APPswe/PS1dE9 mice, the SUVR declined from 0.96/0.96 at 12 months (N = 2) to 0.91/0.92 at 24 months (N = 2), due to β-amyloid plaques in cerebellum. PVEC reduced the discrepancy between SUVR-PET and autoradiography from -22% to +2% and increased the differences between young and aged transgenic animals. SUVR and plaque load correlated highly between strains for uncorrected (R = 0.94, p<0.001) and PVE-corrected (R = 0.95, p<0.001) data. We find that APPswe/PS2 mice may be optimal for longitudinal amyloid-PET monitoring in planned interventions studies. Topics: Alzheimer Disease; Amyloid beta-Peptides; Aniline Compounds; Animals; Brain; Cross-Sectional Studies; Disease Models, Animal; Mice; Mice, Transgenic; Plaque, Amyloid; Positron-Emission Tomography; Stilbenes | 2015 |
The Histone Deacetylase Sirtuin 1 Is Reduced in Systemic Sclerosis and Abrogates Fibrotic Responses by Targeting Transforming Growth Factor β Signaling.
Persistent fibroblast activation underlies skin fibrosis in systemic sclerosis (SSc), but the transcriptional and epigenetic mechanisms controlling this process are not well understood. In view of the potent influence of acetylation status governing tissue fibrosis, we undertook this study to investigate the expression of the antiaging deacetylase enzyme sirtuin 1 (SIRT1) in SSc and its effects on fibrotic responses in vitro and in vivo.. Tissue expression of SIRTs was interrogated from publicly available genome-wide expression data sets and by immunohistochemistry. The effects of SIRT1 on modulating fibrotic responses, as well as the underlying mechanisms, were examined in human and mouse fibroblasts in culture and in an experimental fibrosis model in the mouse.. Analysis of transcriptome data revealed a selective reduction of SIRT1 messenger RNA (mRNA) levels in SSc skin biopsy samples as well as a negative correlation of SIRT1 mRNA with the skin score. Cellular SIRT1 levels were suppressed in normal fibroblasts exposed to hypoxia or platelet-derived growth factor and were constitutively down-regulated in SSc fibroblasts. Activation of SIRT1 attenuated fibrotic responses in skin fibroblasts and skin organ cultures, while genetic or pharmacologic inhibition of SIRT1 had profibrotic effects. The antifibrotic effects of SIRT1 were due in part to decreased expression and function of the acetyltransferase p300. In mice, experimentally induced skin fibrosis was accompanied by reduced SIRT1 expression in lesional tissue fibroblasts, and both fibrosis and loss of SIRT1 in these mice were mitigated by treatment with a SIRT1 activator.. SIRT1 has antifibrotic effects, and its reduced tissue expression in patients with SSc might have a direct causal role in progression of fibrosis. Pharmacologic modulation of SIRT1 in these patients therefore might represent a potential treatment strategy. Topics: Animals; Case-Control Studies; Cells, Cultured; Disease Models, Animal; Enzyme Inhibitors; Fibroblasts; Humans; Mice; p300-CBP Transcription Factors; Platelet-Derived Growth Factor; Real-Time Polymerase Chain Reaction; Resveratrol; RNA, Messenger; Scleroderma, Systemic; Signal Transduction; Sirtuin 1; Skin; Smad Proteins; Stilbenes; Transforming Growth Factor beta | 2015 |
Resveratrol downregulates type-1 glutamate transporter expression and microglia activation in the hippocampus following cerebral ischemia reperfusion in rats.
The naturally occurring polyphenol phytoalexin resveratrol (RSV) regulates neuronal inflammation in various disease models and protects the brain against ischemic injury. Cell surface glutamate transporters on perisynaptic astrocytes are important regulators of extracellular glutamate levels and synaptic activation. Following cerebral ischemia, reduced astroglial type-1 glutamate transporter (GLT-1) expression in the CA1 pyramidal layers of the hippocampus contribute to neurotoxic glutamate levels. The current study examined the effects of 21-day RSV pretreatment (1 or 10mg/kg dose; i.p.) on microglia and astrocyte activation and characterized GLT-1 expression in the dentate gyrus (DG), CA1 and CA3 layers of the hippocampus 7 days following 10min global ischemia. Male Wistar rats were divided into five groups; sham/saline, ischemia/saline, ischemia/1mg/kg RSV, ischemia/10mg/kg RSV and sham/10mg/kg RSV. Immunohistochemical detection of GLT-1, CD11b/c, glial fibrillary acidic protein (GFAP) assessed type 1 glutamate transporter expression and microglial/glial cell activation following sham surgery or global ischemia. Our findings demonstrate prevention by RSV of ischemia-induced reduction of GLT-1 expression in the vulnerable CA1 layer 7 days following global ischemia, which was accompanied by the polyphenol's inhibition of post ischemic increase in CD11b/c and GFAP expression. RSV also conferred significant CA1 neuronal protection positively correlated with attenuation of glutamate transporter activation. These findings support beneficial effects of RSV in modulation of the excitotoxic cascade postischemia, which are congruent with anti-inflammatory effects observed in various pathological models. Topics: Analysis of Variance; Animals; Antigens, CD1; Antioxidants; Brain Ischemia; Cell Count; Disease Models, Animal; Dose-Response Relationship, Drug; Down-Regulation; Excitatory Amino Acid Transporter 2; Glial Fibrillary Acidic Protein; Hippocampus; Male; Neurons; Rats; Rats, Wistar; Reperfusion; Resveratrol; Stilbenes | 2015 |
Antiasthmatic effects of resveratrol in ovalbumin-induced asthma model mice involved in the upregulation of PTEN.
Resveratrol, a natural polyphenolic compound known for its antioxidative and antiinflammatory effects, exerts antiasthmatic effects, although the mechanism underlying these effects remains elusive. The phosphatase and tensin homology deleted on chromosome ten gene (PTEN) is involved in the pathogenesis of asthma, and PTEN overexpression in asthmatic mice improved asthma symptoms. To investigate whether the antiasthmatic mechanisms of resveratrol correlated with the upregulation of PTEN expression, an ovalbumin (OVA)-induced murine asthma model was used to determine the effectiveness of resveratrol treatment. PTEN mRNA and protein expression was assessed with real-time polymerase chain reaction (PCR) and immunochemistry. To determine whether airway remodeling occurred, the inner airway wall, mucous layer, and smooth muscle areas were each determined using an image analysis system. The lung epithelial cell line 16HBE was used to study the regulation of PTEN expression levels by resveratrol in vitro. Our data demonstrated that resveratrol inhibited OVA-induced airway inflammation and airway remodeling in asthmatic mice. PTEN expression was decreased in the murine asthma model, although the expression of PTEN was restored following treatment with resveratrol. Correlation efficiency analysis showed that PTEN expression was associated with the degree of airway remodeling. Further in vitro studies demonstrated that the inhibition of Sirtuin 1 (SIRT1) activity by a SIRT1 inhibitor and RNA interference decreased PTEN protein expression, while resveratrol attenuated the decreases in PTEN expression induced by the SIRT1 inhibitor. These data suggest the mechanism of the antiasthmatic effects of resveratrol in an OVA-induced murine asthma model, which resulted in the upregulation of PTEN via SIRT1 activation. Topics: Airway Remodeling; Animals; Anti-Asthmatic Agents; Asthma; Cell Line; Disease Models, Animal; Female; Humans; Lung; Mice, Inbred BALB C; Ovalbumin; PTEN Phosphohydrolase; Resveratrol; Sirtuin 1; Stilbenes; Up-Regulation | 2015 |
Inhibitory effect of the branches of Hovenia dulcis Thunb. and its constituent pinosylvin on the activities of IgE-mediated mast cells and passive cutaneous anaphylaxis in mice.
Hovenia dulcis Thunb. (Rhamnaceae) is a hardy tree native to Europe, the Middle East, and North Africa, and it is also grown in parts of Asia and has been used in traditional medicine to treat liver toxicity, stomach disorders, and inflammation. This study investigated the anti-allergy potential of an extract of the branches of H. dulcis (HDB) using the antigen-stimulated mast cell-like cell line rat basophilic leukemia (RBL)-2H3 and a passive cutaneous anaphylaxis (PCA) mouse model. Degranulation assay, reverse transcription PCR, enzyme-lined immunosorbent assays, western blot analyses, and PCA were performed to measure allergic responses and proinflammatory mediators in antigen-stimulated rat basophilic leukemia (RBL)-2H3 mast cells and the PCA mouse model. In antigen-stimulated RBL-2H3 cells, HDB inhibited the secretion of β-hexosaminidase (indicating the inhibition of degranulation) and histamine release; decreased expression and production of the inflammatory mediators, cyclooxygenase-2 and prostaglandin E2, and cytokines interleukin-4 and tumor necrosis factor-α; and suppressed activation of nuclear factor κB, a transcription factor involved in the response to cytokines. HDB attenuated phosphorylation of the mast cell downstream effectors Lyn, Syk, phospholipase Cγ, protein kinase Cμ, extracellular signal-regulated kinase and p38. In IgE-sensitized mice, HDB inhibited mast cell-dependent PCA. Furthermore, HDB contained pinosylvin and possessed significant anti-allergic activities. These results suggest that HDB would be of value in the prevention and treatment of allergic diseases. Topics: Animals; Anti-Allergic Agents; beta-N-Acetylhexosaminidases; Cell Line, Tumor; Cell Survival; Cyclooxygenase 2; Dinoprostone; Disease Models, Animal; Extracellular Signal-Regulated MAP Kinases; Hypersensitivity; Immunoglobulin E; Interleukin-4; Mast Cells; Mice; Mice, Inbred BALB C; NF-kappa B; p38 Mitogen-Activated Protein Kinases; Passive Cutaneous Anaphylaxis; Plant Extracts; Rats; Rhamnaceae; Signal Transduction; Stilbenes; Tumor Necrosis Factor-alpha | 2015 |
Activation of sirtuin 1 as therapy for the peroxisomal disease adrenoleukodystrophy.
Oxidative stress and mitochondrial failure are prominent factors in the axonal degeneration process. In this study, we demonstrate that sirtuin 1 (SIRT1), a key regulator of the mitochondrial function, is impaired in the axonopathy and peroxisomal disease X-linked adrenoleukodystrophy (X-ALD). We have restored SIRT1 activity using a dual strategy of resveratrol treatment or by the moderate transgenic overexpression of SIRT1 in a X-ALD mouse model. Both strategies normalized redox homeostasis, mitochondrial respiration, bioenergetic failure, axonal degeneration and associated locomotor disabilities in the X-ALD mice. These results indicate that the reactivation of SIRT1 may be a valuable strategy to treat X-ALD and other axonopathies in which the control of redox and energetic homeostasis is impaired. Topics: Adrenoleukodystrophy; Animals; Blotting, Western; Disease Models, Animal; Humans; In Vitro Techniques; Locomotion; Mice; Mice, Mutant Strains; Oxidation-Reduction; Real-Time Polymerase Chain Reaction; Resveratrol; Sirtuin 1; Stilbenes | 2015 |
Resveratrol activates duodenal Sirt1 to reverse insulin resistance in rats through a neuronal network.
Resveratrol improves insulin sensitivity and lowers hepatic glucose production (HGP) in rat models of obesity and diabetes, but the underlying mechanisms for these antidiabetic effects remain elusive. One process that is considered a key feature of resveratrol action is the activation of the nicotinamide adenine dinucleotide (NAD(+))-dependent deacetylase sirtuin 1 (SIRT1) in various tissues. However, the low bioavailability of resveratrol raises questions about whether the antidiabetic effects of oral resveratrol can act directly on these tissues. We show here that acute intraduodenal infusion of resveratrol reversed a 3 d high fat diet (HFD)-induced reduction in duodenal-mucosal Sirt1 protein levels while also enhancing insulin sensitivity and lowering HGP. Further, we found that duodenum-specific knockdown of Sirt1 expression for 14 d was sufficient to induce hepatic insulin resistance in rats fed normal chow. We also found that the glucoregulatory role of duodenally acting resveratrol required activation of Sirt1 and AMP-activated protein kinase (Ampk) in this tissue to initiate a gut-brain-liver neuronal axis that improved hypothalamic insulin sensitivity and in turn, reduced HGP. In addition to the effects of duodenally acting resveratrol in an acute 3 d HFD-fed model of insulin resistance, we also found that short-term infusion of resveratrol into the duodenum lowered HGP in two other rat models of insulin resistance--a 28 d HFD-induced model of obesity and a nicotinamide (NA)-streptozotocin (STZ)-HFD-induced model of mild type 2 diabetes. Together, these studies highlight the therapeutic relevance of targeting duodenal SIRT1 to reverse insulin resistance and improve glucose homeostasis in obesity and diabetes. Topics: Animals; Antioxidants; Blood Glucose; Diabetes Mellitus; Disease Models, Animal; Gene Expression Regulation; HEK293 Cells; Homeostasis; Humans; Insulin; Insulin Resistance; Male; Nerve Net; Neurons; Niacinamide; Obesity; Rats; Rats, Sprague-Dawley; Resveratrol; Sirtuin 1; Stilbenes; Streptozocin | 2015 |
Antioxidant and anti-inflammatory agents mitigate pathology in a mouse model of pseudoachondroplasia.
Pseudoachondroplasia (PSACH), a severe short-limb dwarfing condition, results from mutations that cause misfolding of the cartilage oligomeric matrix protein (COMP). Accumulated COMP in growth plate chondrocytes activates endoplasmic reticulum stress, leading to inflammation and chondrocyte death. Using a MT-COMP mouse model of PSACH that recapitulates the molecular and clinical PSACH phenotype, we previously reported that oxidative stress and inflammation play important and unappreciated roles in PSACH pathology. In this study, we assessed the ability of antioxidant and anti-inflammatory agents to affect skeletal and cellular pathology in our mouse model of PSACH. Treatment of MT-COMP mice with aspirin or resveratrol from birth to P28 decreased mutant COMP intracellular retention and chondrocyte cell death, and restored chondrocyte proliferation. Inflammatory markers associated with cartilage degradation and eosinophils were present in the joints of untreated juvenile MT-COMP mice, but were undetectable in treated mice. Most importantly, these treatments resulted in significantly increased femur length. This is the first and only therapeutic approach shown to mitigate both the chondrocyte and long-bone pathology of PSACH in a mouse model and suggests that reducing inflammation and oxidative stress early in the disease process may be a novel approach to treat this disorder. Topics: Achondroplasia; Animals; Anti-Inflammatory Agents; Antioxidants; Aspirin; Cartilage Oligomeric Matrix Protein; Cell Proliferation; Chondrocytes; Disease Models, Animal; Growth Plate; Inflammation; Mice; Mutation; Resveratrol; Stilbenes | 2015 |
Mesenchymal stem cell-based HSP70 promoter-driven VEGFA induction by resveratrol promotes angiogenesis in a mouse model.
Several studies of stem cell-based gene therapy have indicated that long-lasting regeneration following vessel ischemia may be stimulated through VEGFA gene therapy and/or MSC transplantation for reduction of ischemic injury in limb ischemia and heart failure. The therapeutic potential of MSC transplantation can be further improved by genetically modifying MSCs with genes which enhance angiogenesis following ischemic injury. In the present study, we aimed to develop an approach in MSC-based therapy for repair and mitigation of ischemic injury and regeneration of damaged tissues in ischemic disease. HSP70 promoter-driven VEGFA expression was induced by resveratrol (RSV) in MSCs, and in combination with known RSV biological functions, the protective effects of our approach were investigated by using ex vivo aortic ring coculture system and a 3D scaffolds in vivo model. Results of this investigation demonstrated that HSP promoter-driven VEGFA expression in MSC increased approximately 2-fold over the background VEGFA levels upon HSP70 promoter induction by RSV. Exposure of HUVEC cells to medium containing MSC in which VEGFA had been induced by cis-RSV enhanced tube formation in the treated HUVEC cells. RSV-treated MSC cells differentiated into endothelial-like phenotypes, exhibiting markedly elevated expression of endothelial cell markers. These MSCs also induced aortic ring sprouting, characteristic of neovascular formation from pre-existing vessels, and additionally promoted neovascularization at the MSC transplantation site in a mouse model. These observations support a hypothesis that VEGFA expression induced by cis-RSV acting on the HSP70 promoter in transplanted MSC augments the angiogenic effects of stem cell gene therapy. The use of an inducible system also vastly reduces possible clinical risks associated with constitutive VEGFA expression. Topics: Animals; Aorta; Bone Marrow Cells; Cell Culture Techniques; Cell Differentiation; Cell Proliferation; Cell Survival; Cells, Cultured; Coculture Techniques; Disease Models, Animal; HSP70 Heat-Shock Proteins; Human Umbilical Vein Endothelial Cells; Humans; In Vitro Techniques; Ischemia; Isomerism; Mesenchymal Stem Cell Transplantation; Mesenchymal Stem Cells; Mice; Mice, Inbred C57BL; Neovascularization, Physiologic; Resveratrol; Stilbenes; Vascular Endothelial Growth Factor A | 2015 |
Resveratrol Improves Survival and Prolongs Life Following Hemorrhagic Shock.
Resveratrol has been shown to potentiate mitochondrial function and extend longevity; however, there is no evidence to support whether resveratrol can improve survival or prolong life following hemorrhagic shock. We sought to determine whether (a) resveratrol can improve survival following hemorrhage and resuscitation and (b) prolong life in the absence of resuscitation. Using a hemorrhagic injury (HI) model in the rat, we describe for the first time that the naturally occurring small molecule, resveratrol, may be an effective adjunct to resuscitation fluid. In a series of three sets of experiments we show that resveratrol administration during resuscitation improves survival following HI (p < 0.05), resveratrol and its synthetic mimic SRT1720 can significantly prolong life in the absence of resuscitation fluid (<30 min versus up to 4 h; p < 0.05), and resveratrol as well as SRT1720 restores left ventricular function following HI. We also found significant changes in the expression level of mitochondria-related transcription factors Ppar-α and Tfam, as well as Pgc-1α in the left ventricular tissues of rats subjected to HI and treated with resveratrol. The results indicate that resveratrol is a strong candidate adjunct to resuscitation following severe hemorrhage. Topics: Animals; Antioxidants; Disease Models, Animal; Kaplan-Meier Estimate; Male; Mortality; Myocardium; Rats; Resveratrol; Severity of Illness Index; Shock, Hemorrhagic; Stilbenes; Time Factors | 2015 |
Resveratrol protects against methylglyoxal-induced hyperglycemia and pancreatic damage in vivo.
Methylglyoxal (MG) has been found to cause inflammation and insulin resistance in vitro and in vivo in recent studies. Resveratrol has been proposed as an effective treatment that helps lower the risk of developing complications of diabetes. To study the significance of glycosylation-related stress on the pathology of diabetes, the effects of resveratrol were examined in a mouse model of diabetes induced by MG. Resveratrol was given via oral gavage in MG-treated mice, and diabetes-related tests and markers were assessed using biochemical and immunohistochemical analyses. Treatment with resveratrol markedly improved blood glucose level from the oral glucose tolerance test and promoted nuclear factor erythroid 2-related factor-2 (Nrf2) phosphorylation (p < 0.05) in the pancreas of MG-treated mice. However, these effects were abolished by retinoic acid, Nrf2 inhibitor, in resveratrol and retinoic acid-treated and MG-induced mice. These findings support that resveratrol may be useful in the treatment of type-2 diabetes by protecting against pancreatic cell dysfunction. Topics: Animals; Anti-Inflammatory Agents; Blood Glucose; Disease Models, Animal; Glucose Tolerance Test; Hyperglycemia; Hypoglycemic Agents; Inflammation; Insulin; Insulin Receptor Substrate Proteins; Insulin Resistance; Liver; Male; Mice; Mice, Inbred BALB C; NF-E2-Related Factor 2; Pancreas; Pancreatic Diseases; Phosphorylation; Pyruvaldehyde; Resveratrol; Stilbenes | 2015 |
Resveratrol suppresses epithelial-to-mesenchymal transition in colorectal cancer through TGF-β1/Smads signaling pathway mediated Snail/E-cadherin expression.
Resveratrol extracted from grape has been an ideal alternative drug in the therapy of different cancers including colorectal cancer (CRC). Since the underlying mechanisms of resveratrol on the invasion and metastasis of CRC have not been fully elucidated, and epithelial-to-mesenchymal transition (EMT) is a key process associated with the progression of CRC, here we aimed to investigate the potential mechanism of resveratrol on the inhibition of TGF-β1-induced EMT in CRC LoVo cells.. We investigated the anticancer effect of resveratrol against LoVo cells in vitro and in vivo. In vivo, the impact of resveratrol on invasion and metastasis was investigated by mice tail vein injection model and mice orthotopic transplantation tumor model. In vivo imaging was applied to observe the lungs metastases, and hemaoxylin-eosin (HE) staining was used to evaluate metastatic lesions. In vitro, impact of resveratrol on the migration and invasion of LoVo cells was evaluated by transwell assay. Inhibition effect of resveratrol on TGF-β-induced EMT was examined by morphological observation. Epithelial phenotype marker E-cadherin and mesenchymal phenotype marker Vimentin were detected by western blot and immunofluorescence. Promoter activity of E-cadherin was measured using a dual-luciferase assay kit. mRNA expression of Snail and E-cadherin was measured by RT-PCR.. We demonstrated that, resveratrol inhibited the lung metastases of LoVo cells in vivo. In addition, resveratrol reduced the rate of lung metastases and hepatic metastases in mice orthotopic transplantation. In vitro, TGF-β1-induced EMT promoted the invasion and metastasis of CRC, reduced the E-cadherin expression and elevated the Vimentin expression, and activated the TGF-β1/Smads signaling pathway. But resveratrol could inhibit the invasive and migratory ability of LoVo cells in a concentration-dependent manner, increase the expression of E-cadherin, repress the expression of Vimentin, as well as the inhibition of TGF-β1/Smads signaling pathway. Meanwhile, resveratrol reduced the level of EMT-inducing transcription factors Snail and the transcription of E-cadherin during the initiation of TGF-β1-induced EMT.. Our new findings provided evidence that, resveratrol could inhibit EMT in CRC through TGF-β1/Smads signaling pathway mediated Snail/E-cadherin expression, and this might the potential mechanism of resveratrol on the inhibition of invasion and metastases in CRC. Topics: Animals; Antineoplastic Agents, Phytogenic; Cadherins; Cell Line, Tumor; Cell Movement; Colorectal Neoplasms; Disease Models, Animal; Epithelial-Mesenchymal Transition; Female; Gene Expression Regulation, Neoplastic; Humans; Mice; Neoplasm Invasiveness; Promoter Regions, Genetic; Protein Binding; Resveratrol; Signal Transduction; Smad Proteins; Snail Family Transcription Factors; Stilbenes; Transcription Factors; Transcription, Genetic; Transforming Growth Factor beta1; Xenograft Model Antitumor Assays | 2015 |
Malibatol A regulates microglia M1/M2 polarization in experimental stroke in a PPARγ-dependent manner.
Activation of microglia plays a crucial role in immune and inflammatory processes after ischemic stroke. Microglia is reported with two opposing activated phenotypes, namely, classic phenotype (M1) and the alternative phenotype (M2). Inhibiting M1 while stimulating M2 has been suggested as a potential therapeutic approach in the treatment of stroke.. In this study, we indicated that a novel natural anti-oxidant extracted from the Chinese plant Hopea hainanensis, malibatol A (MA), decreased the infarct size and alleviated the brain injury after mice middle cerebral artery occlusion (MCAO). MA inhibited expression inflammatory cytokines in not only MCAO mice but also lipopolysaccharide (LPS)-stimulated microglia. Moreover, treatment of MA decreased M1 markers (CD16, CD32, and CD86) and increased M2 markers (CD206, YM-1) while promoting the activation of nuclear receptor PPARγ.. MA has anti-inflammatory effects in MCAO mice in a PPARγ-dependent manner, making it a potential candidate for stroke treatment. Topics: Animals; Benzamides; Brain Infarction; Calcium-Binding Proteins; Cell Polarity; Cells, Cultured; Cytokines; Disease Models, Animal; Dose-Response Relationship, Drug; Infarction, Middle Cerebral Artery; Lipopolysaccharides; Mice; Microfilament Proteins; Microglia; Neuroprotective Agents; Nitric Oxide Synthase Type II; PPAR gamma; Pyridines; Stilbenes; Time Factors | 2015 |
SIRT1 activation rescues doxorubicin-induced loss of functional competence of human cardiac progenitor cells.
The search for compounds able to counteract chemotherapy-induced heart failure is extremely important at the age of global cancer epidemic. The role of SIRT1 in the maintenance of progenitor cell homeostasis may contribute to its cardioprotective effects. SIRT1 activators, by preserving progenitor cells, could have a clinical relevance for the prevention of doxorubicin (DOXO)-cardiotoxicity.. To determine whether SIRT1 activator, resveratrol (RES), interferes with adverse effects of DOXO on cardiac progenitor cells (CPCs): 1) human CPCs (hCPCs) were exposed in vitro to DOXO or DOXO+RES and their regenerative potential was tested in vivo in an animal model of DOXO-induced heart failure; 2) the in vivo effects of DOXO+RES co-treatment on CPCs were studied in a rat model.. In contrast to healthy cells, DOXO-exposed hCPCs were ineffective in a model of anthracycline cardiomyopathy. The in vitro activation of SIRT1 decreased p53 acetylation, overcame suppression of the IGF-1/Akt pro-survival and anti-apoptotic signaling, enhanced oxidative stress defense and prevented senescence and growth arrest of hCPCs. Priming with RES counterbalanced the onset of dysfunctional phenotype in DOXO-exposed hCPCs, partly restoring their ability to repair the damage with improvement in cardiac function and animal survival. The in vivo co-treatment DOXO+RES prevented the anthracycline-induced alterations in CPCs, partly preserving cardiac function.. SIRT1 activation protects DOXO-exposed CPCs and re-establishes their proper function. Pharmacological intervention at the level of tissue-specific progenitor cells may provide cardiac benefits for the growing population of long-term cancer survivors that are at risk of chemotherapy-induced cardiovascular toxicity. Topics: Analysis of Variance; Animals; Apoptosis; Blotting, Western; Cardiomyopathies; Cells, Cultured; Disease Models, Animal; Doxorubicin; Female; Humans; Immunohistochemistry; Myocytes, Cardiac; Normal Distribution; Random Allocation; Rats; Rats, Inbred F344; Resveratrol; Sirtuin 1; Statistics, Nonparametric; Stem Cells; Stilbenes | 2015 |
Resveratrol Preconditioning Protects Against Cerebral Ischemic Injury via Nuclear Erythroid 2-Related Factor 2.
Nuclear erythroid 2 related factor 2 (Nrf2) is an astrocyte-enriched transcription factor that has previously been shown to upregulate cellular antioxidant systems in response to ischemia. Although resveratrol preconditioning (RPC) has emerged as a potential neuroprotective therapy, the involvement of Nrf2 in RPC-induced neuroprotection and mitochondrial reactive oxygen species production after cerebral ischemia remains unclear. The goal of our study was to study the contribution of Nrf2 to RPC and its effects on mitochondrial function.. We used rodent astrocyte cultures and an in vivo stroke model with RPC. An Nrf2 DNA binding ELISA and protein analysis via Western blotting of downstream Nrf2 targets were performed to determine RPC-induced activation of Nrf2 in rat and mouse astrocytes. After RPC, mitochondrial function was determined by measuring reactive oxygen species production and mitochondrial respiration in both wild-type and Nrf2-/- mice. Infarct volume was measured to determine neuroprotection, whereas protein levels were measured by immunoblotting.. We report that Nrf2 is activated by RPC in rodent astrocyte cultures, and that loss of Nrf2 reduced RPC-mediated neuroprotection in a mouse model of focal cerebral ischemia. In addition, we observed that wild-type and Nrf2-/- cortical mitochondria exhibited increased uncoupling and reactive oxygen species production after RPC treatments. Finally, Nrf2-/- astrocytes exhibited decreased mitochondrial antioxidant expression and were unable to upregulate cellular antioxidants after RPC treatment.. Nrf2 contributes to RPC-induced neuroprotection through maintaining mitochondrial coupling and antioxidant protein expression. Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Antioxidants; Astrocytes; Brain Ischemia; Cells, Cultured; Disease Models, Animal; Gene Expression Regulation; Male; Mice; Mice, Knockout; Mitochondria; Neuroprotective Agents; NF-E2-Related Factor 2; Rats; Rats, Sprague-Dawley; Reactive Oxygen Species; Resveratrol; Stilbenes | 2015 |
SIRT1 mediates a primed response to immune challenge after traumatic lung injury.
Pulmonary contusion (PC) is a common, potentially lethal injury that results in priming for exaggerated inflammatory responses to subsequent immune challenge like infection (second hit). The molecular mechanism of priming and the second hit phenomenon after PC remain obscure. With the use of a mouse model of PC, this study explores the role of sirtuin 1 (SIRT1), an NAD+-dependent deacetylase, in priming for a second hit after injury.. With the use of a mouse model of PC, injury-primed second-hit host responses were tested at 24 hours after PC by (1) in vivo infectious challenge of injured mice or (2) ex vivo inflammatory challenge of isolated immune cells from injured mice. SIRT activators or repressors were used to test for SIRT1 participation in these second-hit responses.. PC-injured mice given an in vivo infectious challenge by cecal ligation and puncture (CLP) had significantly increased mortality compared with injury or infectious challenge alone. Isolated bronchoalveolar lavage (BAL) cells from injured mice given an ex vivo inflammatory challenge with bacterial lipopolysaccharide (LPS) had increased levels of tumor necrosis factor α messenger RNA compared with uninjured mice. We found that PC reduced SIRT1 protein, messenger RNA, and SIRT1 enzymatic activity in injured lung tissue. We also found decreased SIRT1 protein levels in BAL cells from injured mice. We further found that injured mice treated with a SIRT1 activator, resveratrol, showed significantly decreased polymorphonuclear leukocytes (PMN) in the BAL in response to intratracheal LPS and increased survival from CLP.. These results showed that PC decreased SIRT1 levels in the lung correlated with enhanced responses to infectious or inflammatory stimuli in injured mice. Treatment of injured mice with a SIRT1 activator, resveratrol, decreased LPS inflammatory response and increased survival after CLP. Our results suggest that SIRT1 participates in the second-hit response after injury. Topics: Animals; Bronchoalveolar Lavage Fluid; Disease Models, Animal; Gene Expression Regulation; Immunity, Cellular; Immunoblotting; Immunohistochemistry; Lung; Lung Injury; Male; Mice; Mice, Inbred C57BL; Polymerase Chain Reaction; Resveratrol; Ribonucleotide Reductases; RNA, Messenger; Sirtuin 1; Stilbenes | 2015 |
The effect of trans-resveratrol on post-stroke depression via regulation of hypothalamus-pituitary-adrenal axis.
Post-stroke depression (PSD) occurs about 40% among all stroke survivors, but the effective pharmacotherapy is inadequately understood. The present study investigated the effects of a natural polyphenol trans-resveratrol (RES) on behavioral changes after middle cerebral artery occlusion (MCAO) and examined what its molecular targets may be. RES was shown to decrease the infarct size and neurological scores after MCAO, suggesting the amelioration of brain damage and motor activity. RES also reversed the depressive-like behaviors 13 days after MCAO, both in the forced swimming and sucrose consumption tests. Moreover, MCAO-induced series abnormalities related to depressive-like behaviors, such as an abnormal adrenal gland weight to body weight ratio, an increased expression of the corticotropin-releasing factor (CRF) in the frontal cortex, hippocampus and hypothalamus, the differential expression of glucocorticoid receptor (GR) in these three brain regions, and a decreased brain-derived neurotrophic factor (BDNF) level, were ameliorated after treatment with increasing doses of RES at 10, 20 and 40 mg/kg via gavage. These findings provide compelling evidence that RES protects the brain against focal cerebral ischemia-induced injury, but most of all is its antidepressant-like effect on PSD, which might at least in part be mediated by regulation of hypothalamus-pituitary-adrenal axis function. Topics: Animals; Antidepressive Agents; Brain Ischemia; Depressive Disorder; Disease Models, Animal; Dose-Response Relationship, Drug; Frontal Lobe; Hypothalamo-Hypophyseal System; Imipramine; Infarction, Middle Cerebral Artery; Male; Neuroprotective Agents; Pituitary-Adrenal System; Random Allocation; Rats, Sprague-Dawley; Resveratrol; Stilbenes; Stroke | 2015 |
Resveratrol ameliorates renal damage, increases expression of heme oxygenase-1, and has anti-complement, anti-oxidative, and anti-apoptotic effects in a murine model of membranous nephropathy.
Idiopathic membranous nephropathy (MN) is an autoimmune-mediated glomerulonephritis and a common cause of nephrotic syndrome in adults. There are limited available treatments for MN. We assessed the efficacy of resveratrol (RSV) therapy for treatment of MN in a murine model of this disease.. Murine MN was experimentally induced by daily subcutaneous administration of cationic bovine serum albumin, with phosphate-buffered saline used in control mice. MN mice were untreated or given RSV. Disease severity and pathogenesis was assessed by determination of metabolic and histopathology profiles, lymphocyte subsets, immunoglobulin production, oxidative stress, apoptosis, and production of heme oxygenase-1 (HO1).. MN mice given RSV had significantly reduced proteinuria and a marked amelioration of glomerular lesions. RSV also significantly attenuated immunofluorescent staining of C3, although there were no changes of serum immunoglobulin levels or immunocomplex deposition in the kidneys. RSV treatment of MN mice also reduced the production of reactive oxygen species (ROS), reduced cell apoptosis, and upregulated heme oxygenase 1 (HO1). Inhibition of HO1 with tin protoporphyrin IX partially reversed the renoprotective effects of RSV. The HO1 induced by RSV maybe via Nrf2 signaling.. Our results show that RSV increased the expression of HO1 and ameliorated the effects of membranous nephropathy in a mouse model due to its anti-complement, anti-oxidative, and anti-apoptotic effects. RSV appears to have potential as a treatment for MN. Topics: Animals; Apoptosis; Cattle; Complement System Proteins; Disease Models, Animal; Glomerulonephritis, Membranous; Heme Oxygenase-1; Kidney; Kidney Glomerulus; Metalloporphyrins; Mice; Oxidative Stress; Protoporphyrins; Reactive Oxygen Species; Resveratrol; Serum Albumin; Stilbenes | 2015 |
Resveratrol ameliorates imiquimod-induced psoriasis-like skin inflammation in mice.
The polyphenol resveratrol has anti-inflammatory effects in various cells, tissues, animals and human settings of low-grade inflammation. Psoriasis is a disease of both localized and systemic low-grade inflammation. The Sirtuin1 enzyme thought to mediate the effects of resveratrol is present in skin and resveratrol is known to down regulate NF-κB; an important contributor in the development of psoriasis. Consequently we investigated whether resveratrol has an effect on an Imiquimod induced psoriasis-like skin inflammation in mice and sought to identify candidate genes, pathways and interleukins mediating the effects.. The study consisted of three treatment groups: A control group, an Imiquimod group and an Imiquimod+resveratrol group. Psoriasis severity was assessed using elements of the Psoriasis Area Severity Index, skin thickness measurements, and histological examination. We performed an RNA microarray from lesional skin and afterwards Ingenuity pathway analysis to identify affected signalling pathways. Our microarray was compared to a previously deposited microarray to determine if gene changes were psoriasis-like, and to a human microarray to determine if findings could be relevant in a human setting.. Imiquimod treatment induced a psoriasis-like skin inflammation. Resveratrol significantly diminished the severity of the psoriasis-like skin inflammation. The RNA microarray revealed a psoriasis-like gene expression-profile in the Imiquimod treated group, and highlighted several resveratrol dependent changes in relevant genes, such as increased expression of genes associated with retinoic acid stimulation and reduced expression of genes involved in IL-17 dependent pathways. Quantitative PCR confirmed a resveratrol dependent decrease in mRNA levels of IL-17A and IL-19; both central in developing psoriasis.. Resveratrol ameliorates psoriasis, and changes expression of retinoic acid stimulated genes, IL-17 signalling pathways, IL-17A and IL-19 mRNA levels in a beneficial manner, which suggests resveratrol, might have a role in the treatment of psoriasis and should be explored further in a human setting. Topics: Aminoquinolines; Animals; Anti-Inflammatory Agents, Non-Steroidal; Disease Models, Animal; Gene Expression Regulation; Humans; Imiquimod; Interleukins; Male; Mice; Psoriasis; Resveratrol; Signal Transduction; Stilbenes | 2015 |
Effect of sodium alginate addition to resveratrol on acute gouty arthritis.
Resveratrol has been shown to exert anti-inflammatory and antioxidant effects, while sodium alginate is a common pharmaceutic adjuvant with antioxidative and immunomodulatory properties. We performed an animal study to investigate the effect of sodium alginate addition to resveratrol on acute gouty arthritis.. Twenty-four SPF Wistar mice were randomized to four groups receiving the combination of sodium alginate and resveratrol, resveratrol alone, colchicine, and placebo, respectively. Acute gouty arthritis was induced by injection of 0.05 ml monosodium urate (MSU) solution (25g/mL) into ankle joint cavity. IL-1β, CCR5, and CXCL10 levels in both serum and synovial fluid were measured using ELISA. NLRP3 expression in the synovial tissues was measured using western plot.. The combination of sodium alginate and resveratrol significantly reduced synovial levels of IL-1β, CCR5, and CXCL10 when compared with colchicines, and all P values were less than 0.0001. The combination of sodium alginate and resveratrol was also superior to resveratrol in terms of both serum levels and synovial levels of IL-1β, CCR5, and CXCL10. In addition, resveratrol, with or without sodium alginate, could reduce NLRP3 expression obviously in the synovial tissues.. The combination of sodium alginate and resveratrol has better effect over colchicines in treating MSU-induced acute gouty arthritis. Topics: Alginates; Animals; Anti-Inflammatory Agents; Antioxidants; Arthritis, Gouty; Chemokine CXCL10; Colchicine; Disease Models, Animal; Drug Therapy, Combination; Glucuronic Acid; Hexuronic Acids; Interleukin-1beta; Mice; Receptors, CCR5; Resveratrol; Stilbenes; Uric Acid | 2015 |
Lung endothelial barrier protection by resveratrol involves inhibition of HMGB1 release and HMGB1-induced mitochondrial oxidative damage via an Nrf2-dependent mechanism.
High-mobility group box 1 (HMGB1) contributes to lung vascular hyperpermeability during ventilator-induced lung injury. We aimed to determine whether the natural antioxidant resveratrol protected against HMGB1-induced endothelial hyperpermeability both in vitro and in vivo. We found that HMGB1 decreased vascular endothelial (VE)-cadherin expression and increased endothelial permeability, leading to mitochondrial oxidative damage in primary cultured mouse lung vascular endothelial cells (MLVECs). Both the mitochondrial superoxide dismutase 2 mimetic MnTBAP and resveratrol blocked HMGB1-induced mitochondrial oxidative damage, VE-cadherin downregulation, and endothelial hyperpermeability. In in vivo studies, anesthetized male ICR mice were ventilated for 4h using low tidal volume (6 ml/kg) or high tidal volume (HVT; 30 ml/kg) ventilation. The mice were injected intraperitoneally with resveratrol immediately before the onset of ventilation. We found that resveratrol attenuated HVT-associated lung vascular hyperpermeability and HMGB1 production. HVT caused a significant increase in nuclear factor-erythroid 2-related factor 2 (Nrf2) nuclear translocation and Nrf2 target gene expression in lung tissues, which was further enhanced by resveratrol treatment. HMGB1 had no effect on Nrf2 activation, whereas resveratrol treatment activated the Nrf2 signaling pathway in HMGB1-treated MLVECs. Moreover, Nrf2 knockdown reversed the inhibitory effects of resveratrol on HMGB1-induced mitochondrial oxidative damage and endothelial hyperpermeability. The inhibitory effect of resveratrol on cyclic stretch-induced HMGB1 mRNA expression in primary cultured MLVECs was also abolished by Nrf2 knockdown. In summary, this study demonstrates that resveratrol protects against lung endothelial barrier dysfunction initiated by HVT. Lung endothelial barrier protection by resveratrol involves inhibition of mechanical stretch-induced HMGB1 release and HMGB1-induced mitochondrial oxidative damage. These protective effects of resveratrol might be mediated through an Nrf2-dependent mechanism. Topics: Animals; Antioxidants; Blotting, Western; Disease Models, Animal; Endothelial Cells; Enzyme-Linked Immunosorbent Assay; Flow Cytometry; Fluorescent Antibody Technique; Gene Knockdown Techniques; HMGB1 Protein; Lung; Male; Mice; Mice, Inbred ICR; Mitochondria; NF-E2-Related Factor 2; Oxidative Stress; Real-Time Polymerase Chain Reaction; Resveratrol; RNA, Small Interfering; Stilbenes; Stress, Mechanical; Transfection; Ventilator-Induced Lung Injury | 2015 |
SIRT1 protects rat lung tissue against severe burn-induced remote ALI by attenuating the apoptosis of PMVECs via p38 MAPK signaling.
Silent information regulator type-1 (SIRT1) has been reported to be involved in the cardiopulmonary protection. However, its role in the pathogenesis of burn-induced remote acute lung injury (ALI) is currently unknown. The present study aims to investigate the role of SIRT1 in burn-induced remote ALI and the involved signaling pathway. We observed that SIRT1 expression in rat lung tissue after burn injury appeared an increasing trend after a short period of suppression. The upregulation of SIRT1 stimulated by resveratrol exhibited remission of histopathologic changes, reduction of cell apoptosis, and downregulation of pro-inflammatory cytokines in rat pulmonary tissues suffering from severe burn. We next used primary pulmonary microvascular endothelial cells (PMVECs) challenged by burn serum (BS) to simulate in vivo rat lung tissue after burn injury, and found that BS significantly suppressed SIRT1 expression, increased cell apoptosis, and activated p38 MAPK signaling. The use of resveratrol reversed these effects, while knockdown of SIRT1 by shRNA further augmented BS-induced increase of cell apoptosis and activation of p38 MAPK. Taken together, these results indicate that SIRT1 might protect lung tissue against burn-induced remote ALI by attenuating PMVEC apoptosis via p38 MAPK signaling, suggesting its potential therapeutic effects on the treatment of ALI. Topics: Acute Lung Injury; Animals; Apoptosis; Burns; Caspase 3; Cells, Cultured; Cytokines; Disease Models, Animal; Endothelial Cells; Lung; Male; MAP Kinase Signaling System; p38 Mitogen-Activated Protein Kinases; Permeability; Rats; Rats, Sprague-Dawley; Resveratrol; RNA Interference; RNA, Messenger; RNA, Small Interfering; Sirtuin 1; Stilbenes | 2015 |
Anti-oxidant polydatin (piceid) protects against substantia nigral motor degeneration in multiple rodent models of Parkinson's disease.
Compelling evidence suggests that inhibition of the complex I of the electron transport chain and elevated oxidative stress are the earliest events during the pathogenesis of Parkinson's disease (PD). Therefore, anti-oxidants, especially those from natural sources, hold good promise in treating PD as demonstrated mostly by the studies in rodent models.. Herein, we determined if polydatin (piceid), a natural polyphenol, could exert anti-oxidative activity and attenuate dopaminergic neurodegeneration in three commonly used rodent models of PD. Male Sprague Dawley rats given rotenone subcutaneously for 5 weeks developed all the essential features of PD, including a strong increase in catalepsy score and a decrease in motor coordination activity, starting at 4 weeks. Selective increase in oxidative damage was found in the striatal region as compared to the hippocampus and cortex, accompanied by massive degeneration of dopaminergic neurons in the substantia nigra (SNc). Co-administration of piceid orally was able to attenuate rotenone-induced motor defects in a dose dependent manner, with 80 mg/kg dosage showing even better effect than L-levodopa (L-dopa). Piceid treatment significantly prevented the rotenone-induced changes in the levels of glutathione, thioredoxin, ATP, malondialdehyde (MDA) and the manganese superoxide dismutases (SOD) in striatum. Furthermore, piceid treatment rescued rotenone-induced dopaminergic neurodegeneration in the SNc region. Similar protective effect of piceid was also observed in two additional models of PD, MPTP in mice and 6-OHDA in rats, showing corrected motor functions, SOD and MDA activities as well as p-Akt and activated caspase-3 levels.. In three rodent models of PD, piceid preserves and corrects several major anti-oxidant pathways/parameters selectively in the affected SNc region. This implies its potent anti-oxidant activity as one major underscoring mechanism for protecting the vulnerable SNc neurodegeneration in these models. Taken together, these findings strongly suggest a therapeutic potential of piceid in treating PD. Topics: Animals; Behavior, Animal; Disease Models, Animal; Dopaminergic Neurons; Glucosides; Male; Mice, Inbred C57BL; Motor Neurons; Nerve Degeneration; Neuroprotective Agents; Oxidants; Oxidative Stress; Parkinson Disease; Rats, Sprague-Dawley; Stilbenes; Substantia Nigra | 2015 |
Cerebral β-Amyloidosis in Mice Investigated by Ultramicroscopy.
Alzheimer´s disease (AD) is the most common neurodegenerative disorder. AD neuropathology is characterized by intracellular neurofibrillary tangles and extracellular β-amyloid deposits in the brain. To elucidate the complexity of AD pathogenesis a variety of transgenic mouse models have been generated. An ideal imaging system for monitoring β-amyloid plaque deposition in the brain of these animals should allow 3D-reconstructions of β-amyloid plaques via a single scan of an uncropped brain. Ultramicroscopy makes this possible by replacing mechanical slicing in standard histology by optical sectioning. It allows a time efficient analysis of the amyloid plaque distribution in the entire mouse brain with 3D cellular resolution. We herein labeled β-amyloid deposits in a transgenic mouse model of cerebral β-amyloidosis (APPPS1 transgenic mice) with two intraperitoneal injections of the amyloid-binding fluorescent dye methoxy-X04. Upon postmortem analysis the total number of β-amyloid plaques, the β-amyloid load (volume percent) and the amyloid plaque size distributions were measured in the frontal cortex of two age groups (2.5 versus 7-8.5 month old mice). Applying ultramicroscopy we found in a proof-of-principle study that the number of β-amyloid plaques increases with age. In our experiments we further observed an increase of large plaques in the older age group of mice. We demonstrate that ultramicroscopy is a fast, and accurate analysis technique for studying β-amyloid lesions in transgenic mice allowing the 3D staging of β-amyloid plaque development. This in turn is the basis to study neural network degeneration upon cerebral β-amyloidosis and to assess Aβ-targeting therapeutics. Topics: Alkenes; Amyloid beta-Protein Precursor; Amyloidosis; Animals; Benzene Derivatives; Brain; Disease Models, Animal; Fluorescent Dyes; Humans; Imaging, Three-Dimensional; Mice, Inbred C57BL; Mice, Transgenic; Microscopy; Plaque, Amyloid; Stilbenes | 2015 |
Zein-Based Nanoparticles Improve the Oral Bioavailability of Resveratrol and Its Anti-inflammatory Effects in a Mouse Model of Endotoxic Shock.
Resveratrol offers pleiotropic health benefits including a reported ability to inhibit lipopolysaccharide (LPS)-induced cytokine production. The aim of this work was to prepare, characterize, and evaluate a resveratrol nanoparticulate formulation based on zein. For this purpose, the oral bioavailability of the encapsulated polyphenol as well as its anti-inflammatory effects in a mouse model of endotoxic shock was studied. The resveratrol-loaded nanoparticles displayed a mean size of 307 ± 3 nm, with a negative zeta potential (-51.1 ± 1.55 mV), and a polyphenol loading of 80.2 ± 3.26 μg/mg. In vitro, the release of resveratrol from the nanoparticles was found to be pH independent and adjusted well to the Peppas-Sahlin kinetic model, suggesting a mechanism based on the combination of diffusion and erosion of the nanoparticle matrix. Pharmacokinetic studies demonstrated that zein-based nanoparticles provided high and prolonged plasma levels of the polyphenol for at least 48 h. The oral bioavailability of resveratrol when administered in these nanoparticles increased up to 50% (19.2-fold higher than for the control solution of the polyphenol). Furthermore, nanoparticles administered daily for 7 days at 15 mg/kg were able to diminish the endotoxic symptoms induced in mice by the intraperitoneal administration of LPS (i.e., hypothermia, piloerection, and stillness). In addition, serum tumor necrosis factor-alpha (TNF-α) levels were slightly lower (approximately 15%) than those observed in the control. Topics: Administration, Oral; Animals; Anti-Inflammatory Agents; Biological Availability; Disease Models, Animal; Drug Carriers; Female; Humans; Male; Mice; Mice, Inbred C57BL; Nanoparticles; Rats; Rats, Wistar; Resveratrol; Shock, Septic; Stilbenes; Tumor Necrosis Factor-alpha; Zein | 2015 |
Resveratrol Protects Against Pathological Preterm Birth by Suppression of Macrophage-Mediated Inflammation.
Inflammatory cytokines play a major role in spontaneous preterm birth. Resveratrol has strong anti-inflammatory effects, but its effect on preterm birth in vivo is unknown. We investigated whether resveratrol protects against preterm birth in the lipopolysaccharide (LPS)-induced preterm mouse model. Twelve-day-old pregnant mice were fed 20 to 40 mg/kg resveratrol daily. On day 15, 10 μg of LPS was injected into uterine cervices. Resveratrol administration significantly decreased the rate of preterm birth. Resveratrol administration abolished LPS-induced elevation of tumor necrosis factor α (TNF-α) and interleukin (IL) 1β but not IL-6 levels. The TNF-α messenger RNA levels were decreased in the cervices of resveratrol-administered mice compared with controls. Resveratrol treatment suppressed the elevation in TNF-α and IL-1β levels in LPS-exposed peritoneal macrophages. Further resveratrol treatment eradicated the proinflammatory cytokine-mediated elevation in cyclooxygenase 2 (COX-2) in peritoneal macrophages. Resveratrol may protect against pathological preterm birth by suppression of elevated proinflammatory cytokines and consequent elevation of COX-2 in macrophages. Topics: Animals; Anti-Inflammatory Agents; Cells, Cultured; Cyclooxygenase 2; Disease Models, Animal; Female; Gestational Age; Inflammation; Inflammation Mediators; Interleukin-1beta; Lipopolysaccharides; Macrophages, Peritoneal; Mice, Inbred C57BL; Pregnancy; Premature Birth; Resveratrol; Stilbenes; Time Factors; Tumor Necrosis Factor-alpha | 2015 |
Amyloid-PET predicts inhibition of de novo plaque formation upon chronic γ-secretase modulator treatment.
In a positron-emission tomography (PET) study with the β-amyloid (Aβ) tracer [(18)F]-florbetaben, we previously showed that Aβ deposition in transgenic mice expressing Swedish mutant APP (APP-Swe) mice can be tracked in vivo. γ-Secretase modulators (GSMs) are promising therapeutic agents by reducing generation of the aggregation prone Aβ42 species without blocking general γ-secretase activity. We now aimed to investigate the effects of a novel GSM [8-(4-Fluoro-phenyl)-[1,2,4]triazolo[1,5-a]pyridin-2-yl]-[1-(3-methyl-[1,2,4]thiadiazol-5-yl)-piperidin-4-yl]-amine (RO5506284) displaying high potency in vitro and in vivo on amyloid plaque burden and used longitudinal Aβ-microPET to trace individual animals. Female transgenic (TG) APP-Swe mice aged 12 months (m) were assigned to vehicle (TG-VEH, n=12) and treatment groups (TG-GSM, n=12), which received daily RO5506284 (30 mg kg(-1)) treatment for 6 months. A total of 131 Aβ-PET recordings were acquired at baseline (12 months), follow-up 1 (16 months) and follow-up 2 (18 months, termination scan), whereupon histological and biochemical analyses of Aβ were performed. We analyzed the PET data as VOI-based cortical standard-uptake-value ratios (SUVR), using cerebellum as reference region. Individual plaque load assessed by PET remained nearly constant in the TG-GSM group during 6 months of RO5506284 treatment, whereas it increased progressively in the TG-VEH group. Baseline SUVR in TG-GSM mice correlated with Δ%-SUVR, indicating individual response prediction. Insoluble Aβ42 was reduced by 56% in the TG-GSM versus the TG-VEH group relative to the individual baseline plaque load estimates. Furthermore, plaque size histograms showed differing distribution between groups of TG mice, with fewer small plaques in TG-GSM animals. Taken together, in the first Aβ-PET study monitoring prolonged treatment with a potent GSM in an AD mouse model, we found clear attenuation of de novo amyloidogenesis. Moreover, longitudinal PET allows non-invasive assessment of individual plaque-load kinetics, thereby accommodating inter-animal variations. Topics: Alzheimer Disease; Amyloid beta-Protein Precursor; Amyloid Precursor Protein Secretases; Aniline Compounds; Animals; Case-Control Studies; Cerebral Amyloid Angiopathy; Disease Models, Animal; Female; Longitudinal Studies; Mice; Mice, Inbred C57BL; Mice, Transgenic; Plaque, Amyloid; Positron-Emission Tomography; Stilbenes | 2015 |
Polydatin protects hepatocytes against mitochondrial injury in acute severe hemorrhagic shock via SIRT1-SOD2 pathway.
The aim of the study was to determine whether hepatocyte mitochondrial injury instigates severe shock and to explore effective therapy.. Wistar rats were randomly divided into five groups: Control (sham) group, shock + normal saline, shock + cyclosporine A, shock + resveratrol (Res) and shock + polydatin (PD) group. Mitochondrial morphology and function in hepatocytes following treatment were determined.. Hepatocytes following severe shock exhibited mitochondrial dysfunction characterized with opening of mitochondrial permeability transition pores, mitochondrial swelling, decreased mitochondrial membrane potential (ΔΨm) and reduced ATP levels. Moreover, severe shock induced oxidative stress with increased lipid peroxidation and reactive oxygen species, decreased SOD2 (Superoxide Dismutase 2) and GSH/GSSG, which resulted in increased lysosomal membrane permeabilization and hepatocyte mitochondrial injury. Additionally, Res and PD restored decreased deacetylase sirtuin1 activity and protein expression in liver tissue following severe shock, suppressed oxidative stress-induced lysosomal unstability and mitochondrial injury by increasing the protein expression of SOD2, and thereby contributed to the prevention of hepatocyte mitochondria dysfunction and liver injury.. PD effectively preserved hepatocytes from mitochondrial injury via SIRT1-SOD2 pathway and may be a new approach to treatment of irreversible shock. Topics: Animals; Cyclosporine; Disease Models, Animal; Glucosides; Hepatocytes; Membrane Potential, Mitochondrial; Mitochondria; Mitochondrial Membrane Transport Proteins; Mitochondrial Permeability Transition Pore; Oxidative Stress; Rats; Rats, Wistar; Reactive Oxygen Species; Resveratrol; Shock, Hemorrhagic; Sirtuin 1; Stilbenes; Superoxide Dismutase | 2015 |
Effect of resveratrol on Treg/Th17 signaling and ulcerative colitis treatment in mice.
To determine the therapeutic efficacy of resveratrol on ulcerative colitis (UC) and its underlying mechanisms.. The mouse UC model was developed using 5% dextran sulfate sodium. Mice were randomly divided into four groups: normal control, UC model group, resveratrol low-dose group (RLD; 50 mg/kg per day), and resveratrol high-dose group (RHD; 100 mg/kg per day).. The results showed that RLD regulates Treg/Th17 balance mainly through reducing the number of Th17 cells, whereas RHD regulates Treg/Th17 balance through both downregulating the number of Th17 cells and upregulating the number of Treg cells. Resveratrol can also regulate the level of plasma and intestinal mucosal cytokines including interleukin (IL)-10, transforming growth factor-β1, IL-6, and IL-17. The expressions of hypoxia inducible factor (HIF)-1α, mammalian target of rapamycin (mTOR), and signal transducer and activator of transcription 3 were significantly decreased in the intestinal tissues of mice treated with resveratrol.. The therapeutic efficacy of resveratrol in UC is dose dependent and closely associated with the regulation of Treg/Th17 balance and the HIF-1α/mTOR signaling pathway. Topics: Animals; Colitis; Colon; Cytokines; Dextran Sulfate; Disease Models, Animal; Dose-Response Relationship, Drug; Hypoxia-Inducible Factor 1, alpha Subunit; Inflammation Mediators; Male; Mice, Inbred BALB C; Resveratrol; Signal Transduction; Spleen; STAT3 Transcription Factor; Stilbenes; T-Lymphocytes, Regulatory; Th17 Cells; Time Factors; TOR Serine-Threonine Kinases | 2015 |
Resveratrol Reduces Morphologic Changes in the Myenteric Plexus and Oxidative Stress in the Ileum in Rats with Ischemia/Reperfusion Injury.
Intestinal ischemia/reperfusion injury can be caused by surgical procedures and inflammatory bowel disease. It is normally associated with the increased production of free radicals and changes in the enteric nervous system.. Given the antioxidant and neuroprotective properties of resveratrol, the present study assessed its influence on oxidative stress in the intestinal wall and the morphology of myenteric neurons in the ileum of rats subjected to ischemia/reperfusion.. Resveratrol was orally administered daily at a dose of 10 mg/kg for 5 days. Changes in the ileum response to ischemia after 45 min were investigated followed by 3 h reperfusion. Lipoperoxide and carbonylated protein levels, and the activity of the antioxidant enzymes glutathione reductase, glutathione peroxidase, and glucose-6-phosphate dehydrogenase were measured following ischemia/reperfusion injury.. The density and morphometry of the general neuronal population, nitrergic neurons and glial cells, and morphometry of VIP varicosities in the ileum were also studied. Lipoperoxide and carbonylated protein levels were 171 and 40% higher during the ischemia/reperfusion, respectively, compared to control cohorts, and resveratrol attenuated these values. The glutathione ratio was 64% lower during ischemia/reperfusion, compared to control cohorts. Resveratrol increased the reduced/oxidized glutathione ratio, attenuated the changes in the activity of the antioxidant enzymes and the detrimental morphologic changes caused by ischemia/reperfusion in the general neuronal population and nitrergic neurons.. Oral treatment with resveratrol reduced the oxidative stress in the ileum and attenuated the morphologic changes that occurred in the myenteric plexus of the ileum in rats subjected to ischemia/reperfusion. Topics: Administration, Oral; Animals; Antioxidants; Disease Models, Animal; Glucosephosphate Dehydrogenase; Glutathione; Glutathione Peroxidase; Glutathione Reductase; Ileal Diseases; Ileum; Lipid Peroxidation; Male; Myenteric Plexus; Neuroprotective Agents; Nitrergic Neurons; Oxidative Stress; Protein Carbonylation; Rats, Wistar; Reperfusion Injury; Resveratrol; Stilbenes | 2015 |
Resveratrol via activation of AMPK lowers blood pressure in DOCA-salt hypertensive mice.
Resveratrol, a phytoalexin, is reported to activate AMP-activated protein kinase (AMPK) in vascular cells. Activation of AMPK induces vasorelaxation to lower blood pressure (BP). Whether resveratrol via activation of AMPK decreases, BP remains unknown.. Male wild-type (WT) mice and mice deficient in AMPKα2 (AMPKα2(-/-)) were fed with resveratrol (400 mg/kg). After 7 d, mice were implanted with deoxycorticosterone acetate (DOCA)-salt (150 mg/kg) for 35 d. BP was detected by the radiotelemetry method. Vessel contraction was determined by organ chamber. Active RhoA, Rho-associated kinase (ROCK) activity, phosphorylations of myosin light chain (MLC), and myosin phosphatase targeting subunit 1 (MYPT1) were assayed by western blot.. Implantation of DOCA-salt dramatically increased systemic BPs (systolic BP and diastolic BP) in WT and AMPKα2(-/-) mice. However, treatment of resveratrol significantly decreased systemic BP in WT mice but not in AMPKα2(-/-) mice. In the organ chamber study, resveratrol inhibited agonist-induced vessel relaxation in WT mice aortas. Loss of AMPKα2 or AMPK inhibition by compound C reversed resveratrol-suppressed vasoconstriction in isolated mice aortas. In cultured vascular smooth muscle cells (VSMCs), activation of AMPK by resveratrol inhibited phenylephrine-enhanced MLC phosphorylation in a dose-dependent manner.. Resveratrol via activation of AMPK lowers BP in DOCA-hypertensive mice through an AMPK/RhoA/ROCK2/MLCMLC pathway. Topics: AMP-Activated Protein Kinases; Animals; Anticarcinogenic Agents; Blood Pressure; Desoxycorticosterone Acetate; Disease Models, Animal; Enzyme Activation; Hypertension; Male; Mice; Mice, Inbred C57BL; Muscle, Smooth, Vascular; Resveratrol; Stilbenes; Vasoconstriction; Vasodilator Agents | 2015 |
Modifying Choroidal Neovascularization Development with a Nutritional Supplement in Mice.
We examined the effect of nutritional supplements (modified Age Related Eye Disease Study (AREDS)-II formulation containing vitamins, minerals, lutein, resveratrol, and omega-3 fatty acids) on choroidal neovascularization (CNV). Supplements were administered alone and combined with intravitreal anti-VEGF in an early-CNV (diode laser-induced) murine model. Sixty mice were evenly divided into group V (oral vehicle, intravitreal saline), group S (oral supplement, intravitreal saline), group V + aVEGF (oral vehicle, intravitreal anti-VEGF), and group S + aVEGF (oral supplement, intravitreal anti-VEGF). Vehicle and nutritional supplements were administered daily for 38 days beginning 10 days before laser. Intravitreal injections were administered 48 h after laser. Fluorescein angiography (FA) and flat-mount CD31 staining evaluated leakage and CNV lesion area. Expression of VEGF, MMP-2 and MMP-9 activity, and NLRP3 were evaluated with RT-PCR, zymography, and western-blot. Leakage, CNV size, VEGF gene and protein expression were lower in groups V + aVEGF, S + aVEGF, and S than in V (all p < 0.05). Additionally, MMP-9 gene expression differed between groups S + aVEGF and V (p < 0.05) and MMP-9 activity was lower in S + aVEGF than in V and S (both p < 0.01). Levels of MMP-2 and NLRP3 were not significantly different between groups. Nutritional supplements either alone or combined with anti-VEGF may mitigate CNV development and inhibit retinal disease involving VEGF overexpression and CNV. Topics: Animals; Carrier Proteins; Choroid; Choroidal Neovascularization; Dietary Supplements; Disease Models, Animal; Drug Therapy, Combination; Fatty Acids, Omega-3; Fluorescein Angiography; Intravitreal Injections; Lutein; Matrix Metalloproteinase 2; Matrix Metalloproteinase 9; Mice; Minerals; NLR Family, Pyrin Domain-Containing 3 Protein; Real-Time Polymerase Chain Reaction; Resveratrol; Stilbenes; Vascular Endothelial Growth Factor A; Vitamins | 2015 |
Resveratrol Ameliorates Pressure Overload-induced Cardiac Dysfunction and Attenuates Autophagy in Rats.
Pressure overload has an important role in heart failure, inducing excessive autophagy in cardiac myocytes that is considered to be pathogenic. Resveratrol has been reported to improve cardiac dysfunction induced by pressure overload, but it has been unclear whether resveratrol ameliorates cardiac dysfunction by regulating autophagy. In this study, heart failure was induced in rats by constriction of the abdominal aorta. Four weeks after surgery, the rats with heart failure were randomized to treatment with resveratrol (8 mg · kg(-1) · d(-1) by intraperitoneal injection) for 28 days or to intraperitoneal injection of the vehicle (propylene glycol) alone. Echocardiography was performed to assess cardiac function. Expression of brain natriuretic peptide messenger RNA in the left ventricle was detected by real-time polymerase chain reaction, whereas expression of proteins associated with autophagy (beclin-1 and lamp-1) was detected by western blotting and immunohistochemistry. Furthermore, autophagic vacuoles were detected in the heart by transmission electron microscopy, and the myocardial ATP content was measured by the bioluminescence method. Treatment with resveratrol significantly improved cardiac dysfunction and reduced brain natriuretic peptide expression in rats with heart failure. Resveratrol down-regulated beclin-1 and lamp-1 expression and also inhibited the formation of autophagic vacuoles in failing hearts. Furthermore, resveratrol restored the myocardial ATP level and reduced phosphorylation of AMP-activated protein kinase at Thr172. These results suggest that resveratrol may inhibit autophagy through inactivation of AMP-activated protein kinase and restoration of ATP in heart failure induced by pressure overload. Accordingly, resveratrol may be beneficial for patients with hypertensive heart disease. Topics: Adenosine Triphosphate; AMP-Activated Protein Kinases; Animals; Autophagy; Blotting, Western; Cardiotonic Agents; Disease Models, Animal; Heart Failure; Heart Function Tests; Hypertension; Male; Myocardium; Rats, Sprague-Dawley; Resveratrol; Stilbenes | 2015 |
Activating mitochondrial function and haemoglobin expression with EH-201, an inducer of erythropoietin in neuronal cells, reverses memory impairment.
Memory impairment can be progressive in neurodegenerative diseases, and physiological ageing or brain injury, mitochondrial dysfunction and oxidative stress are critical components of these issues. An early clinical study has demonstrated cognitive improvement during erythropoietin treatment in patients with chronic renal failure. As erythropoietin cannot freely cross the blood-brain barrier, we tested EH-201 (2,3,5,4'-tetrahydroxystilbene-2-O-β-d-glucoside, also known as TSG), a low MW inducer of erythropoietin, for its therapeutic effects on memory impairment in models of neurodegenerative diseases, physiological ageing or brain injury.. The effects of EH-201 were investigated in astrocytes and PC12 neuronal-like cells. In vivo, we used sleep-deprived (SD) mice as a stress model, amyloid-β (Aβ)-injected mice as a physiological ageing model and kainic acid (KA)-injected mice as a brain damage model to assess the therapeutic effects of EH-201.. EH-201 induced expression of erythropoietin, PPAR-γ coactivator 1α (PGC-1α) and haemoglobin in astrocytes and PC12 neuronal-like cells. In vivo, EH-201 treatment restored memory impairment, as assessed by the passive avoidance test, in SD, Aβ and KA mouse models. In the hippocampus of mice given EH-201 in their diet, levels of erythropoietin, PGC-1α and haemoglobin were increased. The induction of endogenous erythropoietin in neuronal cells by inducers such as EH-201 might be a therapeutic strategy for memory impairment in neurodegenerative disease, physiological ageing or traumatic brain injury. Topics: Animals; Astrocytes; Cells, Cultured; Disease Models, Animal; Erythropoietin; Female; Glucosides; Hemoglobins; Hydrogen Peroxide; Kainic Acid; Male; Memory Disorders; Mice, Inbred C57BL; Mitochondria; Neuroprotective Agents; PC12 Cells; Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha; Rats; Reactive Oxygen Species; Stilbenes; Succinate Dehydrogenase; Transcription Factors | 2015 |
Resveratrol improved the spatial learning and memory in subclinical hypothyroidism rat induced by hemi-thyroid electrocauterization.
The major purpose of this study was to investigate the effect of resveratrol (RES) on the spatial learning and memory ability in subclinical hypothyroidism (SCH) rat model and the potential mechanism. A SCH rat model was induced by hemi-thyroid electrocauterization and the activity of hypothalamus-pituitary-thyroid (HPT) axis was detected. The spatial learning and memory ability was tested using Morris water maze (MWM) and Y-maze. The protein expressions of synaptotagmin-1 (syt-1) and brain-derived neurotrophic factor (BDNF) in the hippocampus were measured via western blot. The results showed that SCH rat model was successfully duplicated. The SCH rats showed impaired learning and memory in the behavioral tests. However, these changes were reversed by the treatment of RES (15mg/kg) and levothyroxine (LT4). Moreover, RES treated rats exhibited reduced plasma TSH level and hypothalamic thyrotropin releasing hormone (TRH) mRNA expression, which suggested that the imbalance of HPT axis in the SCH rats could be reversed by RES treatment. Furthermore, RES treatment up-regulated the protein levels of syt-1 and BDNF in hippocampus. These findings indicated an amelioration effect of RES on the spatial learning and memory in the SCH rats, the mechanism of which might be involved with its ability of modifying the hyperactive HPT axis and up-regulating the hippocampal hypo-expression of syt-1 and BDNF. Topics: Animals; Antioxidants; Asymptomatic Diseases; Behavior, Animal; Brain-Derived Neurotrophic Factor; Disease Models, Animal; Hippocampus; Hormone Replacement Therapy; Hypothyroidism; Learning Disabilities; Male; Maze Learning; Memory Disorders; Nerve Tissue Proteins; Neurons; Nootropic Agents; Random Allocation; Rats, Sprague-Dawley; Resveratrol; Spatial Learning; Stilbenes; Synaptotagmin I; Thyroxine | 2015 |
Tetrahydroxy stilbene glucoside improved the behavioral disorders of APP695V717I transgenic mice by inhibiting the expression of Beclin-1 and LC3-II.
To observe the effect of tetrahydroxy stilbene glucoside (TSG) on the behavior of APP695V717I transgenic mouse models and the expression of autophagy-associated proteins Beclin-1 and LC3-II.. Forty 3-month-old APP695V717I transgenic mice were randomized equally into either a TSG group (n = 20) or a model group (n = 20). A normal control group consisted of C57BL/6J mice of the same age and background (n = 20). The TSG group received TSG intragastric administration for 1 month. Behavior was measured using the Morris water maze and the Y-maze tests. Changes in pro- tein expression and mRNA of autophagy-associated Beclin-1 and LC3-II in mice hippocampus were detected by western blot and Reverse Transcription-Polymerase Chain Reaction (RT-PCR) analyses.. The number of electric-stimulus escapes significantly increased and the Morris water maze test showed prolonged escape latency, greater swimming distance, less time taken to cross the exact former platform location in the model group, and increased mRNA and protein expressions of Beclin-1 and LC3-II compared with the control group (P < 0.05). The TSG group showed a decrease in the number of electric-stimulus escapes, shorter escape latency and swimming distance, greater time taken to cross the exact former platform location, and decreased mRNA and protein expressions of Beclin-1 and LC3-II compared with the model group (P < 0.05).. these results indicate that tetrahydroxy stilbene glucoside can decrease expressions of Beclin-1 and LC3-II in the autophagy pathway. It can attenuate injury to endoplasmic reticulum functions caused by Ab neurotoxicity, improving learning, memorizing, and spatial orientation behavior in mice. Topics: Alzheimer Disease; Animals; Apoptosis Regulatory Proteins; Beclin-1; Behavior, Animal; Disease Models, Animal; Female; Glucosides; Humans; Male; Mice; Mice, Inbred C57BL; Mice, Transgenic; Microtubule-Associated Proteins; Stilbenes | 2015 |
Synthesis, estrogenic activity, and anti-osteoporosis effects in ovariectomized rats of resveratrol oligomer derivatives.
Three series of resveratrol oligomer derivatives were synthesized, including the indenone-type, indene-type and octahydropentalene-type derivatives, among which ten derivatives were novel compounds. Compounds 2, 14f, and 4d were confirmed as ERβ agonists by yeast two-hybrid assay, and compound 2 (isopaucifloral F) was further chosen to evaluate its anti-osteoporosis activity in vivo. Compared with the sham-operated and the positive control groups, isopaucifloral F (10 μg/kg) showed a notable anti-osteoporosis effect in the ovariectomized (OVX) female rats based on a micro-CT analysis and the following measurements: bone mineral density, bone volume/tissue volume, trabecular thickness, trabecular separation/spacing, and the serum biochemical parameters. LD50 of isopaucifloral F was found to be greater than 5 mg/kg and its effective dose (ED) was found to be about 10 μg/kg. Therefore, isopaucifloral F may be a promising lead compound for the treatment of postmenopausal osteoporosis. Topics: Animals; Disease Models, Animal; Estrogen Receptor beta; Estrogens; Female; Osteoporosis; Ovariectomy; Rats; Rats, Sprague-Dawley; Resveratrol; Stilbenes | 2015 |
Resveratrol ameliorates cisplatin-induced oxidative injury in New Zealand rabbits.
This study investigated the preventive role of resveratrol in cisplatin-induced nephrotoxicity. The study used groups of New Zealand rabbits that were treated as follows: group C (cisplatin treated), group R (resveratrol treated), group R+C (resveratrol + cisplatin treatment), and group E (control group). Kidney levels of glutathione were significantly lower in group C than in groups E and R, whereas glutathione levels in group R+C were found to be similar to the control values. Malondialdehyde levels in group C were significantly higher than in groups E and R. However, malondialdehyde levels in group R+C were similar to group E. Kidney levels of nitric oxide were significantly higher in the cisplatin group than in the control, whereas nitric oxide levels were at basal values in group R+C. Cisplatin treatment significantly reduced kidney levels of glutathione peroxidase, superoxide dismutase, and catalase activity compared with those of group E, whereas resveratrol treatment significantly increased levels of glutathione peroxidase, superoxide dismutase, and catalase activity in group R+C. However, cisplatin injection did not affect mRNA levels of glutathione peroxidase, superoxide dismutase, or catalase enzymes. Histopathological and immunohistochemical analyses indicated that cisplatin caused kidney damage, which was mostly prevented by resveratrol treatment. In conclusion, resveratrol ameliorates cisplatin-induced oxidative injury in the kidney of rabbit. Topics: Animals; Antioxidants; Catalase; Cisplatin; Cytoprotection; Disease Models, Animal; Glutathione; Glutathione Peroxidase; Kidney; Kidney Diseases; Male; Malondialdehyde; Nitric Oxide; Oxidative Stress; Rabbits; Resveratrol; RNA, Messenger; Stilbenes; Superoxide Dismutase | 2015 |
Mesenchymal stem cell-based HSP70 promoter-driven VEGFA induction by resveratrol alleviates elastase-induced emphysema in a mouse model.
Chronic obstructive pulmonary disease (COPD) is a sustained blockage of the airways due to lung inflammation occurring with chronic bronchitis and/or emphysema. Progression of emphysema may be slowed by vascular endothelial growth factor A (VEGFA), which reduces apoptotic tissue depletion. Previously, authors of the present report demonstrated that cis-resveratrol (c-RSV)-induced heat-shock protein 70 (HSP70) promoter-regulated VEGFA expression promoted neovascularization of genetically modified mesenchymal stem cells (HSP-VEGFA-MSC) in a mouse model of ischemic disease. Here, this same stem cell line was evaluated for its protective capacity to alleviate elastase-induced pulmonary emphysema in mice. Results of this study showed that c-RSV-treatment of HSP-VEGFA-MSC exhibited synergy between HSP70 transcription activity and induced expression of anti-oxidant-related genes when challenged by cigarette smoke extracts. Eight weeks after jugular vein injection of HSP-VEGFA-MSC into mice with elastase-induced pulmonary emphysema followed by c-RSV treatment to induce transgene expression, significant improvement was observed in respiratory functions. Expression of VEGFA, endogenous nuclear factor erythroid 2-related factor (Nrf 2), and manganese superoxide dismutase (MnSOD) was significantly increased in the lung tissues of the c-RSV-treated mice. Histopathologic examination of treated mice revealed gradual but significant abatement of emphysema and restoration of airspace volume. In conclusion, the present investigation demonstrates that c-RSV-regulated VEGFA expression in HSP-VEGFA-MSC significantly improved the therapeutic effects on the treatment of COPD in the mouse, possibly avoiding side effects associated with constitutive VEGFA expression. Topics: Animals; Cell Survival; Cells, Cultured; Disease Models, Animal; Emphysema; Female; HSP70 Heat-Shock Proteins; Lung; Mesenchymal Stem Cells; Mice; Mice, Inbred C57BL; Nicotiana; Pancreatic Elastase; Resveratrol; Smoke; Stilbenes; Vascular Endothelial Growth Factor A | 2015 |
Colon-targeted delivery of piceatannol enhances anti-colitic effects of the natural product: potential molecular mechanisms for therapeutic enhancement.
Piceatannol (PCT), an anti-colitic natural product, undergoes extensive Phase II hepatic metabolism, resulting in very low bioavailability. We investigated whether colon-targeted delivery of PCT could enhance anti-colitic effects and how therapeutic enhancement occurred at the molecular level. Molecular effects of PCT were examined in human colon carcinoma cells and inflamed colons. The anti-colitic effects of PCT in a colon-targeted capsule (colon-targeted PCT) were compared with PCT in a gelatin capsule (conventional PCT) in a trinitrobenzene sulfonic acid-induced rat colitis model. Colon-targeted PCT elicited greatly enhanced recovery of the colonic inflammation. In HCT116 cells, PCT inhibited nuclear factor kappaB while activating anti-colitic transcription factors, nuclear factor-erythroid 2 (NF-E2) p45-related factor 2, and hypoxia-inducible factor-1. Colon-targeted PCT, but not conventional PCT, modulated production of the target gene products of the transcription factors in the inflamed colonic tissues. Rectal administration of PCT, which simulates the therapeutic action of colon-targeted PCT, also ameliorated rat colitis and reproduced the molecular effects in the inflamed colonic tissues. Colon-targeted delivery increased therapeutic efficacy of PCT against colitis, likely resulting from multitargeted effects exerted by colon-targeted PCT. The drug delivery technique may be useful for therapeutic optimization of anti-colitic lead compounds including natural products. Topics: Administration, Oral; Administration, Rectal; Animals; Anti-Inflammatory Agents; Biomarkers; Capsules; Chemistry, Pharmaceutical; Colitis; Colon; Disease Models, Animal; Gastrointestinal Agents; Gelatin; Gene Expression Regulation; HCT116 Cells; Humans; Inflammation Mediators; Male; Mice; Rats, Sprague-Dawley; RAW 264.7 Cells; Signal Transduction; Stilbenes; Technology, Pharmaceutical; Transfection; Trinitrobenzenesulfonic Acid | 2015 |
Resveratrol potentiates the effect of dexamethasone in rat model of acute lung inflammation.
Cigarette smoking is considered to be the main etiological factor in Chronic Obstructive Pulmonary Disease (COPD). In this study, we explored the potential of resveratrol, to reinstate the effectiveness of dexamethasone when administered as an adjunct in acute lung inflammation induced by cigarette smoke (CS) and lipopolysaccharide (LPS). CS and LPS instillation produced acute inflammatory response exhibited by increased leukocyte count, particularly neutrophils, total protein, MMP-9 activity, cytokines like TNF-α, IL-8 in bronchoalveolar lavage fluid (BALF) as well as elevated myeloperoxidase activity, and lipid peroxidation in lung. These alterations were not abated by dexamethasone (2.5mg/kg & 10mg/kg) and resveratrol (50mg/kg) alone. Combination of resveratrol (50mg/kg) and dexamethasone (2.5mg/kg) significantly reduced all inflammatory parameters. The protective effect of the combination was abolished when co-administered with sirtinol, a SIRT1 inhibitor. The results indicate that the combination therapy may serve as a potential approach for treating lung inflammatory conditions like COPD. Topics: Acute Disease; Animals; Anti-Inflammatory Agents; Dexamethasone; Disease Models, Animal; Drug Synergism; Drug Therapy, Combination; Lipopolysaccharides; Male; Pneumonia; Rats, Sprague-Dawley; Resveratrol; Smoke; Stilbenes; Tobacco Products | 2015 |
Polydatin Alleviates Small Intestine Injury during Hemorrhagic Shock as a SIRT1 Activator.
To evaluate the role of SIRT1 in small intestine damage following severe hemorrhagic shock and to investigate whether polydatin (PD) can activate SIRT1 in shock treatment.. The severe hemorrhagic shock model was reproduced in Sprague Dawley rats.. Two hours after drug administration, half of the rats were assessed for survival time evaluation and the remainder were used for small intestinal tissue sample collection.. Bleeding and swelling appeared in the small intestine with epithelial apoptosis and gut barrier disturbance during hemorrhagic shock. SIRT1 activity and PGC-1α protein expression of the small intestine were decreased, which led to an increase in acetylated SOD2 and decreases in the expression and activity of SOD2, resulting in severe oxidative stress. The decreased SIRT1 activity and expression were partially restored in the PD administration group, which showed reduced intestine injury and longer survival time. Notably, the effect of PD was abolished after the addition of Ex527, a selective inhibitor of SIRT1.. The results collectively suggest a role for the SIRT1-PGC-1α-SOD2 axis in small intestine injury following severe hemorrhagic shock and that PD is an effective SIRT1 activator for the shock treatment. Topics: Animals; Apoptosis; Disease Models, Animal; Drugs, Chinese Herbal; Female; Glucosides; Humans; Intestine, Small; Oxidative Stress; Rats; Rats, Sprague-Dawley; Shock, Hemorrhagic; Stilbenes | 2015 |
Tumor necrosis targeted radiotherapy of non-small cell lung cancer using radioiodinated protohypericin in a mouse model.
Lung cancer is the leading cause of cancer-related death. About 80% of lung cancers are non-small cell lung cancers (NSCLC). Radiotherapy is widely used in treatment of NSCLC. However, the outcome of NSCLC remains unsatisfactory. In this study, a vascular disrupting agent (VDA) combretastatin-A4-phosphate (CA4P) was used to provide massive necrosis targets. (131)I labeled necrosis-avid agent protohypericin ((131)I-prohy) was explored for therapy of NSCLC using tumor necrosis targeted radiotherapy (TNTR). Gamma counting, autoradiography, fluorescence microscopy and histopathology were used for biodistribution analysis. Magnetic resonance imaging (MRI) was used to monitor tumor volume, ratios of necrosis and tumor doubling time (DT). The biodistribution data revealed 131I-prohy was delivered efficiently to tumors. Tracer uptake peaked at 24 h in necrotic tumor of (131)I-prohy with and without combined CA4P (3.87 ± 0.38 and 2.96 ± 0.34%ID/g). (131)I-prohy + CA4P enhanced the uptake of (131)I-prohy in necrotic tumor compared to (131)I-prohy alone. The TNTR combined with CA4P prolonged survival of tumor bearing mice relative to vehicle control group, CA4P control group and (131)I-prohy control group with median survival of 35, 20, 22 and 27 days respectively. In conclusion, TNTR appeared to be effective for the treatment of NSCLC. Topics: Animals; Antineoplastic Agents; Autoradiography; Carcinoma, Non-Small-Cell Lung; Cell Line, Tumor; Cell Proliferation; Chemoradiotherapy; Disease Models, Animal; Humans; Iodine Radioisotopes; Lung Neoplasms; Magnetic Resonance Imaging; Male; Mice, Inbred BALB C; Mice, Nude; Necrosis; Perylene; Radiography; Radiopharmaceuticals; Stilbenes; Tissue Distribution; Tumor Burden; Xenograft Model Antitumor Assays | 2015 |
Protective effect of polyphenols in an inflammatory process associated with experimental pulmonary fibrosis in mice.
Polyphenols have been described to have a wide range of biological activities, and many reports, published during recent years, have highlighted the beneficial effects of phenolic compounds, illustrating their promising role as therapeutic tools in several acute and chronic disorders. The purpose of study was to evaluate, in an already-assessed model of lung injury caused by bleomycin (BLM) administration, the role of resveratrol and quercetin, as well as to explore the potential beneficial properties of a mango leaf extract, rich in mangiferin, and a grape leaf extract, rich in dihydroquercetin (DHQ), on the same model. Mice were subjected to intra-tracheal administration of BLM, and polyphenols were administered by oral route immediately after BLM instillation and daily for 7 d. Treatment with resveratrol, mangiferin, quercetin and DHQ inhibited oedema formation and body weight loss, as well as ameliorated polymorphonuclear infiltration into the lung tissue and reduced the number of inflammatory cells in bronchoalveolar lavage fluid. Moreover, polyphenols suppressed inducible nitric oxide synthase expression, and prevented oxidative and nitroxidative lung injury, as shown by the reduced nitrotyrosine and poly (ADP-ribose) polymerase levels. The degree of apoptosis, as evaluated by Bid and Bcl-2 balance, was also suppressed after polyphenol treatment. Finally, these natural products down-regulated cyclo-oxygenase-2, extracellular signal-regulated kinase phosphorylated expression and reduced NF-κBp65 translocation. Our findings confirmed the anti-inflammatory effects of resveratrol and quercetin in BLM-induced lung damage, and highlight, for the first time, the protective properties of exogenous administration of mangiferin and DHQ on experimental pulmonary fibrosis. Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Antioxidants; Apoptosis; Dietary Supplements; Disease Models, Animal; Lung; Male; Mangifera; Mice, Inbred ICR; Neutrophil Infiltration; Plant Extracts; Plant Leaves; Polyphenols; Pulmonary Fibrosis; Quercetin; Random Allocation; Respiratory Mucosa; Resveratrol; Stilbenes; Vitis; Xanthones | 2015 |
Resveratrol decreases the insoluble Aβ1-42 level in hippocampus and protects the integrity of the blood-brain barrier in AD rats.
Our previous studies demonstrated resveratrol (Res) administration protected Alzheimer's disease (AD) rats from developing memory decline by anti-oxidation. Beta-amyloid peptide 1-42 (Aβ1-42) is not only the primary protein component of senile plaques in AD but also is believed to play an important part in its pathology. Increasing evidence has shown neuroinflammation and the integrity of the blood-brain barrier (BBB) is closely related to the pathogenesis of AD. The aim of the present study is to further elucidate whether Res prevents AD rats from inflammation induced by Aβ1-42 and protects the integrity of BBB. Rats were divided into six groups: (1) ovariectomized (OVX)+D-galactose (D-gal) 100mg/kg group (OVX+D-gal); (2-4) OVX, D-gal and Res 20, 40 and 80 mg/kg treated groups; and (5) OVX, D-gal and estradiol valerate 0.8 mg/kg treated group (ET); (6) Sham control group. 12 weeks later, Res 40 and 80 mg/kg treatment exhibited a significant decrease of Aβ1-42 compared with the OVX+D-gal rats of hippocampus, which was accompanied by decreased expression of advanced glycation endproducts (RAGE), matrix metalloprotein-9 (MMP-9), nuclear factor kappaB (NF-κB) and the increase of Claudin-5. These results suggest that Res is useful not only in protecting OVX+D-gal rats from neuroinflammation mediated by Aβ1-42 by decreasing the expression of NF-κB but also the integrity of BBB by increasing Claudin-5 and decreasing RAGE, MMP-9. Topics: Alzheimer Disease; Amyloid beta-Peptides; Animals; Anti-Inflammatory Agents, Non-Steroidal; Antioxidants; Blood-Brain Barrier; Claudin-5; Disease Models, Animal; Female; Galactose; Glycation End Products, Advanced; Hippocampus; Matrix Metalloproteinase 9; Ovariectomy; Peptide Fragments; Rats; Rats, Wistar; Resveratrol; Stilbenes; Transcription Factor RelA | 2015 |
[Effects of resveratrol on hippocampal astrocytes and expression of TNF-α in Alzheimer's disease model rate].
To explore the effects of resveratrol on astrocyte and TNF-α in hippocampus of Alzheimer's disease (AD) model rats.. Sixty rats were randomly divided into six groups: sham control group, model group, resveratrol 20, 40, 80 mg/kg group, and estradiol valerate group (0.8 mg/kg). The model of AD was established by ovariectomy combined injection of D-galactose (100 mg/kg). Twelve weeks later, the heart perfusion in vivo was done and then the hippocampus was fixed. Additionally, the changes of hippocampal astrocytes and TNF-α expression were detected by immunohistochemistry.. The levels of glial fibrillary acidic protein (GFAP) and TNF-α in the model group were significantly higher than those of the sham control group (P < 0.01). No marked difference in the production of GFAP was observed between the resveratrol 20 mg/kg group and the model group (P > 0.05). However, the resveratrol 40, 80 mg/kg and estradiol valerate treated groups showed a decrease in the expression of GFAP compared with the model group (P < 0.01). Moreover, with the increasing of resveratrol concentration, the expression of GFAP decreased gradually. The levels of TNF-α decreased markedly in Res 20, 40, 80 mg/kg and estradiol valerate group compared with the model group (P < 0.01).. These results suggest that the activation of astrocytes and the secretion of TNF-α can be inhibited by Res in AD rats. Topics: Alzheimer Disease; Animals; Astrocytes; Disease Models, Animal; Estradiol; Female; Galactose; Glial Fibrillary Acidic Protein; Hippocampus; Humans; Ovariectomy; Rats; Resveratrol; Stilbenes; Tumor Necrosis Factor-alpha | 2015 |
Resveratrol prevents insulin resistance caused by short-term elevation of free fatty acids in vivo.
Elevated levels of plasma free fatty acids (FFA), which are commonly found in obesity, induce insulin resistance. FFA activate protein kinases including the proinflammatory IκBα kinase β (IKKβ), leading to serine phosphorylation of insulin receptor substrate 1 (IRS-1) and impaired insulin signaling. To test whether resveratrol, a polyphenol found in red wine, prevents FFA-induced insulin resistance, we used a hyperinsulinemic-euglycemic clamp with a tracer to assess hepatic and peripheral insulin sensitivity in overnight-fasted Wistar rats infused for 7 h with saline, Intralipid plus 20 U·mL(-1) heparin (IH; triglyceride emulsion that elevates FFA levels in vivo; 5.5 μL·min(-1)) with or without resveratrol (3 mg·kg(-1)·h(-1)), or resveratrol alone. Infusion of IH significantly decreased glucose infusion rate (GIR; P < 0.05) and peripheral glucose utilization (P < 0.05) and increased endogenous glucose production (EGP; P < 0.05) during the clamp compared with saline infusion. Resveratrol co-infusion, however, completely prevented the effects induced by IH infusion: it prevented the decreases in GIR (P < 0.05 vs. IH), peripheral glucose utilization (P < 0.05 vs. IH), and insulin-induced suppression of EGP (P < 0.05 vs. IH). Resveratrol alone had no effect. Furthermore, IH infusion increased serine (307) phosphorylation of IRS-1 in soleus muscle (∼30-fold, P < 0.001), decreased total IRS-1 levels, and decreased IκBα content, consistent with activation of IKKβ. Importantly, all of these effects were abolished by resveratrol (P < 0.05 vs. IH). These results suggest that resveratrol prevents FFA-induced hepatic and peripheral insulin resistance and, therefore, may help mitigate the health consequences of obesity. Topics: Animals; Biomarkers; Blood Glucose; Disease Models, Animal; Dyslipidemias; Emulsions; Fatty Acids, Nonesterified; Female; Glucose Clamp Technique; I-kappa B Kinase; I-kappa B Proteins; Insulin; Insulin Receptor Substrate Proteins; Insulin Resistance; Liver; Muscle, Skeletal; NF-KappaB Inhibitor alpha; Phospholipids; Phosphorylation; Rats, Wistar; Resveratrol; Serine; Soybean Oil; Stilbenes; Time Factors; Up-Regulation | 2015 |
Resveratrol pretreatment protects rat hearts from ischemia/reperfusion injury partly via a NALP3 inflammasome pathway.
Inflammatory responses are key players in myocardial ischemia/reperfusion (I/R) injury. Our previous studies showed that resveratrol alleviated I/R injury in myocardial I/R animal models, but whether the NALP3 inflammasome pathway contributes to the mechanisms remains to be elucidated. In this study, we explored the modulation effect of resveratrol on myocardial I/R-induced inflammatory responses in rats. Myocardial I/R rat animal models were induced by occlusion of the left anterior descending coronary arteries (LADs) for 30 min, followed by 2 h of reperfusion. Resveratrol was administered in different doses (2.5, 5, and 10 mg/kg) at the same time as the onset of reperfusion. The serum concentrations of the trinitrotoluene (TnT) and MB isoenzyme creatine kinase (CK-MB) were detected using an automatic biochemical analyzer. Myocardial ultrastructure and morphology were observed with an electron microscope and a light microscope. Myocardial ischemia and infarct sizes were evaluated using Evans blue and tetrazolium chloride (TTC) staining. The NALP3, Caspase1, interleukin 1β (IL-1β) and interleukin 18 (IL-18) mRNA levels were evaluated using RT-PCR. The NALP3 and Caspase1 protein expression levels were detected by western blotting. The IL-1β and IL-18 content in peripheral blood was measured by enzyme-linked immunosorbent assay (ELISA). The myocardial structure in myocardial ischemia reperfusion injury (MI/RI) rats was extensively damaged. After preconditioning with different concentrations of resveratrol (2.5, 5 and 10 mg/kg), the pathology and morphology were significantly improved in a dose-dependent manner. Our results showed that resveratrol treatment significantly reduced the infarct volume and myocardial fibrosis, resulting in myocardial cells that lined up in a more orderly fashion and dose-dependent decreases in TnT and CK-MB levels in the serum of the I/R rats. Resveratrol also significantly modulated mRNA and protein levels by down-regulating NALP3 and Caspase1 expression and IL-1β and IL-18 activation. These results suggest that the NALP3 inflammasome is activated during the myocardial I/R injury process and that the secretion of the inflammatory cytokines IL-1β and IL-18 mediates the cascade inflammatory response. Resveratrol may play an important role in protecting the myocardium against I/R injury in rats by inhibiting the expression and activation of the NALP3 inflammatory body. Therefore, the attenuation of the inflammatory response may be Topics: Animals; Antioxidants; Blotting, Western; Carrier Proteins; Disease Models, Animal; Enzyme-Linked Immunosorbent Assay; Heart; Inflammasomes; Male; Microscopy, Electron, Transmission; Myocardial Reperfusion Injury; Myocardium; NLR Family, Pyrin Domain-Containing 3 Protein; Rats; Rats, Sprague-Dawley; Resveratrol; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Stilbenes | 2015 |
Protective effects of 2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucoside in the MPTP-induced mouse model of Parkinson's disease: Involvement of reactive oxygen species-mediated JNK, P38 and mitochondrial pathways.
Parkinson's disease (PD) is characterized by the selective death of dopaminergic neurons in the substantia nigra pars compacta. Oxidative stress-induced neuron loss is thought to play a crucial role in the pathogenesis of PD. Previous work from our group suggests that 2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucoside (TSG), an active component extracted from a traditional Chinese herb, Polygonum multiflorum thunb, can attenuate 1-methyl-4-phenyl pyridium-induced apoptosis in the neuronal cell line PC12, by inhibiting reactive oxygen species generation and modulating c-Jun N-terminal kinases (JNK) activation. Here, we investigated the protective effects of TSG against 1-methyl-4-phenyl-1,2,3,6-tetrahydropypridine (MPTP)-induced loss of tyrosine hydroxylase positive cells in mice and the underlying mechanisms. The results showed that MPTP-induced loss of tyrosine hydroxylase positive cells and reactive oxygen species generation were prevented by TSG in a dose-dependent manner. The reactive oxygen species scavenger N-acetylcysteine could also mitigate reactive oxygen species generation. Moreover, JNK and P38 were activated by MPTP, but extracellular signal-regulated protein kinases phosphorylation did not change after MPTP treatment. TSG at different doses blocked the activation of JNK and P38. The protective effect of TSG was also associated with downregulation of the bax/bcl-2 ratio, reversed the release of cytochrome c and smac, and inhibited the activation of caspase-3, -6, and -9 induced by MPTP. In conclusion, our studies demonstrated that the protective effects of TSG in the MPTP-induced mouse model of PD are involved, at least in part, in controlling reactive oxygen species-mediated JNK, P38, and mitochondrial pathways. Topics: Animals; Apoptosis Regulatory Proteins; Behavior, Animal; Disease Models, Animal; Dopamine; Dopaminergic Neurons; Dose-Response Relationship, Drug; Extracellular Signal-Regulated MAP Kinases; Glucosides; JNK Mitogen-Activated Protein Kinases; Male; MAP Kinase Signaling System; Mice; Mitochondria; Neuroprotective Agents; Parkinsonian Disorders; Phosphorylation; Reactive Oxygen Species; Stilbenes; Tyrosine 3-Monooxygenase | 2015 |
Polydatin Inhibits Mitochondrial Dysfunction in the Renal Tubular Epithelial Cells of a Rat Model of Sepsis-Induced Acute Kidney Injury.
Mitochondrial injury is a major cause of sepsis-induced organ failure. Polydatin (PD), a natural polyphenol, demonstrates protective mitochondrial effects in neurons and arteriolar smooth muscle cells during severe shock. In this study, we investigated the effects of PD on renal tubular epithelial cell (RTEC) mitochondria in a rat model of sepsis-induced acute kidney injury.. Rats underwent cecal ligation and puncture (CLP) to mimic sepsis-induced acute kidney injury. Rats were randomly divided into sham, CLP + normal saline, CLP + vehicle, and CLP + PD groups. Normal saline, vehicle, and 30 mg/kg PD were administered at 6, 12, and 18 hours after CLP or sham surgery via the tail vein. Mitochondrial morphology, metabolism, and function in RTECs were then assessed. Serum cytokines, renal function, survival, and histologic changes in the kidney were also evaluated.. CLP increased lipid peroxide content, lysosomal instability, and opening of the mitochondrial permeability transition pore and caused mitochondrial swelling. Moreover, mitochondrial membrane potential (ΔΨm) was decreased and ATP levels reduced after CLP. PD inhibited all the above effects. It also inhibited the inflammatory response, improved renal function, attenuated histologic indicators of kidney damage, and prolonged survival.. PD protects RTECs against mitochondrial dysfunction and prolongs survival in a rat model of sepsis-induced acute kidney injury. These effects may partially result from reductions in interleukin-6 and oxidative stress. Topics: Acute Kidney Injury; Animals; Disease Models, Animal; Drugs, Chinese Herbal; Epithelial Cells; Glucosides; Kidney Tubules; Membrane Potential, Mitochondrial; Mitochondria; Rats; Rats, Sprague-Dawley; Sepsis; Stilbenes | 2015 |
Pretreatment with Resveratrol Prevents Neuronal Injury and Cognitive Deficits Induced by Perinatal Hypoxia-Ischemia in Rats.
Despite advances in neonatal care, hypoxic-ischemic brain injury is still a serious clinical problem, which is responsible for many cases of perinatal mortality, cerebral palsy, motor impairment and cognitive deficits. Resveratrol, a natural polyphenol with important anti-oxidant and anti-inflammatory properties, is present in grapevines, peanuts and pomegranates. The aim of the present work was to evaluate the possible neuroprotective effect of resveratrol when administered before or immediately after a hypoxic-ischemic brain event in neonatal rats by analyzing brain damage, the mitochondrial status and long-term cognitive impairment. Our results indicate that pretreatment with resveratrol protects against brain damage, reducing infarct volume, preserving myelination and minimizing the astroglial reactive response. Moreover its neuroprotective effect was found to be long lasting, as behavioral outcomes were significantly improved at adulthood. We speculate that one of the mechanisms for this neuroprotection may be related to the maintenance of the mitochondrial inner membrane integrity and potential, and to the reduction of reactive oxygen species. Curiously, none of these protective features was observed when resveratrol was administered immediately after hypoxia-ischemia. Topics: Animals; Animals, Newborn; Astrocytes; Behavior, Animal; Brain; Brain Injuries; Cognition Disorders; Disease Models, Animal; Female; Hypoxia-Ischemia, Brain; Male; Membrane Potential, Mitochondrial; Mitochondria; Myelin Basic Protein; Neuroprotective Agents; Rats; Rats, Sprague-Dawley; Reactive Oxygen Species; Resveratrol; Stilbenes | 2015 |
Resveratrol inhibits epithelial-mesenchymal transition of retinal pigment epithelium and development of proliferative vitreoretinopathy.
Proliferative vitreoretinopathy (PVR) is a serious complication of retinal detachment and ocular trauma, and its recurrence may lead to irreversible vision loss. Epithelial to mesenchymal transition (EMT) of retinal pigment epithelial (RPE) cells is a critical step in the pathogenesis of PVR, which is characterized by fibrotic membrane formation and traction retinal detachment. In this study, we investigated the potential impact of resveratrol (RESV) on EMT and the fibrotic process in cultured RPE cells and further examined the preventive effect of RESV on PVR development using a rabbit model of PVR. We found that RESV induces mesenchymal to epithelial transition (MET) and inhibits transforming growth factor-β2(TGF-β2)-induced EMT of RPE cells by deacetylating SMAD4. The effect of RESV on MET was dependent on sirtuin1 activation. RESV suppressed proliferation, migration and fibronectin synthesis induced by platelet-derived growth factor-BB or TGF-β2. In vivo, RESV inhibited the progression of experimental PVR in rabbit eyes. Histological findings showed that RESV reduced fibrotic membrane formation and decreased α-SMA expression in the epiretinal membranes. These results suggest the potential use of RESV as a therapeutic agent to prevent the development of PVR by targeting EMT of RPE. Topics: Acetylation; Animals; Biomarkers; Cell Movement; Cell Proliferation; Disease Models, Animal; Disease Progression; Epithelial Cells; Epithelial-Mesenchymal Transition; Fibronectins; Rabbits; Resveratrol; Retinal Pigment Epithelium; Sirtuin 1; Smad4 Protein; Stilbenes; Transforming Growth Factor beta2; Vitreoretinopathy, Proliferative | 2015 |
Chemopreventive effect of resveratrol and apocynin on pancreatic carcinogenesis via modulation of nuclear phosphorylated GSK3β and ERK1/2.
Despite progress in clinical cancer medicine in multiple fields, the prognosis of pancreatic cancer has remained dismal. Recently, chemopreventive strategies using phytochemicals have gained considerable attention as an alternative in the management of cancer. The present study aimed to evaluate the chemopreventive effects of resveratrol (RV) and apocynin (AC) in N-Nitrosobis(2-oxopropyl)amine-induced pancreatic carcinogenesis in hamster. RV- and AC-treated hamsters showed significant reduction in the incidence of pancreatic cancer with a decrease in Ki-67 labeling index in dysplastic lesions. RV and AC suppressed cell proliferation of human and hamster pancreatic cancer cells by inhibiting the G1 phase of the cell cycle with cyclin D1 downregulation and inactivation of AKT-GSK3β and ERK1/2 signaling. Further, decreased levels of GSK3β(Ser9) and ERK1/2 phosphorylation and cyclin D1 expression in the nuclear fraction were observed in cells treated with RV or AC. Nuclear expression of phosphorylated GSK3β(Ser9) was also decreased in dysplastic lesions and adenocarcinomas of hamsters treated with RV or AC in vivo. These results suggest that RV and AC reduce phosphorylated GSK3β(Ser9) and ERK1/2 in the nucleus, resulting in inhibition of the AKT-GSK3β and ERK1/2 signaling pathways and cell cycle arrest in vitro and in vivo. Taken together, the present study indicates that RV and AC have potential as chemopreventive agents for pancreatic cancer. Topics: Acetophenones; Adenocarcinoma; Animals; Anticarcinogenic Agents; Antioxidants; Blotting, Western; Carcinogenesis; Cell Line, Tumor; Cell Nucleus; Cell Survival; Chemoprevention; Cricetinae; Disease Models, Animal; Female; Glycogen Synthase Kinase 3; Glycogen Synthase Kinase 3 beta; Humans; Immunohistochemistry; MAP Kinase Signaling System; Mesocricetus; Pancreatic Neoplasms; Phosphorylation; Resveratrol; Stilbenes | 2015 |
Nephroprotective Effects of Polydatin against Ischemia/Reperfusion Injury: A Role for the PI3K/Akt Signal Pathway.
Oxidative stress and inflammation are involved in the pathogenesis in renal ischemia/reperfusion (I/R) injury. It has been demonstrated that polydatin processed the antioxidative, anti-inflammatory, and nephroprotective properties. However, whether it has beneficial effects and the possible mechanisms on renal I/R injury remain unclear. In our present study I/R models were simulated both in vitro and in vivo. Compared with vehicle control, the administration of polydatin significantly improved the renal function, accelerated the mitogenic response and reduced cell apoptosis in renal I/R injury models, strongly suppressed the I/R-induced upregulation of the expression of tumor necrosis factor-α, interleukin-1β, cyclooxygenase-2, inducible nitric oxide synthase, prostaglandin E-2, and nitric oxide levels, and dramatically decreased contents of malondialdehyde, but it increased the activity of superoxide dismutase, glutathione transferase, glutathione peroxidase and catalase, and the level of glutathione. Further investigation showed that polydatin upregulated the phosphorylation of Akt in kidneys of I/R injury dose-dependently. However, all beneficial effects of polydatin mentioned above were counteracted when we inhibited PI3K/Akt pathway with its specific inhibitor, wortmannin. Taken together, the present findings provide the first evidence demonstrating that PD exhibited prominent nephroprotective effects against renal I/R injury by antioxidative stress and inflammation through PI3-K/Akt-dependent molecular mechanisms. Topics: Animals; Antioxidants; Cyclooxygenase 2; Disease Models, Animal; Glucosides; Interleukin-1beta; Kidney; Male; Mice; Mice, Inbred BALB C; Nitric Oxide Synthase Type II; Oxidative Stress; Oxidoreductases; Phosphatidylinositol 3-Kinases; Protective Agents; Proto-Oncogene Proteins c-akt; Reperfusion Injury; Signal Transduction; Stilbenes; Tumor Necrosis Factor-alpha; Up-Regulation | 2015 |
Resveratrol Protects against Helicobacter pylori-Associated Gastritis by Combating Oxidative Stress.
Helicobacter pylori (H. pylori)-induced oxidative stress has been shown to play a very important role in the inflammation of the gastric mucosa and increases the risk of developing gastric cancer. Resveratrol has many biological functions and activities, including antioxidant and anti-inflammatory effect. The purpose of this study was to probe whether resveratrol inhibits H. pylori-induced gastric inflammation and to elucidate the underlying mechanisms of any effect in mice. A mouse model of H. pylori infection was established via oral inoculation with H. pylori. After one week, mice were administered resveratrol (100 mg/kg body weight/day) orally for six weeks. The mRNA and protein levels of iNOS and IL-8 were assessed using RT-PCR, Western blot and ELISA. The expression levels of IκBα and phosphorylated IκBα (which embodies the level and activation of NF-κB), Heme Oxygenase-1 (HO-1; a potent antioxidant enzyme) and nuclear factor-erythroid 2 related factor 2 (Nrf2) were determined using Western blot, and lipid peroxide (LPO) level and myeloperoxidase (MPO) activity were examined using an MPO colorimetric activity assay, thiobarbituric acid reaction, and histological-grade using HE staining of the gastric mucosa. The results showed that resveratrol improved the histological infiltration score and decreased LPO level and MPO activity in the gastric mucosa. Resveratrol down-regulated the H. pylori-induced mRNA transcription and protein expression levels of IL-8 and iNOS, suppressed H. pylori-induced phosphorylation of IκBα, and increased the levels of HO-1 and Nrf2. In conclusion, resveratrol treatment exerted significant effects against oxidative stress and inflammation in H. pylori-infected mucosa through the suppression of IL-8, iNOS, and NF-κB, and moreover through the activation of the Nrf2/HO-1 pathway. Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Antioxidants; Disease Models, Animal; Gastric Mucosa; Gastritis; Helicobacter Infections; Helicobacter pylori; Heme Oxygenase-1; Interleukin-8; Lipid Peroxides; Male; Mice; NF-kappa B; Nitric Oxide Synthase Type II; Oxidative Stress; Peroxidase; Phosphorylation; Resveratrol; Stilbenes | 2015 |
Resveratrol Suppresses Cytokine Production Linked to FcεRI-MAPK Activation in IgE-Antigen Complex-Exposed Basophilic Mast Cells and Mice.
A complicated interplay between resident mast cells and other recruited inflammatory cells contributes to the development and progression of allergic inflammation entailing the promotion of T helper 2 (Th2) cytokine responses. The current study examined whether resveratrol suppressed the production of inflammatory Th2 cytokines in cultured rat basophilic leukemia RBL-2H3 cells. Cells pre-treated with resveratrol nontoxic at 1–25 μM were sensitized with anti-dinitrophenyl (anti-DNP), and subsequently stimulated by dinitrophenyl-human serum albumin (DNP–HSA) antigen. Resveratrol dose-dependently diminished the secretion of interleukin (IL)-3, IL-4, IL-13 as well as tumor necrosis factor (TNF)-α by the antigen stimulation from sensitized cells. It was found that resveratrol mitigated the phosphorylation of p38 MAPK, ERK, and JNK elevated in mast cells exposed to Fc epsilon receptor I (FcεRI)-mediated immunoglobulin E (IgE)-antigen complex. The FcεRI aggregation was highly enhanced on the surface of mast cells following the HSA stimulation, which was retarded by treatment with 1–25 μM resveratrol. The IgE-receptor engagement rapidly induced tyrosine phosphorylation of c-Src-related focal adhesion protein paxillin involved in the cytoskeleton rearrangement. The FcεRI-mediated rapid activation of c-Src and paxillin was attenuated in a dose-dependent manner. In addition, the paxillin activation entailed p38 MAPK and ERK-responsive signaling, but the JNK activation was less involved. Consistently, oral administration of resveratrol reduced the tissue level of phosphorylated paxillin in the dorsal skin of DNP–HSA-challenged mice. The other tyrosine kinase Tyk2-STAT1 signaling was activated in the dorsal epidermis of antigen-exposed mice, which was associated with allergic inflammation. These results showed that resveratrol inhibited Th2 cytokines- and paxillin-linked allergic responses dependent upon MAPK signaling. Therefore, resveratrol may possess the therapeutic potential of targeting mast cells in preventing the development of allergic inflammation. Topics: Animals; Cells, Cultured; Cytokines; Dinitrophenols; Disease Models, Animal; Dose-Response Relationship, Drug; Hypersensitivity; Immunoglobulin E; Inflammation; Male; MAP Kinase Signaling System; Mast Cells; Mice; Mice, Inbred BALB C; Molecular Targeted Therapy; Phosphorylation; Phytotherapy; Receptors, IgE; Resveratrol; Serum Albumin; Stilbenes; Th2 Cells | 2015 |
Iron-overload injury and cardiomyopathy in acquired and genetic models is attenuated by resveratrol therapy.
Iron-overload cardiomyopathy is a prevalent cause of heart failure on a world-wide basis and is a major cause of mortality and morbidity in patients with secondary iron-overload and genetic hemochromatosis. We investigated the therapeutic effects of resveratrol in acquired and genetic models of iron-overload cardiomyopathy. Murine iron-overload models showed cardiac iron-overload, increased oxidative stress, altered Ca(2+) homeostasis and myocardial fibrosis resulting in heart disease. Iron-overload increased nuclear and acetylated levels of FOXO1 with corresponding inverse changes in SIRT1 levels in the heart corrected by resveratrol therapy. Resveratrol, reduced the pathological remodeling and improved cardiac function in murine models of acquired and genetic iron-overload at varying stages of iron-overload. Echocardiography and hemodynamic analysis revealed a complete normalization of iron-overload mediated diastolic and systolic dysfunction in response to resveratrol therapy. Myocardial SERCA2a levels were reduced in iron-overloaded hearts and resveratrol therapy restored SERCA2a levels and corrected altered Ca(2+) homeostasis. Iron-mediated pro-oxidant and pro-fibrotic effects in human and murine cardiomyocytes and cardiofibroblasts were suppressed by resveratrol which correlated with reduction in iron-induced myocardial oxidative stress and myocardial fibrosis. Resveratrol represents a clinically and economically feasible therapeutic intervention to reduce the global burden from iron-overload cardiomyopathy at early and chronic stages of iron-overload. Topics: Animals; Cardiomyopathies; Disease Models, Animal; Down-Regulation; Fibroblasts; Fibrosis; Forkhead Box Protein O1; Forkhead Transcription Factors; Genetic Therapy; GPI-Linked Proteins; Hemochromatosis Protein; Humans; Iron Overload; Male; Membrane Proteins; Mice, Inbred C57BL; Mice, Knockout; Models, Genetic; Myocardium; Myocytes, Cardiac; Oxidants; Oxidative Stress; Resveratrol; Sarcoplasmic Reticulum Calcium-Transporting ATPases; Signal Transduction; Sirtuin 1; Stilbenes | 2015 |
Sirtuin 1 modulation in rat model of acetaminophen-induced hepatotoxicity.
Sirtuin 1 (SIRT1) is involved in important biological processes such as energy metabolism and regulatory functions of the cell cycle, apoptosis, and inflammation. Our previous studies have shown hepatoprotective effect of polyphenolic compound resveratrol, which is also an activator of SIRT1. Therefore, the aim of our present study was to clarify the role of SIRT1 in process of hepatoprotection in animal model of drug-induced liver damage. Male Wistar rats were used for both in vivo and in vitro studies. Hepatotoxicity was induced by single dose of acetaminophen (APAP). Some rats and hepatocytes were treated by resveratrol or synthetic selective activator of sirtuin 1 (CAY10591). The degree of hepatotoxicity, the activity and expression of the SIRT1 were determined by biochemical, histological and molecular-biological assessments of gained samples (plasma, liver tissue, culture media and hepatocytes). Resveratrol and CAY attenuated APAP-induced hepatotoxicity in vivo and in vitro. Moreover, both drugs enhanced APAP-reduced SIRT1 activity. Our results show that modulation of the SIRT1 activity plays a role in hepatoprotection. Synthetic activators of SIRT1 would help in understanding the role of SIRT1 and are therefore a major boost towards the search for specific treatment of liver disease. Topics: Acetaminophen; Animals; Cell Survival; Cells, Cultured; Chemical and Drug Induced Liver Injury; Disease Models, Animal; Hepatocytes; Male; Rats; Rats, Wistar; Resveratrol; Sirtuin 1; Stilbenes | 2015 |
Resveratrol, a potential radiation sensitizer for glioma stem cells both in vitro and in vivo.
Glioblastoma is a malignant human cancer that confers a dismal prognosis. Ionizing radiation (IR) is applied as the standard treatment for malignant gliomas. However, radiotherapy remains merely palliative because of the existence of glioma stem cells (GSCs), which are regarded as highly radioresistant "seed" cells. In this study, the effect and possible mechanisms of radiotherapy in combination with resveratrol (Res) were investigated in a radioresistant GSC line, SU-2. Our results showed that Res inhibited SU-2 proliferation and enhanced radiosensitivity as indicated by clonogenic survival assay. We also observed a decrease in the expression of neural stem cell marker CD133, which indicated that treatment with Res and IR induced SU-2 cell differentiation. In addition, the combination of Res with IR significantly increased autophagy and apoptosis levels in both in vitro cells and nude mouse model. Finally, Res significantly attenuated the repair of radiation-induced DNA damage. Taken together, the present study demonstrated that the significant radiosensitization ability of Res both in vitro and in vivo was attributed to its synergistic antitumor effects, including inhibition of self-renewal and stemness, induction of autophagy, promotion of apoptosis, and prevention of DNA repair. Therefore, Res may function as a radiation sensitizer for malignant glioma treatment. Topics: AC133 Antigen; Animals; Antigens, CD; Apoptosis; Autophagy; Biomarkers, Tumor; Cell Proliferation; Cell Transformation, Neoplastic; Disease Models, Animal; DNA Damage; Glioblastoma; Glycoproteins; Humans; Male; Mice, Inbred BALB C; Mice, Nude; Neoplasm Transplantation; Peptides; Radiation Tolerance; Radiation-Sensitizing Agents; Resveratrol; Stilbenes; Tumor Cells, Cultured | 2015 |
Dual effects of resveratrol on arterial damage induced by insulin resistance in aged mice.
Aging leads to increased insulin resistance and arterial dysfunction, with oxidative stress playing an important role. This study explored the metabolic and arterial effects of a chronic treatment with resveratrol, an antioxidant polyphenol compound that has been shown to restore insulin sensitivity and decrease oxidative stress, in old mice with or without a high-protein diet renutrition care. High-protein diet tended to increase insulin resistance and atheromatous risk. Resveratrol improved insulin sensitivity in old mice fed standard diet by decreasing homeostasis model of assessment-insulin resistance and resistin levels. However, resveratrol did not improve insulin resistance status in old mice receiving the high-protein diet. In contrast, resveratrol exhibited deleterious effects by increasing inflammation state and superoxide production and diminishing aortic distensibility. In conclusion, we demonstrate that resveratrol has beneficial or deleterious effects on insulin sensitivity and arterial function, depending on nutritional status in our models. Topics: Aging; Animals; Antioxidants; Aorta; Blood Glucose; Chemokine CCL5; Chemokine CXCL1; Dietary Proteins; Disease Models, Animal; Insulin Resistance; Leptin; Male; Mice; Mice, Inbred C57BL; Mice, Inbred Strains; Nutritional Status; Oxidative Stress; Phenols; Resistin; Resveratrol; Ribonucleotide Reductases; Serum Albumin; Stilbenes; Superoxides; Tumor Necrosis Factor-alpha; Vascular Capacitance; Vascular Diseases; Vasodilation | 2014 |
Modulation of endogenous antioxidant activity by resveratrol and exercise in mouse liver is age dependent.
Aging is a multifactorial process in which oxidative damage plays an important role. Resveratrol (RSV) and exercise delay some of the damages occurring during aging and increase life span and health span. We treated mice at different ages with RSV during 6 months and trained them during the last 6 weeks to determine if RSV and exercise induce changes in endogenous antioxidant activities in liver and if their effects depend on the age of the animal at the beginning of the intervention. Aging was accompanied by the increase in oxidative damage in liver especially affecting the glutathione-dependent system. Both RSV and exercise reversed the effect of aging and maintained high activities of glutathione, glutathione peroxidase, and glutathione transferase activities in old animals.. quinone acceptor oxidoreductase activity was also increased. Modulation of antioxidant activities was not completely accompanied by changes at the protein level. Whereas glutathione peroxidase 1 protein increased in parallel to the higher activity in old animals,. quinone acceptor oxidoreductase protein decreased by RSV although the activity was enhanced. Our results indicate that RSV and exercise revert the effect of aging in liver of old animals maintaining higher antioxidant activities and decreasing oxidative damage. Short-term interventions are enough to produce beneficial effects of RSV or exercise at later ages. Topics: Aging; Animals; Antioxidants; Disease Models, Animal; Liver; Male; Mice; Mice, Inbred C57BL; Oxidation-Reduction; Physical Conditioning, Animal; Resveratrol; Stilbenes | 2014 |
Friend or foe? Effect of oral resveratrol on cisplatin ototoxicity.
Our objectives were to study effects of orally administered resveratrol (RV) against cisplatin (CDDP) ototoxicity in different doses and to investigate ultrastructural changes in the cochlea and brainstem.. In vivo study using an animal model.. Thirty-two male Wistar albino rats were divided into six groups. Baseline distortion product otoacoustic emissions (DPOAEs) and auditory brainstem response (ABR) measurements were made. In groups I, II, and III, only saline, RV, and CDDP were given, respectively. Group IV, V, and VI animals were administered 10 mg/kg/day, 1 mg/kg/day, and 0.1 mg/kg/day of RV for 10 days, respectively, before 16 mg/kg CDDP injections were administered on day 11. All animals were sacrificed after repeated DPOAEs and ABR measurements were made on day 14. Cochleas of animals were investigated with transmission electron microscopy. Apoptosis were investigated with caspase-3 activity and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) method in the brainstem.. In groups IV and V, DPOAEs and ABR findings revealed that oral administration of RV 10 mg/kg/day and 1 mg/kg/day doses before CDDP injection enhanced ototoxicity. In group VI, electomicroscopy revealed better ultrastructural findings than in the cisplatin group; however, these changes were not reflected in the audiological findings accordingly.. Our results implied that there were noticeable differences between different oral RV doses used for cisplatin ototoxicity. Especially in higher doses, RV was observed to enhance cisplatin ototoxicity. Topics: Administration, Oral; Animals; Antineoplastic Agents; Antioxidants; Biopsy, Needle; Caspase 3; Cisplatin; Disease Models, Animal; Dose-Response Relationship, Drug; Evoked Potentials, Auditory, Brain Stem; Hair Cells, Auditory; Hearing Loss, Sensorineural; Immunohistochemistry; In Situ Nick-End Labeling; Male; Microscopy, Electron, Transmission; Otoacoustic Emissions, Spontaneous; Random Allocation; Rats; Rats, Wistar; Reference Values; Resveratrol; Stilbenes; Treatment Outcome | 2014 |
Protective effect of resveratrol against endotoxemia-induced lung injury involves the reduction of oxidative/nitrative stress.
Resveratrol, a natural plant polyphenol, has received increasing attention because its varied bioactivities, including the inhibition of tumorigenesis, lipid modification and calorie-restriction. We aimed to investigate the effect of resveratrol on oxidative/nitrative stress in endotoxemia-associated acute lung injury.. Mice were injected with lipopolysaccharide (LPS, 5 mg/kg, ip). Resveratrol at a dose of 0.3 mg/kg was administered alone or immediately before injection of LPS. Twenty four hours later, lung tissues were collected for histopathologic examination, and determination of malondialdehyde (MDA), H2O2, reduced/oxidized glutathione (GSH/GSSG) ratio, total antioxidant capacity (T-AOC), superoxide dismutase (SOD) activity, catalase (CAT) activity, inducible nitric oxide synthase (iNOS) expression, nitric oxide (NO) and peroxynitrite production.. Resveratrol treatment improves histopathological changes in the lung during endotoxemia. Increased oxidative stress in endotoxemic lung was reversed by resveratrol treatment, as evidenced by the decreases of pro-oxidant biomarker (MDA and H2O2), and the increases of anti-oxidant biomarkers (GSH/GSSG ratio, T-AOC, CAT and SOD activity). Treatment with resveratrol inhibited endotoxemia-induced iNOS expression and NO production. Moreover, peroxynitrite formation in endotoxemic lung was significantly attenuated after resveratrol treatment.. Resveratrol exerts protective effects against acute endotoxemia-associated lung injury. These beneficial effects may be due to both the anti-oxidant and anti-nitrative properties of resveratrol. These findings support the potential for resveratrol as a possible pharmacological agent to reduce acute lung injury resulting from oxidative/nitrative damage. Topics: Acute Lung Injury; Animals; Antioxidants; Disease Models, Animal; Endotoxemia; Lipopolysaccharides; Male; Mice; Mice, Inbred ICR; Nitric Oxide; Nitric Oxide Synthase Type II; Oxidative Stress; Peroxynitrous Acid; Resveratrol; Stilbenes; Superoxide Dismutase | 2014 |
Resveratrol modulates autophagy and NF-κB activity in a murine model for treating non-alcoholic fatty liver disease.
In this study, we aimed to investigate the therapeutic effects and involved mechanisms of resveratrol on an established non-alcoholic fatty liver disease (NAFLD) murine model. Wild-type and autophagic mediator ULK1 heterozygous knockout mice were induced to have NAFLD by high-fat diet for 8weeks. After that, resveratrol treatment was applied with the high-fat diet feeding for another 4weeks. Typical features of NAFLD, including histological changes, fibrosis, insulin resistance, oxidative status, and inflammation were characterized. After-treatment with resveratrol showed ameliorative effects on all measured features of NAFLD, from histology, insulin resistance, glucose tolerance to oxidative stress and inflammation. resveratrol treatment also reduced the activity of nuclear factor-κB (NF-κB) through the restoration of its inhibitor IκBα. Partial inhibition of ULK1 expression impaired the ameliorative effects of resveratrol on hepatic histology, fibrosis, oxidative status, inflammation, and NF-κB activity. In conclusion, resveratrol improved NAFLD-caused hepatic injury partially through regulating autophagic and IκBα-NF-κB pathways. Topics: Animals; Autophagy; Diet, High-Fat; Disease Models, Animal; DNA Primers; Fatty Liver; Inflammation; Insulin Resistance; Male; Mice; Mice, Inbred C57BL; NF-kappa B; Oxidative Stress; Polymerase Chain Reaction; Resveratrol; Stilbenes | 2014 |
Resveratrol induces hepatic mitochondrial biogenesis through the sequential activation of nitric oxide and carbon monoxide production.
Nitric oxide (NO) can induce mitochondrial biogenesis in cultured cells, through increased guanosine 3',5'-monophosphate (cGMP), and activation of peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α). We sought to determine the role of NO, heme oxygenase-1 (HO-1), and its reaction product (carbon monoxide [CO]) in the induction of mitochondrial biogenesis by the natural antioxidant resveratrol.. S-nitroso-N-acetylpenicillamine (SNAP), an NO donor, induced mitochondrial biogenesis in HepG2 hepatoma cells, and in vivo, through stimulation of PGC-1α. NO-induced mitochondrial biogenesis required cGMP, and was mimicked by the cGMP analogue (8-bromoguanosine 3',5'-cyclic monophosphate [8-Br-cGMP]). Activation of mitochondrial biogenesis by SNAP required HO-1, as it could be reversed by genetic interference of HO-1; and by treatment with the HO inhibitor tin-protoporphyrin-IX (SnPP) in vitro and in vivo. Cobalt protoporphyrin (CoPP)-IX, an HO-1 inducing agent, stimulated mitochondrial biogenesis in HepG2 cells, which could be reversed by the CO scavenger hemoglobin. Application of CO, using the CO-releasing molecule-3 (CORM-3), stimulated mitochondrial biogenesis in HepG2 cells, in a cGMP-dependent manner. Both CoPP and CORM-3-induced mitochondrial biogenesis required NF-E2-related factor-2 (Nrf2) activation and phosphorylation of Akt. The natural antioxidant resveratrol induced mitochondrial biogenesis in HepG2 cells, in a manner dependent on NO biosynthesis, cGMP synthesis, Nrf2-dependent HO-1 activation, and endogenous CO production. Furthermore, resveratrol preserved mitochondrial biogenesis during lipopolysaccharides-induced hepatic inflammation in vivo.. The complex interplay between endogenous NO and CO production may underlie the mechanism by which natural antioxidants induce mitochondrial biogenesis. Strategies aimed at improving mitochondrial biogenesis may be used as therapeutics for the treatment of diseases involving mitochondrial dysfunction. Topics: Animals; Antioxidants; Carbon Monoxide; Disease Models, Animal; Hep G2 Cells; Humans; Injections, Intraperitoneal; Lipopolysaccharides; Male; Mice; Mice, Inbred C57BL; Mitochondria, Liver; Nitric Oxide; Resveratrol; Sepsis; Stilbenes; Tumor Cells, Cultured | 2014 |
Impact of partial volume effect correction on cerebral β-amyloid imaging in APP-Swe mice using [(18)F]-florbetaben PET.
We previously investigated the progression of β-amyloid deposition in brain of mice over-expressing amyloid-precursor protein (APP-Swe), a model of Alzheimer's disease (AD), in a longitudinal PET study with the novel β-amyloid tracer [(18)F]-florbetaben. There were certain discrepancies between PET and autoradiographic findings, which seemed to arise from partial volume effects (PVE). Since this phenomenon can lead to bias, most especially in the quantitation of brain microPET studies of mice, we aimed in the present study to investigate the magnitude of PVE on [(18)F]-florbetaben quantitation in murine brain, and to establish and validate a useful correction method (PVEC). Phantom studies with solutions of known radioactivity concentration were performed to measure the full-width-at-half-maximum (FWHM) resolution of the Siemens Inveon DPET and to validate a volume-of-interest (VOI)-based PVEC algorithm. Several VOI-brain-masks were applied to perform in vivo PVEC on [(18)F]-florbetaben data from C57BL/6(N=6) mice, while uncorrected and PVE-corrected data were cross-validated with gamma counting and autoradiography. Next, PVEC was performed on longitudinal PET data set consisting of 43 PET scans in APP-Swe (13-20months) and age-matched wild-type (WT) mice using the previously defined masks. VOI-based cortex-to-cerebellum ratios (SUVR) were compared for uncorrected and PVE-corrected results. Brains from a subset of transgenic mice were ultimately examined by autoradiography ex vivo and histochemistry in vitro as gold standard assessments, and compared to VOI-based PET results. The phantom study indicated a FWHM of 1.72mm. Applying a VOI-brain-mask including extracerebral regions gave robust PVEC, with increased precision of the SUVR results. Cortical SUVR increased with age in APP-Swe mice compared to baseline measurements (16months: +5.5%, p<0.005; 20months: +15.5%, p<0.05) with uncorrected data, and to a substantially greater extent with PVEC (16months: +12.2% p<0.005; 20months: +36.4% p<0.05). WT animals showed no binding changes, irrespective of PVEC. Relative to autoradiographic results, the error [%] for uncorrected cortical SUVR was 18.9% for native PET data, and declined to 4.8% upon PVEC, in high correlation with histochemistry results. We calculate that PVEC increases by 10% statistical power for detecting altered [(18)F]-florbetaben uptake in aging APP-Swe mice in planned studies of disease modifying treatments on amyloidogenesis. Topics: Algorithms; Alzheimer Disease; Amyloid beta-Peptides; Amyloid beta-Protein Precursor; Aniline Compounds; Animals; Autoradiography; Brain; Disease Models, Animal; Fluorine Radioisotopes; Humans; Image Processing, Computer-Assisted; Mice; Mice, Inbred C57BL; Mice, Transgenic; Phantoms, Imaging; Positron-Emission Tomography; Radiopharmaceuticals; Stilbenes | 2014 |
Long-term resveratrol treatment prevents ovariectomy-induced osteopenia in rats without hyperplastic effects on the uterus.
Resveratrol (Res), a polyphenol that is abundant in many medicinal plants and is a selective oestrogen receptor modulator, exhibits multiple biological activities. In the present study, we determined whether Res prevents oestrogen deficiency-induced osteopenia and whether Res administration decreases pathological changes in the endometrium and lumen of the uterus compared with oestradiol replacement therapy (ERT). A total of sixty 3-4-month-old female Wistar rats were randomly divided into a sham-operated group (Sham) and five ovariectomy (OVX) subgroups, i.e. OVX rats as a control group (OVX); OVX rats receiving oestradiol valerate (ERT, 0·8 mg/kg); and OVX rats receiving Res 20, 40 and 80 mg/kg. Daily oral administration was initiated at week 2 after OVX for 12 weeks. A dose-response difference was observed in the effects of Res on bone mineral density (BMD) and trabecular microarchitecture. Only at the highest dose, bone loss was almost equivalent to that observed in the ERT group. The dose-response effects of Res on the biochemical parameters (alkaline phosphatase, IL-6, TNF-α and transforming growth factor-β1 concentrations in the serum as well as urinary Ca and P excretion) and the expressions of receptor activator of nuclear factor κB ligand (RANKL) and the RANKL:osteoprotegerin protein ratio in the femur were also observed. Furthermore, the thickening of the endometrium and the infiltration of lymphocytes were prevented in all the three Res-treated groups compared with the ERT group. In conclusion, Res treatment not only improves BMD and trabecular microarchitecture but also does not affect the uterus and Res might be a potential remedy for the treatment of postmenopausal osteoporosis. Topics: Animals; Antioxidants; Biomarkers; Bone Density; Bone Density Conservation Agents; Dietary Supplements; Disease Models, Animal; Endometrial Hyperplasia; Endometrium; Estrogen Replacement Therapy; Female; Femur; Humans; Osteoporosis, Postmenopausal; Osteoprotegerin; Phytoestrogens; Random Allocation; RANK Ligand; Rats; Rats, Wistar; Resveratrol; Stilbenes; Time Factors | 2014 |
Characterization of a novel multifunctional resveratrol derivative for the treatment of atrial fibrillation.
Atrial fibrillation (AF) is the most common cardiac arrhythmia and is associated with an increased risk for stroke, heart failure and cardiovascular-related mortality. Candidate targets for anti-AF drugs include a potassium channel K(v)1.5, and the ionic currents I(KACh) and late I(Na), along with increased oxidative stress and activation of NFAT-mediated gene transcription. As pharmacological management of AF is currently suboptimal, we have designed and characterized a multifunctional small molecule, compound 1 (C1), to target these ion channels and pathways.. We made whole-cell patch-clamp recordings of recombinant ion channels, human atrial I(Kur), rat atrial I(KACh), cellular recordings of contractility and calcium transient measurements in tsA201 cells, human atrial samples and rat myocytes. We also used a model of inducible AF in dogs.. C1 inhibited human peak and late K(v)1.5 currents, frequency-dependently, with IC₅₀ of 0.36 and 0.11 μmol·L(-1) respectively. C1 inhibited I(KACh)(IC₅₀ of 1.9 μmol·L(-1)) and the Na(v)1.5 sodium channel current (IC₅₀s of 3 and 1 μmol·L(-1) for peak and late components respectively). C1 (1 μmol·L(-1)) significantly delayed contractile and calcium dysfunction in rat ventricular myocytes treated with 3 nmol·L(-1) sea anemone toxin (ATX-II). C1 weakly inhibited the hERG channel and maintained antioxidant and NFAT-inhibitory properties comparable to the parent molecule, resveratrol. In a model of inducible AF in conscious dogs, C1 (1 mg·kg(-1)) reduced the average and total AF duration.. C1 behaved as a promising multifunctional small molecule targeting a number of key pathways involved in AF. Topics: Action Potentials; Adult; Aged; Animals; Animals, Newborn; Anti-Arrhythmia Agents; Antioxidants; Atrial Fibrillation; Disease Models, Animal; Dogs; Dose-Response Relationship, Drug; ERG1 Potassium Channel; Ether-A-Go-Go Potassium Channels; Excitation Contraction Coupling; G Protein-Coupled Inwardly-Rectifying Potassium Channels; HEK293 Cells; Humans; Kv1.5 Potassium Channel; Male; Middle Aged; Myocardial Contraction; Myocytes, Cardiac; NAV1.5 Voltage-Gated Sodium Channel; NFATC Transcription Factors; Potassium Channel Blockers; Rats; Rats, Sprague-Dawley; Resveratrol; Sodium Channel Blockers; Stilbenes; Transfection | 2014 |
Activation of sirtuin 1 attenuates cerebral ventricular streptozotocin-induced tau hyperphosphorylation and cognitive injuries in rat hippocampi.
Patients with diabetes in the aging population are at high risk of Alzheimer's disease (AD), and reduction of sirtuin 1 (SIRT1) activity occurs simultaneously with the accumulation of hyperphosphorylated tau in the AD-affected brain. It is not clear, however, whether SIRT1 is a suitable molecular target for the treatment of AD. Here, we employed a rat model of brain insulin resistance with intracerebroventricular injection of streptozotocin (ICV-STZ; 3 mg/kg, twice with an interval of 48 h). The ICV-STZ-treated rats were administrated with resveratrol (RSV; SIRT1-specific activator) or a vehicle via intraperitoneal injection for 8 weeks (30 mg/kg, once per day). In ICV-STZ-treated rats, the levels of phosphorylated tau and phosphorylated extracellular signal-regulated kinases 1 and 2 (ERK1/2) at the hippocampi were increased significantly, whereas SIRT1 activity was decreased without change of its expression level. The capacity of spatial memory was also significantly lower in ICV-STZ-treated rats compared with age-matched control. RSV, a specific activator of SIRT1, which reversed the ICV-STZ-induced decrease in SIRT1 activity, increases in ERK1/2 phosphorylation, tau phosphorylation, and impairment of cognitive capability in rats. In conclusion, SIRT1 protects hippocampus neurons from tau hyperphosphorylation and prevents cognitive impairment induced by ICV-STZ brain insulin resistance with decreased hippocampus ERK1/2 activity. Topics: Aging; Animals; Antioxidants; Blotting, Western; Cerebral Ventricles; Cognition; Cognition Disorders; Disease Models, Animal; Fluorometry; Hippocampus; Injections, Intraperitoneal; Male; MAP Kinase Signaling System; Phosphorylation; Rabbits; Rats; Rats, Sprague-Dawley; Resveratrol; Sirtuin 1; Stilbenes; Streptozocin; tau Proteins; Vasodilator Agents | 2014 |
Resveratrol prevents impaired cognition induced by chronic unpredictable mild stress in rats.
Depression is one of the most common neuropsychiatric disorders and has been associated with impaired cognition, as well as causing neuroendocrine systems and brain proteins alterations. Resveratrol is a natural polyphenol enriched in polygonum cuspidatum and has diverse biological activities, including potent antidepressant-like effects. The aim of this study was to determine whether resveratrol administration influences chronic unpredictable mild stress (CUMS)-induced cognitive deficits and explores underlying mechanisms. The results showed that CUMS (5weeks) was effective in producing cognitive deficits in rats as indicated by Morris water maze and novel object recognition task. Additionally, CUMS exposure significantly elevated serum corticosterone levels and decreased BDNF levels in the prefrontal cortex (PFC) and hippocampus, accompanied by decreased phosphorylation of extracellular signal-regulated kinase (pERK) and cAMP response element-binding protein (pCREB). Chronic administration of resveratrol (80mg/kg, i.p., 5weeks) significantly prevented all these CUMS-induced behavioral and biochemical alterations. In conclusion, our study shows that resveratrol may be an effective therapeutic agent for cognitive disturbances as was seen within the stress model and its neuroprotective effect was mediated in part by normalizing serum corticosterone levels, up-regulating of the BDNF, pCREB and pERK levels. Topics: Animals; Brain-Derived Neurotrophic Factor; Cognition Disorders; Corticosterone; Cyclic AMP Response Element-Binding Protein; Disease Models, Animal; Extracellular Signal-Regulated MAP Kinases; Hippocampus; Male; Maze Learning; Neuroprotective Agents; Phosphorylation; Prefrontal Cortex; Rats; Recognition, Psychology; Resveratrol; Stilbenes; Stress, Psychological | 2014 |
Resveratrol delays Wallerian degeneration in a NAD(+) and DBC1 dependent manner.
Axonal degeneration is a central process in the pathogenesis of several neurodegenerative diseases. Understanding the molecular mechanisms that are involved in axonal degeneration is crucial to developing new therapies against diseases involving neuronal damage. Resveratrol is a putative SIRT1 activator that has been shown to delay neurodegenerative diseases, including Amyotrophic Lateral Sclerosis, Alzheimer, and Huntington's disease. However, the effect of resveratrol on axonal degeneration is still controversial. Using an in vitro model of Wallerian degeneration based on cultures of explants of the dorsal root ganglia (DRG), we showed that resveratrol produces a delay in axonal degeneration. Furthermore, the effect of resveratrol on Wallerian degeneration was lost when SIRT1 was pharmacologically inhibited. Interestingly, we found that knocking out Deleted in Breast Cancer-1 (DBC1), an endogenous SIRT1 inhibitor, restores the neuroprotective effect of resveratrol. However, resveratrol did not have an additive protective effect in DBC1 knockout-derived DRGs, suggesting that resveratrol and DBC1 are working through the same signaling pathway. We found biochemical evidence suggesting that resveratrol protects against Wallerian degeneration by promoting the dissociation of SIRT1 and DBC1 in cultured ganglia. Finally, we demonstrated that resveratrol can delay degeneration of crushed nerves in vivo. We propose that resveratrol protects against Wallerian degeneration by activating SIRT1 through dissociation from its inhibitor DBC1. Topics: Analysis of Variance; Animals; Animals, Newborn; Antioxidants; Cells, Cultured; Disease Models, Animal; Ganglia, Spinal; Humans; In Vitro Techniques; Mice; NAD; Neurofilament Proteins; Neurons; Resveratrol; RNA-Binding Proteins; Sciatic Nerve; Sirtuin 1; Stilbenes; Time Factors; Transfection; Wallerian Degeneration | 2014 |
Resveratrol regulates autophagy signaling in chronically ischemic myocardium.
Autophagy is a cellular process by which damaged components are removed. Although autophagy can result in cell death, when optimally regulated, it might be cardioprotective. Resveratrol is a naturally occurring polyphenol also believed to be cardioprotective. Using a clinically relevant swine model of metabolic syndrome, we investigated the effects of resveratrol on autophagy in the chronically ischemic myocardium.. Yorkshire swine were fed a regular diet (n = 7), a high cholesterol diet (n = 7), or a high cholesterol diet with supplemental resveratrol (n = 6). After 4 weeks, an ameroid constrictor was surgically placed on the left circumflex artery to induce chronic myocardial ischemia. The diets were continued another 7 weeks, and then the ischemic and nonischemic myocardium were harvested for protein analysis.. In the ischemic myocardium, a high cholesterol diet partly attenuated the autophagy, as determined by an increase in phosphorylated mammalian target of rapamycin (p-mTOR) and a decrease in p70 S6 kinase (P70S6K), lysosome-associated membrane protein (LAMP)-2, and autophagy-related gene 12-5 conjugate (ATG 12-5; P < .05). The addition of resveratrol blunted many of these changes, because the p-mTOR, P70S6K, and LAMP-2 levels were not significantly altered from those of the pigs fed a regular diet. Other autophagy markers were increased with a high cholesterol diet, including light chain 3A-II and beclin 1 (P < .05). In the nonischemic myocardium, beclin 1 was decreased in the high cholesterol-fed pigs (P < .05); otherwise no significant changes in protein expression were noted among the 3 groups.. In the chronically ischemic myocardium, resveratrol partly reversed the effects of a high cholesterol diet on autophagy. This might be a mechanism by which resveratrol exerts its cardioprotective effects. Topics: Animals; Apoptosis Regulatory Proteins; Autophagy; Blotting, Western; Cholesterol, Dietary; Diet, High-Fat; Disease Models, Animal; Lysosomal-Associated Membrane Protein 2; Male; Microtubule-Associated Proteins; Myocardial Ischemia; Myocardium; Phosphorylation; Resveratrol; Ribosomal Protein S6 Kinases, 70-kDa; Signal Transduction; Stilbenes; Swine; Swine, Miniature; Time Factors; TOR Serine-Threonine Kinases | 2014 |
Resveratrol attenuates early brain injury after subarachnoid hemorrhage through inhibition of NF-κB-dependent inflammatory/MMP-9 pathway.
Topics: Analysis of Variance; Animals; Antioxidants; Brain Injuries; Disease Models, Animal; Matrix Metalloproteinase 9; Neoplasm Proteins; Neurologic Examination; NF-kappa B; Nucleocytoplasmic Transport Proteins; Rats; Rats, Sprague-Dawley; Resveratrol; Stilbenes; Subarachnoid Hemorrhage | 2014 |
Desoxyrhapontigenin, a potent anti-inflammatory phytochemical, inhibits LPS-induced inflammatory responses via suppressing NF-κB and MAPK pathways in RAW 264.7 cells.
This study investigates the anti-inflammatory effects of a stilbene compound, desoxyrhapontigenin, which was isolated from Rheum undulatum. To determine the anti-inflammatory effects of this compound, lipopolysaccharide (LPS)-induced RAW 264.7 macrophages were treated with different concentrations of six stilbene derivatives. The results indicated that compared with other stilbene compounds, desoxyrhapontigenin (at 10, 30 and 50μM concentrations) significantly inhibited nitric oxide (NO) production, nuclear factor kappa B (NF-κB) activation, the protein expression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expression. Therefore, the anti-inflammatory mechanism of desoxyrhapontigenin was investigated in detail. The results of this investigation demonstrated that desoxyrhapontigenin suppressed not only LPS-stimulated pro-inflammatory cytokine secretions, including the secretions of tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6), but also PGE2 release. As assayed by electrophoretic mobility shift assays (EMSAs), desoxyrhapontigenin also produced the dose-dependent inhibition of the LPS-induced activation of NF-κB and AP-1. Moreover, desoxyrhapontigenin inhibited the protein expression of myeloid differentiation primary response gene 88 (MyD88), IκB kinase (IKK) phosphorylation and the degradation of IκBα. Activations of p-JNK1 and p-Akt were also significantly inhibited, and phosphorylation of p38 and ERK was down-regulated. A further study revealed that desoxyrhapontigenin (5 and 25mg/kg, i.p.) reduced paw swelling in carrageenan-induced acute inflammation model in vivo. On the whole, these results indicate that desoxyrhapontigenin showed anti-inflammatory properties by the inhibition of iNOS and COX-2 expression via the down-regulation of the MAPK signaling pathways and the inhibition of NF-κB and Akt activation. Topics: Animals; Anti-Inflammatory Agents; Carrageenan; Cell Line; Cyclooxygenase 2; Cytokines; Disease Models, Animal; Edema; Gene Expression Regulation; Inflammation Mediators; Lipopolysaccharides; Macrophages; Male; MAP Kinase Signaling System; Mice; Mice, Inbred ICR; NF-kappa B; Nitric Oxide Synthase Type II; Rheum; Rhizome; Stilbenes; Transcription Factor AP-1 | 2014 |
Comparison of natural estrogens and synthetic derivative on genioglossus function and estrogen receptors expression in rats with chronic intermittent hypoxia.
The pathogenesis of obstructive sleep apnea--hypopnea syndrome (OSAHS) is summarized as the narrow anatomic structure of upper airway (UA) and the defective function of UA dilator muscles. Up to now, there have been no specific treatments for the UA dilator muscle deficiency. We previously found that some estrogen-like compounds exert protective effects on genioglossus, but this protection tends to be less satisfactory. A novel phytoestrogen derivative was synthesized in recent years and was verified to have some cytoprotective activity. This study was designed to compare the effects of natural estrogens and the synthetic resveratrol dimer on genioglossus contraction and expression of estrogen receptors (ERs) under chronic intermittent hypoxia (CIH) condition. Genioglossus myoblasts of rat were isolated and cultured in a culture medium with different agents (estradiol, genistein, resveratrol, and resveratrol dimer, respectively) under hypoxia condition, and ERs expressions were detected. In vivo study, 48 ovariectomized female rats were randomized into six groups. After CIH exposure and agents injection, rats were tested for genioglossus contractile properties and further analysis of ERs expression. Estradiol up-regulated ERα level and exerted the best protective effect of fatigue resistance. Genistein, resveratrol and resveratrol dimer primarily up-regulated the expression of ERβ. Resveratrol dimer exhibited better protection of fatigue resistance than genistein and resveratrol, and expressed higher binding affinity for ERβ than for ERα. Besides estrogenic effects, there may be some other mechanisms for the fatigue resistance improvement contributed by phytoestrogens and their derivatives. Topics: Animals; Cells, Cultured; Disease Models, Animal; Estradiol; Estradiol Congeners; Estrogen Receptor alpha; Estrogen Receptor beta; Estrogens; Female; Genistein; Hypoxia; Indenes; Muscle Contraction; Muscle Fatigue; Muscle, Skeletal; Myoblasts, Skeletal; Rats; Rats, Sprague-Dawley; Resorcinols; Resveratrol; Sleep Apnea, Obstructive; Stilbenes; Tongue | 2014 |
Piceatannol facilitates conduction block and ventricular fibrillation induction in ischemia-reperfused rabbit hearts with pacing-induced heart failure.
Piceatannol, a hydroxystilbene natural product, has been reported to exert antiarrhythmic action via INa inhibition and slow INa inactivation in ischemia-reperfused (IR) rat hearts. The present study aimed to clarify the proarrhythmic property of piceatannol during regional IR injury in failing rabbit hearts.. Heart failure (HF) was induced by rapid right ventricular pacing for 4 weeks. The IR model was created by coronary artery ligation for 30 min, followed by reperfusion for 15 min in vivo. Simultaneous voltage and intracellular Ca(2+) (Cai) optical mapping was then performed in isolated Langendorff-perfused hearts (n=11 in each HF and control group). Action potential duration (APD) restitution, arrhythmogenic alternans and VF inducibility were evaluated by a dynamic pacing protocol. Conduction velocity was measured along lines across the IR and non-IR zones during pacing. Piceatannol (10 μM) was administered after baseline studies.. In the HF group, piceatannol decreased conduction velocity, induced rate-dependent regional inhomogeneity of conduction delay and wavelength shortening, slowed Cai decay, and facilitated arrhythmogenic alternans instead of APD prolongation to increase VF inducibility. In the control group, the proarrhythmic effects of piceatannol on APD restitution, arrhythmogenic alternans and conduction delay were offset by its antiarrhythmic effects (APD and wavelength prolongation), resulting in a neutral effect on VF inducibility.. Piceatannol (10 μM) is proarrhythmic in failing rabbit hearts with regional IR injury. The increased VF inducibility by piceatannol in HF suggests that its undesirable effects are more pronounced than its benefits in failing hearts. Topics: Animals; Calcium; Disease Models, Animal; Electrophysiologic Techniques, Cardiac; Heart Block; Heart Conduction System; Heart Failure; Myocardial Reperfusion Injury; Perfusion; Protein-Tyrosine Kinases; Rabbits; Stilbenes; Ventricular Fibrillation | 2014 |
Resveratrol restores sirtuin 1 (SIRT1) activity and pyruvate dehydrogenase kinase 1 (PDK1) expression after hemorrhagic injury in a rat model.
Severe hemorrhage leads to decreased blood flow to tissues resulting in decreased oxygen and nutrient availability affecting mitochondrial function. A mitoscriptome profiling study demonstrated alteration in several genes related to mitochondria, consistent with the mitochondrial functional decline observed after trauma hemorrhage (T-H). Our experiments led to the identification of sirtuin 1 (SIRT1) as a potential target in T-H. Administration of resveratrol (a naturally occurring polyphenol and activator of SIRT1) after T-H improved left ventricular function and tissue ATP levels. Our hypothesis was that mitochondrial function after T-H depends on SIRT1 activity. In this study, we evaluated the activity of SIRT1, a mitochondrial functional modulator, and the mitochondrial-glycolytic balance after T-H. We determined the changes in protein levels of pyruvate dehydrogenase kinase (PDK)-1 and nuclear c-Myc, peroxisome proliferator-activated receptor-γ coactivator (PGC)-1α and NF-E2-related factor (NRF)2 after T-H and after treatment with resveratrol or a combination of sirtinol (a SIRT1 inhibitor) and resveratrol. We have also tested the activity of mitochondrial complex 1. SIRT1 enzyme activity was significantly decreased after T-H, whereas resveratrol treatment restored the activity. We found elevated PDK1 and c-Myc levels and decreased PGC-1α, NRF2 and mitochondrial complex I activity after T-H. The reduced SIRT1 activity after T-H may be related to declining mitochondrial function, since resveratrol was able to reinstate SIRT1 activity and mitochondrial function. The elevated level of PDK1 (an inhibitor of pyruvate dehydrogenase complex) after T-H indicates a possible shift in cellular energetics from mitochondria to glycolysis. In conclusion, SIRT1 modulation alters left ventricular function after T-H through regulation of cellular energetics. Topics: Animals; Disease Models, Animal; Gene Expression Regulation; Hemorrhage; Male; Mitochondria; Platelet Aggregation Inhibitors; Protein Serine-Threonine Kinases; Pyruvate Dehydrogenase Acetyl-Transferring Kinase; Rats; Rats, Sprague-Dawley; Resveratrol; Sirtuin 1; Stilbenes | 2014 |
Optical and SPION-enhanced MR imaging shows that trans-stilbene inhibitors of NF-κB concomitantly lower Alzheimer's disease plaque formation and microglial activation in AβPP/PS-1 transgenic mouse brain.
Alzheimer's disease (AD) is associated with a microglia-dependent neuroinflammatory response against plaques containing the fibrous protein amyloid-β (Aβ). Activation of microglia, which closely associate with Aβ plaques, engenders the release of pro-inflammatory cytokines and the internalization of Aβ fibrils. Since the pro-inflammatory transcription factor NF-κB is one of the major regulators of Aβ-induced inflammation, we treated transgenic amyloid-β protein protein/presenilin-1 (AβPP/PS1) mice for one year with a low dose (0.01% by weight in the diet) of either of two trans-stilbene NF-κB inhibitors, resveratrol or a synthetic analog LD55. The 3D distribution of Aβ plaques was measured ex vivo in intact brains at 60 μm resolution by quantitative magnetic resonance imaging (MRI) using blood-brain barrier-permeable, anti-AβPP-conjugated superparamagentic iron oxide nanoparticles (SPIONs). The MRI measurements were confirmed by optical microscopy of thioflavin-stained brain tissue sections and indicated that supplementation with either of the two trans-stilbenes lowered Aβ plaque density in the cortex, caudoputamen, and hippocampus by 1.4 to 2-fold. The optical measurements also included the hippocampus and indicated that resveratrol and LD55 reduced average Aβ plaque density by 2.3-fold and 3.1-fold, respectively. Ex vivo measurements of the regional distribution of microglial activation by Iba-1 immunofluorescence of brain tissue sections showed that resveratrol and LD55 reduced average microglial activation by 4.2- fold and 3.5-fold, respectively. Since LD55 lacked hydroxyl groups but both resveratrol and LD55 concomitantly reduced both Aβ plaque burden and neuroinflammation to a similar extent, it appears that the antioxidant potential of resveratrol is not an important factor in plaque reduction. Topics: Age Factors; Alzheimer Disease; Amyloid beta-Protein Precursor; Animals; Brain; Disease Models, Animal; Enzyme Inhibitors; Ferric Compounds; Humans; Imaging, Three-Dimensional; Metal Nanoparticles; Mice; Mice, Transgenic; Microglia; Mutation; Neuroprotective Agents; NF-kappa B; Plaque, Amyloid; Presenilin-1; Resveratrol; Stilbenes | 2014 |
The effect of resveratrol on the expression of AdipoR1 in kidneys of diabetic nephropathy.
Adiponectin is an adipocyte derived protein that plays pivotal roles in anti-oxidation, anti-inflammatory and insulin-sensitizing properties by activating two receptors, AdipoR1 and AdipoR2. Recent studies have shown that the down-regulation of AdipoR1 is a known cause of diabetic nephropathy (DN). Resveratrol (Resv), a natural polyphenol, has been identified as a potent activator of forkhead transcription factor O1 (FoxO1) which can up-regulate the expression of AdipoR1. In the present study, we have investigated whether Resv can up-regulate the expression of AdipoR1 by activating FoxO1 that is in kidney of DN rats and mesangial cells (MCs) cultured in high glucose (HG, 30 mmol/L) medium. In vivo, we show that, in the renal cortex of diabetic rats, the expression of AdipoR1 was significantly reduced and correlated with an increase in the generation of malondialdehyde (MDA), Collagen IV and fibronectin proteins. However, administration with Resv significantly increased the expression of AdipoR1. This correlated with not only a decrease in generation of MDA, Collagen IV and fibronectin proteins levels but also more improved kidney pathological and biochemical indicators changes. In vitro, we show that HG-induced depression of FoxO1 activity was associated with the expression of Adipor1 in MCs. Treatment with Resv (20 μmol/L) caused an elevation in the activity of FoxO1 and a significantly increase in the expression of AdipoR1. Furthermore, inhibition of FoxO1 through short hairpin RNA markedly reduced the expression of Adipor1 in MCs cultured by Resv. In conclusion, Resv can significantly increase the expression of AdipoR1 by activating FoxO1 in diabetic kidney. These data also suggest that Resv may serve as a promising agent for preventing or treating DN. Topics: Animals; Body Weight; Collagen Type IV; Diabetic Nephropathies; Disease Models, Animal; Fibronectins; Forkhead Transcription Factors; Gene Expression Regulation; Glucose; Kidney; Lipid Peroxidation; Male; Mesangial Cells; Nerve Tissue Proteins; Oxidative Stress; Rats; Receptors, Adiponectin; Resveratrol; Stilbenes | 2014 |
Resveratrol improves motoneuron function and extends survival in SOD1(G93A) ALS mice.
Amyotrophic lateral sclerosis (ALS) is an adult onset neurodegenerative disease that causes progressive paralysis and death due to degeneration of motoneurons in spinal cord, brainstem and motor cortex. Nowadays, there is no effective therapy and patients die 2-5 years after diagnosis. Resveratrol (trans-3,4',5-trihydroxystilbene) is a natural polyphenol found in grapes, with promising neuroprotective effects since it induces expression and activation of several neuroprotective pathways involving Sirtuin1 and AMPK. The objective of this work was to assess the effect of resveratrol administration on SOD1(G93A) ALS mice. We determined the onset of symptoms by rotarod test and evaluated upper and lower motoneuron function using electrophysiological tests. We assessed the survival of the animals and determined the number of spinal motoneurons. Finally, we further investigated resveratrol mechanism of action by means of western blot and immunohistochemical analysis. Resveratrol treatment from 8 weeks of age significantly delayed disease onset and preserved lower and upper motoneuron function in female and male animals. Moreover, resveratrol significantly extended SOD1(G93A) mice lifespan and promoted survival of spinal motoneurons. Delayed resveratrol administration from 12 weeks of age also improved spinal motoneuron function preservation and survival. Further experiments revealed that resveratrol protective effects were associated with increased expression and activation of Sirtuin 1 and AMPK in the ventral spinal cord. Both mediators promoted normalization of the autophagic flux and, more importantly, increased mitochondrial biogenesis in the SOD1(G93A) spinal cord. Taken together, our findings suggest that resveratrol may represent a promising therapy for ALS. Topics: Amyotrophic Lateral Sclerosis; Animals; Disease Models, Animal; Female; Male; Mice; Mice, Transgenic; Microglia; Mitochondria; Motor Activity; Motor Neurons; Neuroprotective Agents; Resveratrol; Sirtuins; Stilbenes; Superoxide Dismutase; Superoxide Dismutase-1 | 2014 |
Sirtuin1 over-expression does not impact retinal vascular and neuronal degeneration in a mouse model of oxygen-induced retinopathy.
Proliferative retinopathy is a leading cause of blindness, including retinopathy of prematurity (ROP) in children and diabetic retinopathy in adults. Retinopathy is characterized by an initial phase of vessel loss, leading to tissue ischemia and hypoxia, followed by sight threatening pathologic neovascularization in the second phase. Previously we found that Sirtuin1 (Sirt1), a metabolically dependent protein deacetylase, regulates vascular regeneration in a mouse model of oxygen-induced proliferative retinopathy (OIR), as neuronal depletion of Sirt1 in retina worsens retinopathy. In this study we assessed whether over-expression of Sirtuin1 in retinal neurons and vessels achieved by crossing Sirt1 over-expressing flox mice with Nestin-Cre mice or Tie2-Cre mice, respectively, may protect against retinopathy. We found that over-expression of Sirt1 in Nestin expressing retinal neurons does not impact vaso-obliteration or pathologic neovascularization in OIR, nor does it influence neuronal degeneration in OIR. Similarly, increased expression of Sirt1 in Tie2 expressing vascular endothelial cells and monocytes/macrophages does not protect retinal vessels in OIR. In addition to the genetic approaches, dietary supplement with Sirt1 activators, resveratrol or SRT1720, were fed to wild type mice with OIR. Neither treatment showed significant vaso-protective effects in retinopathy. Together these results indicate that although endogenous Sirt1 is important as a stress-induced protector in retinopathy, over-expression of Sirt1 or treatment with small molecule activators at the examined doses do not provide additional protection against retinopathy in mice. Further studies are needed to examine in depth whether increasing levels of Sirt1 may serve as a potential therapeutic approach to treat or prevent retinopathy. Topics: Animals; Crosses, Genetic; Disease Models, Animal; Endothelial Cells; Gene Expression; Heterocyclic Compounds, 4 or More Rings; Humans; Integrases; Macrophages; Mice; Neovascularization, Pathologic; Nerve Degeneration; Nestin; Neurons; Oxygen; Receptor, TIE-2; Resveratrol; Retina; Retinal Degeneration; Sirtuin 1; Stilbenes | 2014 |
Resveratrol induces acute endothelium-dependent renal vasodilation mediated through nitric oxide and reactive oxygen species scavenging.
Resveratrol is suggested to have beneficial cardiovascular and renoprotective effects. Resveratrol increases endothelial nitric oxide synthase (eNOS) expression and nitric oxide (NO) synthesis. We hypothesized resveratrol acts as an acute renal vasodilator, mediated through increased NO production and scavenging of reactive oxygen species (ROS). In anesthetized rats, we found 5.0 mg/kg body weight (bw) of resveratrol increased renal blood flow (RBF) by 8% [from 6.98 ± 0.42 to 7.54 ± 0.17 ml·min(-1)·gram of kidney weight(-1) (gkw); n = 8; P < 0.002] and decreased renal vascular resistance (RVR) by 18% from 15.00 ± 1.65 to 12.32 ± 1.20 arbitrary resistance units (ARU; P < 0.002). To test the participation of NO, we administered 5.0 mg/kg bw resveratrol before and after 10 mg/kg bw of the NOS inhibitor N-nitro-l-arginine methyl ester (l-NAME). l-NAME reduced the increase in RBF to resveratrol by 54% (from 0.59 ± 0.05 to 0.27 ± 0.06 ml·min(-1)·gkw(-1); n = 10; P < 0.001). To test the participation of ROS, we gave 5.0 mg/kg bw resveratrol before and after 1 mg/kg bw tempol, a superoxide dismutase mimetic. Resveratrol increased RBF 7.6% (from 5.91 ± 0.32 to 6.36 ± 0.12 ml·min(-1)·gkw(-1); n = 7; P < 0.001) and decreased RVR 19% (from 18.83 ± 1.37 to 15.27 ± 1.37 ARU). Tempol blocked resveratrol-induced increase in RBF (from 0.45 ± 0.12 to 0.10 ± 0.05 ml·min(-1)·gkw(-1); n = 7; P < 0.03) and the decrease in RVR posttempol was 44% of the control response (3.56 ± 0.34 vs. 1.57 ± 0.21 ARU; n = 7; P < 0.006). We also tested the role of endothelium-derived prostanoids. Two days of 10 mg/kg bw indomethacin pretreatment did not alter basal blood pressure or RBF. Resveratrol-induced vasodilation remained unaffected. We conclude intravenous resveratrol acts as an acute renal vasodilator, partially mediated by increased NO production/NO bioavailability and superoxide scavenging but not by inducing vasodilatory cyclooxygenase products. Topics: Acute Disease; Animals; Disease Models, Animal; Kidney; Male; Nitric Oxide; Rats; Rats, Sprague-Dawley; Reactive Oxygen Species; Renal Circulation; Resveratrol; Stilbenes; Vascular Resistance; Vasodilation | 2014 |
Resveratrol attenuates hypoxic injury in a primary hepatocyte model of hemorrhagic shock and resuscitation.
Oxidative stress following hemorrhagic shock and resuscitation (HSR) is regulated, in part, by inflammatory and apoptotic mediators such as necrosis factor κB (NF-κB) and p53. Sirtuin 1 (Sirt-1) is a metabolic intermediary that regulates stress responses by suppressing NF-κB and p53 activity. Resveratrol is a naturally occurring polyphenolic antioxidant and Sirt-1 agonist. The aim of this study was to determine whether resveratrol protects hepatocytes following HSR or hypoxia.. In vivo, HSR was achieved in male rats by arterial blood withdrawal to 30 ± 2 mm Hg for 1 hour before resuscitation with or without resveratrol (Res, 30 mg/kg). Hepatic tissue was stained and scored for necrosis, interleukin 6, and Sirt-1 expression. In vitro, primary rat hepatocytes were subjected to 8 hours of hypoxia without or with Res (100 µM). Cells were analyzed immediately or after 6 hours of normoxia, for survival and markers of injury (lactate dehydrogenase assay, lipid peroxidation, and mitochondrial integrity). Cell lysates were collected for cytochrome c analysis and immunoprecipitated using antibodies against NF-κB (p65) or p53.. In vivo, animals subject to HSR exhibited increased expression of markers of hepatocyte damage compared with those sham operated, concomitant with lower Sirt-1 expression. In vitro, hypoxia followed by normoxia resulted in increased cell death, an effect that was blunted by Res. Analysis of cell and mitochondrial function demonstrated that Res inhibited the detrimental effects of hypoxia in isolated hepatocytes.. Resveratrol prevents cell death in HSR and exerts a protective effect on the mitochondria in a hepatocyte model of hypoxic injury-reoxygenation possibly via Sirt-1 modulation of p53 and NF-κB activity. Topics: Animals; Blotting, Western; Cell Death; Cell Hypoxia; Cell Survival; Disease Models, Animal; Enzyme-Linked Immunosorbent Assay; Hepatocytes; Immunohistochemistry; In Vitro Techniques; Interleukin-6; Male; Mitochondria, Liver; NF-kappa B; Oxidative Stress; Random Allocation; Rats; Rats, Sprague-Dawley; Reference Values; Resuscitation; Resveratrol; Shock, Hemorrhagic; Sirtuin 1; Stilbenes; Tumor Necrosis Factor-alpha | 2014 |
Resveratrol- and melatonin-abated ovariectomy and fructose diet-induced obesity and metabolic alterations in female rats.
This study was designed to investigate the effects of bilateral ovariectomy and fructose diet on obesity-related metabolic parameters in female rats. The potential of resveratrol, alone and in combination with melatonin, to counter ensuing obesity and precipitated metabolic disturbances was explored.. Eight-week-old female Sprague-Dawley rats were subjected to bilateral ovariectomy (OVX) or sham operation and randomly assigned to standard diet (SD) or fructose diet (FD) groups (n = 6 rats per group) as follows: Sham; OVX + FD; OVX + SD; OVX + FD + resveratrol 50 mg/kg/day PO (RESV); OVX + SD + RESV; OVX + FD + melatonin 3 mg/kg/day PO in drinking water (M); OVX + SD + M; OVX + FD + RESV + M; OVX + SD + RESV + M. All treatments were given for 7 weeks. Biochemical, dietary, and anthropometrical parameters were estimated, and abdominal fat pads and the liver were examined for histopathological alterations.. Ovariectomy caused an increase in body weight, body mass index, feed efficiency, serum glucose, cholesterol, triglycerides, and free fatty acids, which was further exacerbated by fructose diet. These parameters were significantly decreased by resveratrol, alone and in combination with melatonin. Histopathological examination revealed reduced hypertrophy of adipocytes in adipose tissue and reduced macrophage infiltration in the liver.. Resveratrol/melatonin combination effectively normalizes anthropometrical, biochemical, and histopathological parameters in ovariectomized rats with fructose diet-induced obesity and associated metabolic alterations. The combination should be explored for potential benefits in postmenopausal women. Topics: Administration, Oral; Animals; Antioxidants; Diabetes Mellitus; Diet; Disease Models, Animal; Female; Fructose; Melatonin; Obesity; Ovariectomy; Random Allocation; Rats; Rats, Sprague-Dawley; Resveratrol; Stilbenes | 2014 |
Resveratrol supplementation reduces aortic atherosclerosis and calcification and attenuates loss of aerobic capacity in a mouse model of uremia.
The polyphenolic compound resveratrol (RSV) has been studied for its protective effects on a variety of conditions, including cardiovascular disease (CVD), reduced exercise capacity, and bone disease. Individuals with chronic kidney disease suffer from a variety of these comorbid conditions, but the efficacy of RSV supplementation in this population is unknown. The objective of this study was to determine the efficacy of resveratrol feeding on factors related to CVD, aerobic capacity, and bone health in a mouse model of uremia. At 8 weeks of age, 28 female apolipoprotein E⁻/⁻ mice underwent a two-step surgical procedure to induce uremia and were randomized to one of the two treatment groups for 16 weeks: 0.04% w/w resveratrol supplemented diet (group designated as RSV) (n=12) or control diet (group designated as CON) (n=16). Cardiovascular risk was determined by analysis of aortic atherosclerotic lesion area and aortic calcium, aerobic capacity was measured by maximal oxygen consumption/maximal aerobic capacity (VO(₂max)) testing, and bone microarchitecture was assessed by microcomputed tomography. RSV animals had significantly fewer aortic atherosclerotic lesions at the site of the ascending aorta and lower aortic calcium at the branch of the coronary arteries compared with CON. Furthermore, there was a significant decline in VO(₂max) from baseline to final testing in the CON group, but VO(₂max) was preserved in the RSV group. Last, RSV had no significant effect on bone architecture. These data indicate that RSV supplementation improves vascular health and preserves aerobic capacity in a model of uremia, suggesting RSV supplementation could be examined as a therapeutic strategy for a critically ill population. Topics: Animals; Aorta; Calcinosis; Coronary Artery Disease; Dietary Supplements; Disease Models, Animal; Female; Humans; Mice; Oxygen; Resveratrol; Stilbenes; Uremia | 2014 |
Co-administration of resveratrol and lipoic acid, or their synthetic combination, enhances neuroprotection in a rat model of ischemia/reperfusion.
The present study demonstrates the benefits of combinatorial antioxidant therapy in the treatment of ischemic stroke. Male Sprague-Dawley rats were anaesthetised and the middle cerebral artery (MCA) was occluded for 30 minutes followed by 5.5 hours of reperfusion. Pretreatment with resveratrol 30 minutes prior to MCA occlusion resulted in a significant, dose-dependent decrease in infarct volume (p<0.05) compared to vehicle-treated animals. Neuroprotection was also observed when resveratrol (2 × 10(-3) mg/kg; iv) was administered within 60 minutes following the return of blood flow (reperfusion). Pretreatment with non-neuroprotective doses of resveratrol (2 × 10(-6) mg/kg) and lipoic acid (LA; 0.005 mg/kg) in combination produced significant neuroprotection as well. This neuroprotection was also observed when resveratrol and LA were administered 15 minutes following the onset of MCA occlusion. Subsequently, we synthetically combined resveratrol and LA in both a 1 ∶ 3 (UPEI-200) and 1 ∶ 1 (UPEI-201) ratio, and screened these new chemical entities in both permanent and transient ischemia models. UPEI-200 was ineffective, while UPEI-201 demonstrated significant, dose-dependent neuroprotection. These results demonstrate that combining subthreshold doses of resveratrol and LA prior to ischemia-reperfusion can provide significant neuroprotection likely resulting from concurrent effects on multiple pathways. The additional protection observed in the novel compound UPEI 201 may present opportunities for addressing ischemia-induced damage in patients presenting with transient ischemic episodes. Topics: Animals; Antioxidants; Brain Ischemia; Disease Models, Animal; Humans; Male; Rats; Rats, Sprague-Dawley; Reperfusion Injury; Resveratrol; Stilbenes; Stroke; Thioctic Acid | 2014 |
Resveratrol reverses the effects of chronic unpredictable mild stress on behavior, serum corticosterone levels and BDNF expression in rats.
Depression is one of the most common neuropsychiatric disorders and has been associated with the neuroendocrine system and alterations in specific brain proteins. Resveratrol is a natural polyphenol enriched in polygonum cuspidatum and has diverse biological activities, including potent antidepressant-like effects. The present study attempts to explore the mechanisms underlying the antidepressant-like action of resveratrol by measuring serum corticosterone levels and the content of brain derived neurotrophic factor (BDNF) in the hippocampus and amygdala of rats exposed to the chronic unpredictable mild stress (CUMS). Male Wistar rats were subjected to the CUMS protocol for a period of 5 weeks to induce depressive-like behavior. Resveratrol treatment (20, 40 and 80mg/kg/i.p. 5 weeks) significantly reversed the CUMS-induced behavioral abnormalities (reduced sucrose preference, increased immobility time and decreased locomotor activity) and the elevated serum corticosterone levels observed in stressed rats. Additionally, 5-weeks of CUMS exposure significantly decreased BDNF levels in the hippocampus and amygdala, and was accompanied by decreased phosphorylation of extracellular signal-regulated kinase (pERK) and cAMP response element-binding protein (pCREB), while resveratrol treatment normalized these levels. All of these effects of resveratrol were essentially identical to that observed with the established antidepressant, desipramine. In conclusion, our study shows that resveratrol exerted antidepressant-like effects in CUMS rats, mediated in part by normalizing serum corticosterone levels while up-regulating pERK, pCREB and BDNF levels in the hippocampus and amygdala. Topics: Animals; Antioxidants; Body Weight; Brain-Derived Neurotrophic Factor; Corticosterone; CREB-Binding Protein; Disease Models, Animal; Dose-Response Relationship, Drug; Exploratory Behavior; Food Deprivation; Food Preferences; Gene Expression Regulation; Male; Rats; Rats, Wistar; Resveratrol; Stilbenes; Stress, Psychological; Swimming; Time Factors | 2014 |
The effects of resveratrol on tissue injury, oxidative damage, and pro-inflammatory cytokines in an experimental model of acute pancreatitis.
Acute pancreatitis (AP) is an acute inflammatory condition that results from the digestion of pancreatic tissue by its own enzymes released from the acinar cells. The objective of this study was to investigate the effects of resveratrol on oxidative damage, pro-inflammatory cytokines, and tissue injury involved with AP induced in a rat model using sodium taurocholate (n = 60). There were three treatment groups with 20 rats per group. Groups I and II received 3% sodium taurocholate solution, while group III underwent the same surgical procedure yet did not receive sodium taurocholate. In addition, group II received 30 mg/kg resveratrol solution. Rats were sacrificed at 2, 6, 12, and 24 h time points following the induction of AP. Blood and pancreatic tissue samples were collected and subjected to biochemical assays, Western blot assays, and histopathologic evaluations. Resveratrol did not reduce trypsin levels and prevent tissue damage. Resveratrol prevented IκB degradation (except for 6 h) and decreased nuclear factor-κB (NF-κB), activator protein-1 (AP-1) (except for 24 h), and levels of TNF-α, IL-6 (except for 24 h), and iNOS in the pancreatic tissue at all time points (P < 0.05). Serum nitric oxide (NO) levels were reduced as well (P < 0.05). Thus, we concluded that resveratrol did not reduce trypsin levels and did not prevent tissue injury despite the reduction in oxidative damage and pro-inflammatory cytokine levels detected in this model of AP. Topics: Acute Disease; Animals; Cytokines; Disease Models, Animal; Enzyme-Linked Immunosorbent Assay; Inflammation Mediators; Male; Oxidative Stress; Pancreatitis; Rats; Rats, Wistar; Resveratrol; Stilbenes | 2014 |
Resveratrol prevents neuronal apoptosis in an early brain injury model.
Resveratrol has been shown to attenuate cerebral vasospasm after subarachnoid hemorrhage (SAH); however, no study has explored its neuroprotective effect in early brain injury (EBI) after experimental SAH. The aim of this study was to evaluate the antiapoptotic function of resveratrol in EBI and its relationship with the PI3K/Akt survival pathway.. Experimental SAH was induced in adult male rats by prechiasmatic cistern injection. Control and SAH rats were divided into six groups and treated with low (20 mg/kg) or high (60 mg/kg) concentrations of resveratrol with or without LY294002 cotreatment. Brain samples of the rats were analyzed by immunohistochemistry, immunofluorescence staining, Western blotting, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) apoptosis assays.. High-concentration but not low-concentration resveratrol treatment in SAH rats led to a significant increase in phosphorylated Akt (p-Akt) protein levels compared with SAH rats without treatment. In addition, p-Akt-positive cells mainly colocalized with NeuN-positive cells. Neuronal apoptosis in SAH rat brain was attenuated by high-concentration resveratrol treatment. The antiapoptotic effect of resveratrol in SAH rats could be partially abrogated by the PI3K/Akt signaling inhibitor LY294002.. Our results show that resveratrol has an antiapoptotic effect in EBI and that resveratrol might act through the PI3K/Akt signaling pathway. Topics: Animals; Antioxidants; Apoptosis; Brain Injuries; Disease Models, Animal; Early Diagnosis; Interneurons; Male; Phosphatidylinositol 3-Kinases; Phytotherapy; Plant Extracts; Proto-Oncogene Proteins c-akt; Random Allocation; Rats; Rats, Sprague-Dawley; Resveratrol; Stilbenes; Subarachnoid Hemorrhage | 2014 |
Resveratrol inhibits phenotypic switching of neointimal vascular smooth muscle cells after balloon injury through blockade of Notch pathway.
Phenotypic switching of vascular smooth muscle cells (VSMCs) plays an initial role in neointimal hyperplasia, the main cause of many occlusive vascular diseases. The aim of this study was to measure the effects of resveratrol (RSV) on the phenotypic transformation of VSMCs and to investigate its mechanism of action.. Cultured VSMCs isolated from rat thoracic aorta were prepared with serum starvation for 72 hours followed by RSV treatment (50-200 μmol/L) and 10% serum stimulation. Male Sprague-Dawley rats, subjected to carotid arteries injury from a balloon catheter, were exposed to intraperitoneal injection of RSV (1 mg/kg) or saline and were killed after 7 or 28 days.. Compared with cells in the serum-induced group, VSMCs in the RSV or N-[N-(3, 5-Difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT) treatment group exhibited significant decreases of proliferation and migration. The total and cytoplasmic Notch-1 levels were declined by RSV, accompanied by a significant increase in smooth muscle α-actin and smooth muscle myosin heavy chain protein. The expression of Notch-1, Jagged-1, Hey-1, and Hey-2 mRNA in balloon-injured arteries at 7 days was decreased by RSV treatment. Arteries from RSV-treated rats showed less neointimal hyperplasia, lower collagen content, and a lower rate of cells positive for proliferating cell nuclear antigen 28 days after injury, compared with saline controls.. The results indicate that RSV can attenuate phenotypic switching of VSMCs after arterial injury through inhibition of the Notch pathway. Topics: Animals; Antioxidants; Aorta, Thoracic; Carotid Arteries; Carotid Artery Injuries; Cells, Cultured; Disease Models, Animal; Hyperplasia; Male; Muscle, Smooth, Vascular; Myocytes, Smooth Muscle; Neointima; Rats; Rats, Sprague-Dawley; Receptor, Notch1; Resveratrol; Stilbenes; Time Factors | 2014 |
Desoxyrhapontigenin up-regulates Nrf2-mediated heme oxygenase-1 expression in macrophages and inflammatory lung injury.
Heme oxygenase-1 (HO-1) is an important anti-inflammatory, antioxidative and cytoprotective enzyme that is regulated by the activation of the major transcription factor, nuclear factor (erythroid-derived 2)-like 2 (Nrf2). In the present study, six stilbene derivatives isolated from Rheum undulatum L. were assessed for their antioxidative potential. In the tert-butylhydroperoxide (t-BHP)-induced RAW 264.7 macrophage cell line, desoxyrhapontigenin was the most potent component that reduced intracellular reactive oxygen species (ROS) and peroxynitrite. In response to desoxyrhapontigenin, the mRNA expression levels of antioxidant enzymes were up-regulated. An electrophoretic mobility shift assay (EMSA) confirmed that desoxyrhapontigenin promoted the DNA binding of Nrf2 and increased the expression of antioxidant proteins and enzymes regulated by Nrf2. Further investigation utilizing specific inhibitors of Akt, p38, JNK and ERK demonstrated that the phosphatidylinositol 3-kinase (PI3K)/Akt pathway mediates HO-1 expression. Moreover, the increase in Nrf2 expression mediated by treatment with desoxyrhapontigenin was reversed by Nrf2 or Akt gene knock-down. In the LPS-induced in vivo lung inflammation model, pretreatment with desoxyrhapontigenin markedly ameliorated LPS-induced lung inflammation and histological changes. Immunohistochemical analysis of Nrf2, HO-1 and p65 was conducted and confirmed that treatment with desoxyrhapontigenin induced Nrf2 and HO-1 expression but reduced p65 expression. These findings suggest that desoxyrhapontigenin may be a potential therapeutic candidate as an antioxidant or an anti-inflammatory agent. Topics: Acute Lung Injury; Animals; Disease Models, Animal; Gene Expression Regulation; Heme Oxygenase-1; Lipopolysaccharides; Macrophages, Alveolar; Male; MAP Kinase Signaling System; Membrane Proteins; Mice; Mice, Inbred ICR; NF-E2-Related Factor 2; Peroxynitrous Acid; Plant Extracts; Reactive Oxygen Species; Rheum; Stilbenes | 2014 |
The effects of resveratrol on hyperoxia-induced lung injury in neonatal rats.
Bronchopulmonary dysplasia (BPD) is a chronic lung disease that causes significant morbidity and mortality in premature infants. Inflammation and oxidative injury play an important role in the pathogenesis of BPD. Resveratrol is an antioxidant and anti-inflammatory agent. In this study, the histopathological and biochemical effects of resveratrol on a hyperoxia-induced lung injury model in newborn rats were investigated.. The experiment was performed on newborn rat pups from the 3(rd) to 13(th) postnatal day and they were randomly divided into four groups: Group 1 (air-exposed + saline, n = 10), Group 2 (air-exposed + resveratrol, n = 11), Group 3 (hyperoxia-exposed + saline, n = 6) and Group 4 (hyperoxia-exposed + resveratrol, n = 7). Resveratrol was administered (30 mg/kg/day) intraperitoneally. The histopathological effects of resveratrol on lung tissue were assessed by alveolar surface area, fibrosis, and smooth muscle actin (SMA) score, and the biochemical effects on lung tissue were assessed by glutathione (GSH), superoxide dismutase (SOD), nitric oxide (NO), tumor necrosis factor-α (TNF-α), and nuclear factor kappa B (NF-κB) levels.. The alveolar surface area, fibrosis, SMA score, and NO levels were found to be significantly higher in Group 3 compared with Group 1 (p < 0.05). In addition, it was found that resveratrol treatment significantly reduced the SMA score and the NO and TNF-α levels, and increased the GSH and SOD levels in the hyperoxia group (p < 0.05).. This experimental study showed that oxidative stress and NO contributed to the pathogenesis of hyperoxia-induced lung injury, and that resveratrol had a preventive effect on hyperoxic lung injury through its anti-inflammatory and antioxidant properties. Topics: Animals; Animals, Newborn; Anti-Inflammatory Agents, Non-Steroidal; Antioxidants; Bronchopulmonary Dysplasia; Disease Models, Animal; Humans; Hyperoxia; Infant, Newborn; Infant, Premature; Lung; Lung Injury; Rats, Wistar; Resveratrol; Stilbenes | 2014 |
Piceatannol attenuates cardiac hypertrophy in an animal model through regulation of the expression and binding of the transcription factor GATA binding factor 6.
Piceatannol is found in grapes, passion fruit, and Japanese knotweed. Piceatannol pretreatment suppresses cardiac hypertrophy induced by isoproterenol as assessed by heart weight/body weight ratio, cross-sectional area, and expression of hypertrophic markers. The anti-hypertrophic effect of piceatannol in rat neonatal cardiomyocytes is the same as that in vivo. Piceatannol inhibits lentiviral-GATA6-induced cardiomyocyte hypertrophy. Furthermore, piceatannol reduces the interaction between GATA4 and GATA6 as well as the DNA-binding activity of endogenous GATA6 in the ANP promoter. Our results suggest that piceatannol may be a novel therapeutic agent for the prevention of cardiac hypertrophy. Topics: Animals; Cardiomegaly; Cardiotonic Agents; Disease Models, Animal; GATA4 Transcription Factor; GATA6 Transcription Factor; Gene Expression; HEK293 Cells; Humans; Mice; Myocardium; Myocytes, Cardiac; Primary Cell Culture; Protein Binding; Rats; Rats, Sprague-Dawley; Stilbenes | 2014 |
Role of the TLR4 pathway in blood-spinal cord barrier dysfunction during the bimodal stage after ischemia/reperfusion injury in rats.
Spinal cord ischemia-reperfusion (I/R) involves two-phase injury, including an initial acute ischemic insult and subsequent inflammatory reperfusion injury, resulting in blood-spinal cord barrier (BSCB) dysfunction involving the TLR₄ pathway. However, the correlation between TLR₄/MyD₈₈-dependent and TLR₄/TRIF-dependent pathways in BSCB dysfunction is not fully understood. The aim of this study is to characterize inflammatory responses in spinal cord I/R and the events that define its clinical progression with delayed neurological deficits, supporting a bimodal mechanism of injury.. Rats were intrathecally pretreated with TAK-242, MyD₈₈ inhibitory peptide, or Resveratrol at a 12 h interval for 3 days before undergoing 14-minute occlusion of aortic arch. Evan's Blue (EB) extravasation and water content were detected at 6, 12, 18, 24, 36, 48, and 72 h after reperfusion. EB extravasation, water content, and NF-κB activation were increased with time after reperfusion, suggesting a bimodal distribution, as maximal increasing were detected at both 12 and 48 h after reperfusion. The changes were directly proportional to TLR₄ levels determined by Western blot. Double-labeled immunohistochemical analysis was also used to detect the relationship between different cell types of BSCB with TLR₄. Furthermore, NF-κB and IL-1β were analyzed at 12 and 48 h to identify the correlation between MyD₈₈-dependent and TRIF-dependent pathways.. Rats without functional TLR₄ and MyD₈₈ attenuated BSCB leakage and inflammatory responses at 12 h, suggesting the ischemic event was largely mediated by MyD₈₈-dependent pathway. Similar protective effects observed in rats with depleted TLR₄, MyD₈₈, and TRIF receptor at 48 h infer that the ongoing inflammation which occurred in late phase was mainly initiated by TRIF-dependent pathway and such inflammatory response could be further amplified by MyD₈₈-dependent pathway. Additionally, microglia appeared to play a major role in early phase of inflammation after I/R injury, while in late responding phase both microglia and astrocytes were necessary.. These findings indicate the relevance of TLR4/MyD₈₈-dependent and TLR₄/TRIF-dependent pathways in bimodal phases of inflammatory responses after I/R injury, corresponding with the clinical progression of injury and delayed onset of symptoms. The clinical usage of TLR₄ signaling inhibitors at different phases may be a therapeutic option for the prevention of delayed injury. Topics: Adaptor Proteins, Vesicular Transport; Animals; Antioxidants; Calcium-Binding Proteins; Capillary Permeability; CD13 Antigens; Disease Models, Animal; Gene Expression Regulation; Glial Fibrillary Acidic Protein; Microfilament Proteins; Myeloid Differentiation Factor 88; Peptides; Rats; Reperfusion Injury; Resveratrol; Signal Transduction; Spinal Cord; Spinal Cord Ischemia; Stilbenes; Sulfonamides; Time Factors; Toll-Like Receptor 4 | 2014 |
Resveratrol attenuates the inflammatory reaction induced by ischemia/reperfusion in the rat heart.
The role of resveratrol (Res) in inflammation induced by ischemia/reperfusion is not well understood. The aim of the present study was to investigate whether Res modulates neutrophil accumulation and tumor necrosis factor-α (TNF-α) induction in an ischemia/reperfusion-injured rat heart model. The rats were randomly exposed to sham surgery, myocardial ischemia/reperfusion (MI/R) alone, MI/R + Res, MI/R + Res + L-NG-nitroarginine methyl ester (L-NAME) and MI/R + Res + methylene blue (MB). The results demonstrated that compared with MI/R, Res reduced the myocardial infarct area, myocardial myeloperoxidase levels, serum creatinine kinase and lactate dehydrogenase levels, and serum and myocardial TNF-α production. All the effects of Res demonstrated were inhibited by L-NAME (a nitric oxide (NO) synthase inhibitor) and MB [a cyclic guanosine monophosphate (cGMP) inhibitor]. Thus, Res produces cardioprotective and anti-inflammatory effects. These effects may be associated with an increase in NO production, the inhibition of neutrophil accumulation, TNF-α induction and cGMP signaling pathways in myocardium subjected to MI/R. Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Creatine Kinase; Disease Models, Animal; Inflammation; Male; Myocardial Infarction; Myocardial Reperfusion Injury; Neutrophil Infiltration; Rats; Resveratrol; Stilbenes; Tumor Necrosis Factor-alpha | 2014 |
[Resveratrol attenuates endoplasmic reticulum stress and alveolar epithelial apoptosis in a rat model of chronic obstructive pulmonary disease].
To investigate alveolar epithelial cell apoptosis induced by endoplasmic reticulum stress in a rat model of chronic obstructive pulmonary disease (COPD) and the potential protective effect of resveratrol.. The COPD rat model was established by intratracheal instillation of lipopolysaccharide (LPS) and exposure to cigarette smoke daily. Forty-eight male Sprague-Dawley rats were randomly divided into 4 groups (n = 12 each): a normal control group, a resveratrol control group (resveratrol 25 mg × kg⁻¹ × d⁻¹ gavage), a COPD group (COPD rat model established), and a resveratrol intervention group (COPD model rats receiving resveratrol 25 mg × kg⁻¹ × d⁻¹ gavage). Spirometry was conducted and the lung pathological changes were observed. The protein expression of CCAAT/enhancer binding protein homologous protein (CHOP) and caspase-12 were detected by immunohistochemistry and Western blot, and alveolar epithelial apoptosis was analyzed by terminal-deoxynucleoitidyl transferase mediated nick end labeling (TUNEL). Statistical analysis among groups were carried out by one way analysis of variance followed by LSD-t test between 2 groups.. Significant decrease of FEV0.3/FVC [(59 ± 4)%] and dynamic lung compliance [(0.154 ± 0.013) ml/cm H₂O, 1 cm H₂O = 0.098 kPa] and increase of airway resistance [(0.651 ± 0.046) cm H₂O × ml⁻¹× s⁻¹] were found in the COPD group when compared with the normal control group [(82 ± 4)%, (0.401 ± 0.033) ml/cm H₂O, (0.404 ± 0.033) cm H₂O × ml⁻¹ × s⁻¹] (t = -14.48, 16.48, P < 0.05). The FEV0.3/FVC [(71 ± 5)%] and dynamic lung compliance [(0.302 ± 0.023) ml/cm H₂O] of the resveratrol intervention group were significantly improved when compared with those of the COPD group, and the airway resistance [(0.442 ± 0.036) cm H₂O × ml⁻¹ × s⁻¹] also decreased (t = -10.02-10.37, P < 0.05). Significant small airway inflammation and emphysema were seen in the lung tissue of COPD group, while significant improvement was observed in the resveratrol intervention group when compared with COPD group. The lung tissue immunohistochemistry integrated optical density (IOD) of CHOP and caspase-12 (9 778 ± 217, 12 009 ± 346) of the COPD group increased significantly when compared with the normal control group (960 ± 94, 1 124 ± 112) (t = -100.43, - 90.43, P < 0.05), while the IODs of the resveratrol intervention group (5 799 ± 177, 6 720 ± 173) decreased significantly when compared with the COPD group (t = 45.32, 43.93, P < 0.05). Western blot results showed that the relative quantification of CHOP (0.910 ± 0.053) and caspase-12 (1.104 ± 0.026) increased in the COPD group when compared with the normal control group (0.204 ± 0.021, 0.133 ± 0.013, t = -36.04, -115.03, P < 0.05), while the ratios of the resveratrol intervention group (0.462 ± 0.037, 0.642 ± 0.011) decreased significantly when compared with COPD group (t = 24.22, 60.59, P < 0.05). Higher apoptosis index was seen in the COPD group [(39.8 ± 1.6)%] when compared with the resveratrol intervention group [(26.3 ± 1.5)%] and the normal control group [(6.4 ± 0.6)%] (t = 20.21, -49.94, P < 0.05).. Endoplasmic reticulum stress, which induced apoptosis of alveolar epithelial cells, was observed in this COPD model. Resveratrol was shown to alleviate endoplasmic reticulum stress and attenuate alveolar epithelial apoptosis. Topics: Alveolar Epithelial Cells; Animals; Antioxidants; Apoptosis; Caspase 12; Disease Models, Animal; Endoplasmic Reticulum Stress; Lipopolysaccharides; Lung; Male; Pulmonary Disease, Chronic Obstructive; Rats; Rats, Sprague-Dawley; Resveratrol; Smoke; Stilbenes; Transcription Factor CHOP | 2014 |
Pterostilbene attenuates lipopolysaccharide-induced learning and memory impairment possibly via inhibiting microglia activation and protecting neuronal injury in mice.
The present study aims to evaluate the effects of pterostilbene on lipopolysaccharide (LPS)-induced learning and memory impairment as well as the possible changes of microglia and neurons. Firstly, learning and memory function was investigated by behavioral tests. Pterostilbene attenuated LPS-induced learning and memory impairment tested by Y-maze and Morris water maze. Secondly, immunohistochemical method was used to study the changes of microglia and neurons. The results showed that pterostilbene produced a significant decrease in the number of Iba-1 and Doublecortin (DCX) positive cells and a significant increase in neuronal nuclear antigen (NeuN)-stained area of neurons in mouse hippocampal compared to the LPS group. Finally, an in vitro study was performed to further confirm the inhibitory effect on microglia activation and protective effect on neurons exerted by pterostilbene. The results demonstrated that pterostilbene significantly inhibited microglia activation, showing the obvious decrease of LPS-induced production of NO, TNF-α and IL-6 in N9 microglial cells. In addition, the viability of SH-SY5Y cells decreased by conditioned media of LPS-activated N9 microglial cells was remarkably recovered by pterostilbene. In summary, the present study demonstrated for the first time that pterostilbene attenuated LPS-induced learning and memory impairment, which may be associated with its inhibitory effect on microglia activation and protective effect on neuronal injury. Topics: Animals; Cell Line; Cell Line, Tumor; Cell Survival; Disease Models, Animal; Dose-Response Relationship, Drug; Doublecortin Protein; Hippocampus; Humans; Learning Disabilities; Lipopolysaccharides; Maze Learning; Memory Disorders; Microglia; Neurons; Neuroprotective Agents; Nootropic Agents; Random Allocation; Stilbenes | 2014 |
Antidepressant effects of resveratrol in an animal model of depression.
Resveratrol (3,4',5-trihydroxy-trans-stilbene) is a natural non-flavonoid polyphenol antioxidant extracted from red grapes in the processing of wine. Initially it was studied for its potential as anticancer drug, and later was found to reduce cardiovascular disease. More recently resveratrol was shown to alleviate depressive-like symptoms induced by stress or other means in mice and rats. The major purpose of this study was to investigate whether resveratrol would manifest an antidepressant effect in Wistar-Kyoto (WKY) rats, a putative and non-induced animal model of depression, and whether this effect might be associated with an increase in hippocampal and frontal cortical brain-derived neurotrophic factor (BDNF), a protein implicated in chronic effects of many antidepressants. Adult male WKY rats were injected with two doses of resveratrol (10 and 40 mg/kg, i.p.) and their behavior in the open field locomotor activity (LMA), forced swim test (FST: a measure of helplessness), and sucrose preference test (SPT: a measure of anhedonia) was evaluated after a single acute injection or following 7 days of daily treatment. Both acute and chronic administration of resveratrol resulted in a dose-dependent decrease in FST. However, only chronic resveratrol resulted in dose-dependent increase in sucrose consumption. LMA was not affected by any treatment. Parallel to the observed behavioral effects the level of hippocampal, but not frontal cortical, BDNF was also dose-dependently elevated after chronic resveratrol administration. These findings indicate an antidepressant-like effect of resveratrol in an animal model of depression possibly via activation of hippocampal BDNF, and suggest therapeutic potential of resveratrol in at least a subpopulation of depressed patients. Topics: Anhedonia; Animals; Antidepressive Agents; Blotting, Western; Brain-Derived Neurotrophic Factor; Depressive Disorder; Disease Models, Animal; Dose-Response Relationship, Drug; Frontal Lobe; Hippocampus; Male; Motor Activity; Neuropsychological Tests; Rats, Inbred WKY; Resveratrol; Stilbenes; Time Factors | 2014 |
Resveratrol induces expression of the slow, oxidative phenotype in mdx mouse muscle together with enhanced activity of the SIRT1-PGC-1α axis.
Slower, more oxidative muscle fibers are more resistant to the dystrophic pathology in Duchenne muscular dystrophy (DMD) patients as well as in the preclinical mdx mouse model of DMD. Therefore, one therapeutic strategy for DMD focuses on promoting expression of the slow, oxidative myogenic program. In the current study, we explored the therapeutic potential of stimulating the slow, oxidative phenotype in mdx mice by feeding 6-wk-old animals with the natural phenol resveratrol (RSV; ~100 mg·kg(-1)·day(-1)) for 6 wk. Sirtuin 1 (SIRT1) activity and protein levels increased significantly, as well as peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) activity, in the absence of alterations in AMPK signaling. These adaptations occurred concomitant with evidence of a fast, glycolytic, to slower, more oxidative fiber type conversion, including mitochondrial biogenesis and increased expression of slower myosin heavy chain isoforms. These positive findings raised the question of whether increased exposure to RSV would result in greater therapeutic benefits. We discovered that an elevated RSV dose of ~500 mg·kg(-1)·day(-1) across a duration of 12 wk was clearly less effective at muscle remodeling in mdx mice. This treatment protocol failed to influence SIRT1 or AMPK signaling and did not result in a shift towards a slower, more oxidative phenotype. Taken together, this study demonstrates that RSV can stimulate SIRT1 and PGC-1α activation, which in turn may promote expression of the slow, oxidative myogenic program in mdx mouse muscle. The data also highlight the importance of selecting an appropriate dosage regimen of RSV to maximize its potential therapeutic effectiveness for future application in DMD patients. Topics: AMP-Activated Protein Kinases; Animals; Antioxidants; Disease Models, Animal; Glycolysis; Male; Mice; Mice, Inbred mdx; Muscle Development; Muscle Fibers, Slow-Twitch; Muscular Dystrophy, Duchenne; Oxidation-Reduction; Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha; Phenotype; Resveratrol; Signal Transduction; Sirtuin 1; Stilbenes; Transcription Factors | 2014 |
Resveratrol inhibits collagen I synthesis by suppressing IGF-1R activation in intestinal fibroblasts.
To investigate whether resveratrol (3,4,5-trihydroxy-trans-stilbene) inhibits collagen I synthesis induced by insulin growth factor-1 (IGF-1) in intestinal fibroblasts, and to explore the possible molecular mechanisms.. Male Sprague-Dawley rats were randomly divided into two groups: a control group and a 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis group. After 21 d of TNBS administration, the degree of inflammation and fibrosis in colon was measured by HE staining and Masson's trichrome staining. Western blotting was used to examine collagen I, IGF-1 and silent information regulator 1 (SIRT1) protein expression in colitis tissues. Western blotting and quantitative real-time polymerase chain reaction were used to characterize collagen I protein and col1a2 mRNA expression in mouse intestinal fibroblasts and CCD-(18)Co cells treated with IGF-1. A MEK inhibitor (U0126) was used to determine whether IGF-1-induced collagen I expression was mediated by extracellular signal-regulated kinase 1/2 (ERK1/2)-dependent mechanism. Effects of resveratrol on collagen I protein level, insulin growth factor-1 receptor (IGF-1R) and ERK1/2 phosphorylation levels were also examined after IGF-1 treatment in fibroblasts. To evaluate whether SIRT1 was necessary for the anti-fibrosis effect of resveratrol, cells were transfected with SIRT1-specific small interfering RNAs, wild-type SIRT1, and deacetylase-inactive mutant SIRT1.. Collagen I and IGF-1 expression was increased, and SIRT1 expression was decreased (0.67 ± 0.04 vs 1.05 ± 0.07, P < 0.001) in TNBS-induced colitis compared with the control group. In vitro, IGF-1 could induce collagen I expression, mainly through the ERK 1/2 signal pathway. Resveratrol reduced basal and IGF-1-induced collagen I gene and protein expression in intestinal fibroblasts. Overexpression of wild-type SIRT1, not deacetylase-inactive mutant SIRT1, decreased expression of collagen I induced by IGF-1. Moreover, silencing SIRT1 restored collagen I expression in fibroblasts challenged with resveratrol. However, disruption of SIRT1 did not influence the anti-fibrotic effects of resveratrol and IGF-1-induced collagen I expression. Further analysis revealed that resveratrol significantly decreased phosphorylation of IGF-1R and its downstream signaling molecules by inhibiting IGF-1 binding to its receptor.. Our data suggest that resveratrol effectively inhibits collagen I synthesis in IGF-1-stimulated fibroblasts, partly by inhibiting IGF-1R activation, and SIRT1 is also responsible for the process. Topics: Animals; Cell Line; Colitis; Collagen Type I; Colon; Disease Models, Animal; Down-Regulation; Extracellular Signal-Regulated MAP Kinases; Fibroblasts; Fibrosis; Insulin-Like Growth Factor I; Male; MAP Kinase Kinase Kinases; Mice; Mutation; Phosphorylation; Rats, Sprague-Dawley; Receptor, IGF Type 1; Resveratrol; RNA Interference; RNA, Messenger; Signal Transduction; Sirtuin 1; Stilbenes; Transfection; Trinitrobenzenesulfonic Acid | 2014 |
Ex vivo molecular rejuvenation improves the therapeutic activity of senescent human cardiac stem cells in a mouse model of myocardial infarction.
Cardiac stem cells (CSC) from explanted decompensated hearts (E-CSC) are, with respect to those obtained from healthy donors (D-CSC), senescent and functionally impaired. We aimed to identify alterations in signaling pathways that are associated with CSC senescence. Additionally, we investigated if pharmacological modulation of altered pathways can reduce CSC senescence in vitro and enhance their reparative ability in vivo. Measurement of secreted factors showed that E-CSC release larger amounts of proinflammatory cytokine IL1β compared with D-CSC. Using blocking antibodies, we verified that IL1β hampers the paracrine protective action of E-CSC on cardiomyocyte viability. IL1β acts intracranially inducing IKKβ signaling, a mechanism that via nuclear factor-κB upregulates the expression of IL1β itself. Moreover, E-CSC show reduced levels of AMP protein kinase (AMPK) activating phosphorylation. This latter event, together with enhanced IKKβ signaling, increases TORC1 activity, thereby impairing the autophagic flux and inhibiting the phosphorylation of Akt and cAMP response element-binding protein. The combined use of rapamycin and resveratrol enhanced AMPK, thereby restoring downstream signaling and reducing IL1β secretion. These molecular corrections reduced E-CSC senescence, re-establishing their protective activity on cardiomyocytes. Moreover ex vivo treatment with rapamycin and resveratrol improved E-CSC capacity to induce cardiac repair upon injection in the mouse infarcted heart, leading to reduced cardiomyocyte senescence and apoptosis and increased abundance of endogenous c-Kit(+) CSC in the peri-infarct area. Molecular rejuvenation of patient-derived CSC by short pharmacologic conditioning boosts their in vivo reparative abilities. This approach might prove useful for refinement of CSC-based therapies. Topics: Animals; Cellular Senescence; Disease Models, Animal; Female; Humans; Mice; Mice, SCID; Myocardial Infarction; Myocardium; Myocytes, Cardiac; Resveratrol; Signal Transduction; Sirolimus; Stem Cell Transplantation; Stilbenes | 2014 |
Protective effect of resveratrol against acute lung injury induced by lipopolysaccharide via inhibiting the myd88-dependent Toll-like receptor 4 signaling pathway.
Resveratrol, a polyphenol mainly present in grapes and red wine, demonstrated varied pharmacological activities. The protective effects of resveratrol on acute lung injury (ALI) induced by lipopolysaccharide (LPS) have remained elusive. The present study investigated whether the protective effect of resveratrol on ALI induced by LPS was via inhibiting the myeloid differentiation primary response gene (myd88)‑dependent toll‑like receptor (TLR)4 signaling pathway. Mice were pretreated with 5 or 45 mg/kg resveratrol for three days prior to bronchial perfusion with 25 mg/kg LPS. At 12 h after surgery, the ratio of the wet to the dry (w/d) lung was calculated to assess tissue edema. Histological changes of the lungs were detected using hematoxylin and eosin staining and the protein expression levels of TLR4, myd88 and nuclear factor kappa‑light‑chain‑enhancer of activated B cells (NF‑κB) were measured by western blot analysis. The concentration of interleukin (IL)‑6 and cyclooxygenase (COX)‑2 in the bronchoalveolar lavage fluid were detected by ELISA. The results showed that resveratrol can suppress the edema, inflammatory cell infiltration and alveolar structure damage of lungs in mice with ALI and decrease the lung w/d ratio. Additionally, resveratrol markedly decreased the expression of TLR4, myd88 and NF‑κB and decreased the concentration of inflammatory cytokines, including IL‑6 and COX‑2. Therefore, it can be concluded that resveratrol has a protective effect against ALI induced by LPS, at least in part by inhibiting the myd88‑dependent TLR4 signaling pathway. In conclusion, resveratrol pretreatment has a protective effect against LPS‑induced ALI in mice, which indicates that resveratrol may serve as a potential therapeutic agent for treating ALI in the clinic. Topics: Acute Lung Injury; Animals; Anti-Inflammatory Agents, Non-Steroidal; Bronchoalveolar Lavage Fluid; Cyclooxygenase 2; Disease Models, Animal; Enzyme-Linked Immunosorbent Assay; Interleukin-6; Leukocytes; Lipopolysaccharides; Mice; Mice, Inbred BALB C; Myeloid Differentiation Factor 88; NF-kappa B; Resveratrol; Signal Transduction; Stilbenes; Toll-Like Receptor 4 | 2014 |
Chronic resveratrol treatment exerts antihyperalgesic effect and corrects co-morbid depressive like behaviors in mice with mononeuropathy: involvement of serotonergic system.
Patients suffering from chronic neuropathic pain are at high risk of co-morbid depression, which burdens healthcare. This work aimed to investigate the effects of resveratrol, a phenolic monomer enriched in red wine and grapes, on pain-related and depressive-like behaviors in mice with mononeuropathy, and explored the mechanism(s). Mice received chronic constriction injury (CCI) of sciatic nerves, and sequentially developed pain-related and depressive-like behaviors, as evidenced by sensory hypersensitivity (thermal hyperalgesia in Hargreaves test and mechanical allodynia in von Frey test) and behavioral despair (prolonged immobility time in forced swim test). Chronic treatment of neuropathic mice with resveratrol (30 mg/kg, p.o., twice per day for three weeks) normalized their thermal hyperalgesia (but not mechanical allodynia) and depressive-like behaviors, and these actions were abolished by chemical depletion of central serotonin (5-HT) but potentiated by co-treatment with 5-HTP, a precursor of 5-HT. The anti-hyperalgesia and anti-depression exerted by resveratrol may be pharmacologically segregated, since intrathecal (i.t.) and intracerebroventricular (i.c.v.) injection of methysergide, a non-selective 5-HT receptor antagonist, separately abrogated the two actions. Furthermore, the antihyperalgesic action of resveratrol was preferentially counteracted by co-administration of the 5-HT7 receptor antagonist SB-258719, while the anti-depression was abrogated by 5-HT1A receptor antagonist WAY-100635. These results confirm that chronic resveratrol administration exerts curative-like effects on thermal hyperalgesia and co-morbid depressive-like behaviors in mice with mononeuropathy. Spinal and supraspinal serotonergic systems (coupled with 5-HT7 and 5-HT1A receptors, respectively) are differentially responsible for the antihyperalgesic and antidepressant-like properties of resveratrol. Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Antidepressive Agents; Brain; Comorbidity; Constriction, Pathologic; Depression; Disease Models, Animal; Hot Temperature; Hyperalgesia; Male; Mice, Inbred C57BL; Neuralgia; Receptor, Serotonin, 5-HT1A; Receptors, Serotonin; Resveratrol; Sciatic Neuropathy; Spinal Cord; Stilbenes; Touch | 2014 |
Resveratrol and pharmacological potentiation in ischemic stroke.
Topics: Animals; Brain Ischemia; Disease Models, Animal; Humans; Resveratrol; Stilbenes; Stroke; Treatment Outcome | 2014 |
Therapy for neonatal hyperoxia-induced lung injury.
Topics: Animals; Animals, Newborn; Anti-Inflammatory Agents, Non-Steroidal; Antioxidants; Bronchopulmonary Dysplasia; Disease Models, Animal; Humans; Hyperoxia; Lung Injury; Rats; Resveratrol; Stilbenes | 2014 |
Dietary supplementation with resveratrol protects against striatal dopaminergic deficits produced by in utero LPS exposure.
The purpose of this study was to determine the effect of dietary supplementation with the anti-inflammatory compound resveratrol in pregnant dams on lipopolysaccharide (LPS)-induced dopaminergic deficits in pups exposed to LPS in utero. Gravid female rats were fed with a resveratrol-enriched diet during gestational days 3-22.5 (E3-E22.5) and received an intraperitoneal (i.p.) injection of 1mg/kg LPS at E10.5. The striata were isolated from the pups at postnatal days 10 (P10) and P21. LPS-induced dopaminergic deficits were noted at P21, but not P10. These DA deficits at P21 were exhibited by a loss of DA and DA metabolite [3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA)] levels and tyrosine hydroxylase (TH) expression in the striatum. The LPS-induced loss of DA, DA metabolites, and TH expression were attenuated in the striata of pups from the dams fed with the resveratrol-supplemented diet. These data suggest that a resveratrol-supplemented diet may restore homeostasis of the striatal DA neuronal system following disruption by LPS. Topics: 3,4-Dihydroxyphenylacetic Acid; Animals; Corpus Striatum; Dietary Supplements; Disease Models, Animal; Dopamine; Dopamine Plasma Membrane Transport Proteins; Female; Homovanillic Acid; Lipopolysaccharides; Maternal Nutritional Physiological Phenomena; Neurons; Neuroprotective Agents; Pregnancy; Pregnancy Complications, Infectious; Prenatal Exposure Delayed Effects; Rats, Sprague-Dawley; Resveratrol; Stilbenes; Tyrosine 3-Monooxygenase | 2014 |
Resveratrol and arsenic trioxide act synergistically to kill tumor cells in vitro and in vivo.
Arsenic trioxide (As2O3), which used as an effective agent in the treatment of leukaemia and other solid tumors, is largely limited by its toxicity. QT prolongation, torsades de pointes and sudden heart death have been implicated in the cardiotoxicity of As2O3. The present study was designed to explore whether the combination of As2O3 and resveratrol could generate a more powerful anti-cancer effect both in vitro and in vivo.. MTT assay was performed to assess the proliferation of Hela, MCF-7 and NB4 cells. Isobolographic analysis was used to evaluate combination index values from cell viability data. The apoptosis and the cellular reactive oxygen species (ROS) level were assessed by fluorescent microscopy and flow cytometry separately in vitro. The effect of As2O3, alone and in combination with resveratrol on Hela tumor growth in an orthotopic nude mouse model was also investigated. The tumor volume and the immunohistochemical analysis of CD31, CD34 and VEGF were determined.. Resveratrol dramatically enhanced the anti-cancer effect induced by As2O3 in vitro. In addition, isobolographic analysis further demonstrated that As2O3 and resveratrol generated a synergistic action. More apoptosis and ROS generation were observed in the combination treatment group. Similar synergistic effects were found in nude mice in vivo. The combination of As2O3 and resveratrol dramatically suppressed both tumor growth and angiogenesis in nude mice.. Combining As2O3 with resveratrol would be a novel strategy to treat cancer in clinical practice. Topics: Animals; Antineoplastic Agents; Apoptosis; Arsenic Trioxide; Arsenicals; Cell Line, Tumor; Cell Proliferation; Cell Survival; Disease Models, Animal; Drug Synergism; Humans; Male; Mice; Necrosis; Neovascularization, Pathologic; Oxides; Reactive Oxygen Species; Resveratrol; Stilbenes; Tumor Burden; Xenograft Model Antitumor Assays | 2014 |
D-galactosamine/lipopolysaccharide-induced hepatotoxicity downregulates sirtuin 1 in rat liver: role of sirtuin 1 modulation in hepatoprotection.
D-Galactosamine/Lipopolysaccharide (D-GalN/LPS) is a well known model of hepatotoxicity that closely resembles acute liver failure (ALF) seen clinically. The role of sirtuin 1 in this model has not yet been documented. However, there have been a number of studies about the cytoprotective effects of resveratrol, a SIRT1 activator, in the liver. This study was aimed at elucidating the roles of SIRT1 protein expression or catalytic activity in D-GalN/LPS model of hepatotoxicity. ALF was induced in male Wistar rats by intraperitoneal injection of D-GalN and LPS. Some groups of animals were pretreated with resveratrol and/or EX-527 (SIRT1 inhibitor). The effects of these treatments were evaluated by biochemical and Western blot studies. D-GalN/LPS treatment was able to induce hepatotoxicity and significantly increase all markers of liver damage and lipid peroxidation. A dramatic decrease of SIRT1 levels in response to D-GalN/LPS treatment was also documented. Resveratrol pretreatment attenuated D-GalN/LPS-induced hepatotoxicity. EX-527 blocked the cytoprotective effects of resveratrol. However, both resveratrol and EX-527 pretreatments did not exhibit any significant effect on SIRT1 protein expression. Collectively, these results suggest that downregulation of SIRT1 expression is involved in the cytotoxic effects of D-GalN/LPS model and SIRT1 activity contributes to the cytoprotective effects of resveratrol in the liver. Topics: Animals; Antioxidants; Carbazoles; Chemical and Drug Induced Liver Injury; Cytoprotection; Disease Models, Animal; Down-Regulation; Enzyme Inhibitors; Galactosamine; Lipid Peroxidation; Lipopolysaccharides; Liver; Male; Rats, Wistar; Resveratrol; Sirtuin 1; Stilbenes | 2014 |
PET imaging of disease progression and treatment effects in the experimental autoimmune encephalomyelitis rat model.
The experimental autoimmune encephalomyelitis model is a model of multiple sclerosis that closely mimics the disease characteristics in humans. The main hallmarks of multiple sclerosis are neuroinflammation (microglia activation, monocyte invasion, and T-cell infiltration) and demyelination. PET imaging may be a useful noninvasive technique for monitoring disease progression and drug treatment efficacy in vivo.. Experimental autoimmune encephalomyelitis was induced by myelin-oligodendrocyte glycoprotein immunization in female Dark Agouti rats. Experimental autoimmune encephalomyelitis rats were imaged at baseline and at days 6, 11, 15, and 19 after immunization to monitor monocyte and microglia activation ((11)C-PK11195) and demyelination ((11)C-MeDAS) during normal disease progression and during treatment with dexamethasone.. (11)C-PK11195 PET detected activation of microglia and monocytes in the brain stem and spinal cord during disease progression. The uptake of (11)C-PK11195 was elevated in dexamethasone-treated animals that had shown mild clinical symptoms that had resolved at the time of imaging. Demyelination was not detected by (11)C-MeDAS PET, probably because of the small size of the lesions (average, 0.13 mm).. PET imaging of neuroinflammation can be used to monitor disease progression and the consequences of treatment in the experimental autoimmune encephalomyelitis rat model. PET imaging was more sensitive than clinical symptoms for detecting inflammatory changes in the central nervous system. Topics: Amides; Aniline Compounds; Animals; Disease Models, Animal; Disease Progression; Encephalomyelitis, Autoimmune, Experimental; Female; Isoquinolines; Microglia; Monocytes; Myelin Sheath; Positron-Emission Tomography; Rats; Stilbenes; Treatment Outcome | 2014 |
Necrosis targeted combinational theragnostic approach using radioiodinated Sennidin A in rodent tumor models.
Residual cancer cells and subsequent tumor relapse is an obstacle for curative cancer treatment. Tumor necrosis therapy (TNT) has recently been developed to cause residual tumor regression or destruction. Here, we exploited the avidity of the sennidin A (SA) tracer and radioiodinated SA (¹³¹I-SA) to necrotic tumors in order to further empower TNT. We showed high uptake and prolonged retention of SA in necrotic tumors and a quick clearance in other non-targeted tissues including the liver. On SPECT-CT images, tumor mass appeared persistently as a hotspot. Based on the prominent targetability of ¹³¹I-SA to the tumor necrosis, we designed a combinational theragnostic modality. The vascular disrupting agent (VDA) combretastatin A4 phosphate (CA4P) was used to cause massive tumor necrosis, which formed the target of ¹³¹I-SA that subsequently killed the residual tumor cells by cross-fire irradiation of beta particles. Consequently, ¹³¹I-SA combined with CA4P significantly inhibited tumor growth, extended tumor doubling time and prolonged mean animal survival. In conclusion, ¹³¹I-SA in combination with necrosis inducing drugs/therapies may generate synergetic tumoricidal effects on solid malignancies by means of primary debulking and secondary cleansing process. Topics: Animals; Anthracenes; Antineoplastic Combined Chemotherapy Protocols; Autoradiography; Disease Models, Animal; Iodine Radioisotopes; Magnetic Resonance Imaging; Mice; Necrosis; Neoplasms, Experimental; Positron-Emission Tomography; Rats; Rats, Sprague-Dawley; Stilbenes | 2014 |
Caenorhabditis elegans dnj-14, the orthologue of the DNAJC5 gene mutated in adult onset neuronal ceroid lipofuscinosis, provides a new platform for neuroprotective drug screening and identifies a SIR-2.1-independent action of resveratrol.
Adult onset neuronal lipofuscinosis (ANCL) is a human neurodegenerative disorder characterized by progressive neuronal dysfunction and premature death. Recently, the mutations that cause ANCL were mapped to the DNAJC5 gene, which encodes cysteine string protein alpha. We show here that mutating dnj-14, the Caenorhabditis elegans orthologue of DNAJC5, results in shortened lifespan and a small impairment of locomotion and neurotransmission. Mutant dnj-14 worms also exhibited age-dependent neurodegeneration of sensory neurons, which was preceded by severe progressive chemosensory defects. A focussed chemical screen revealed that resveratrol could ameliorate dnj-14 mutant phenotypes, an effect mimicked by the cAMP phosphodiesterase inhibitor, rolipram. In contrast to other worm neurodegeneration models, activation of the Sirtuin, SIR-2.1, was not required, as sir-2.1; dnj-14 double mutants showed full lifespan rescue by resveratrol. The Sirtuin-independent neuroprotective action of resveratrol revealed here suggests potential therapeutic applications for ANCL and possibly other human neurodegenerative diseases. Topics: Adult; Animals; Caenorhabditis elegans; Caenorhabditis elegans Proteins; Disease Models, Animal; Drug Evaluation, Preclinical; HSP40 Heat-Shock Proteins; Humans; Life Expectancy; Membrane Proteins; Neuronal Ceroid-Lipofuscinoses; Resveratrol; Sirtuins; Stilbenes | 2014 |
Neuroprotective role of trans-resveratrol in a murine model of familial Alzheimer's disease.
The amyloid-β protein precursor/presenilin 1 (AβPP/PS1) mouse model of Alzheimer's disease (AD) has provided robust neuropathological hallmarks of familial AD-like pattern. AD is a neurodegenerative process that causes severe cognitive impairment; it is characterized by the accumulation of amyloid-β (Aβ) and hyperphosphorylated tau forms and by oxidative and inflammatory processes in brain. Currently, efforts are made to understand biochemical pathways because there is no effective therapy for AD. Resveratrol is a polyphenol that induces expression and activation of several neuroprotective pathways involving Sirtuin1 and AMPK. The objective of this work was to assess the effect of oral resveratrol administration on AβPP/PS1 mice. Long-term resveratrol treatment significantly prevented memory loss as measured by the object recognition test. Moreover, resveratrol reduced the amyloid burden and increased mitochondrial complex IV protein levels in mouse brain. These protective effects of resveratrol were mainly mediated by increased activation of Sirtuin 1 and AMPK pathways in mice. However, an increase has been observed in IL1β and TNF gene expression, indicating that resveratrol promoted changes in inflammatory processes, although no changes were detected in other key actors of the oxidative stress pathway. Taken together, our findings suggest that resveratrol is able to reduce the harmful process that occurs in AβPP/PS1 mouse hippocampus, preventing memory loss. Topics: Administration, Oral; Alzheimer Disease; Amyloid beta-Protein Precursor; Animals; Brain; Disease Models, Animal; Male; Memory Disorders; Memory, Short-Term; Mice, Transgenic; Neuroprotective Agents; Plaque, Amyloid; Presenilin-1; Recognition, Psychology; Resveratrol; Stilbenes | 2014 |
Resveratrol ameliorates motor neuron degeneration and improves survival in SOD1(G93A) mouse model of amyotrophic lateral sclerosis.
Resveratrol has recently been used as a supplemental treatment for several neurological and nonneurological diseases. It is not known whether resveratrol has neuroprotective effect on amyotrophic lateral sclerosis (ALS). To assess the effect of resveratrol on the disease, we tested this agent on an ALS model of SOD1(G93A) transgenic mouse. Rotarod measurement was performed to measure the motor function of the ALS mice. Nissl staining and SMI-32 immunofluorescent staining were used to determine motor neurons survival in the spinal cord of the ALS mice. Hematoxylin-eosin (H&E), succinic dehydrogenase (SDH), and cytochrome oxidase (COX) staining were applied to pathologically analyze the skeletal muscles of the ALS mice. We found that resveratrol treatment significantly delayed the disease onset and prolonged the lifespan of the ALS mice. Furthermore, resveratrol treatment attenuated motor neuron loss, relieved muscle atrophy, and improved mitochondrial function of muscle fibers in the ALS mice. In addition, we demonstrated that resveratrol exerted these neuroprotective effects mainly through increasing the expression of Sirt1, consequently suppressing oxidative stress and downregulating p53 and its related apoptotic pathway. Collectively, our findings suggest that resveratrol might provide a promising therapeutic intervention for ALS. Topics: Amyotrophic Lateral Sclerosis; Animals; Antioxidants; Apoptosis; Behavior, Animal; Disease Models, Animal; Female; Lipid Peroxidation; Lumbar Vertebrae; Male; Mice; Mice, Transgenic; Microscopy, Fluorescence; Motor Neurons; Muscle, Skeletal; Neurodegenerative Diseases; Oxidative Stress; Resveratrol; Spinal Cord; Stilbenes; Superoxide Dismutase; Superoxide Dismutase-1; Tumor Suppressor Protein p53 | 2014 |
Resveratrol improves oxidative stress and prevents the progression of periodontitis via the activation of the Sirt1/AMPK and the Nrf2/antioxidant defense pathways in a rat periodontitis model.
Oxidative stress is a key factor regulating the systemic pathophysiological effects associated with periodontitis. Resveratrol is a phytochemical with antioxidant and anti-inflammatory properties that can reduce oxidative stress and inflammation. We hypothesized that resveratrol may prevent the progression of periodontitis and reduce systemic oxidative stress through the activation of the sirtuin 1 (Sirt1)/AMP-activated protein kinase (AMPK) and the nuclear factor E2-related factor 2 (Nrf2)/antioxidant defense pathways. Three groups of male Wistar rats (periodontitis treated with melinjo resveratrol, periodontitis without resveratrol, and control rats with no periodontitis or resveratrol treatment) were examined. A ligature was placed around the maxillary molars for 3 weeks to induce periodontitis, and the rats were then given drinking water with or without melinjo resveratrol. In rats with periodontitis, ligature placement induced alveolar bone resorption, quantified using three-dimensional images taken by micro-CT, and increased proinflammatory cytokine levels in gingival tissue. Melinjo resveratrol intake relieved alveolar bone resorption and activated the Sirt1/AMPK and the Nrf2/antioxidant defense pathways in inflamed gingival tissues. Further, melinjo resveratrol improved the systemic levels of 8-hydroxydeoxyguanosine, dityrosine, nitric oxide metabolism, nitrotyrosine, and proinflammatory cytokines. We conclude that oral administration of melinjo resveratrol may prevent the progression of ligature-induced periodontitis and improve systemic oxidative and nitrosative stress. Topics: 8-Hydroxy-2'-Deoxyguanosine; AMP-Activated Protein Kinases; Animals; Anti-Inflammatory Agents; Antioxidants; Bone Resorption; Cytokines; Deoxyguanosine; Disease Models, Animal; Gingiva; Inflammation; Male; NF-E2-Related Factor 2; Nitric Oxide; Oxidative Stress; Periodontitis; Random Allocation; Rats; Rats, Wistar; Resveratrol; Sirtuin 1; Stilbenes; Tyrosine | 2014 |
Estrogen receptor-α36 is involved in pterostilbene-induced apoptosis and anti-proliferation in in vitro and in vivo breast cancer.
Pterostilbene (trans-3,5-dimethoxy-4'-hudroxystilbene) is an antioxidant primarily found in blueberries. It also inhibits breast cancer regardless of conventional estrogen receptor (ER-α66) status by inducing both caspase-dependent and caspase-independent apoptosis. However, the pterostilbene-induced apoptosis rate in ER-α66-negative breast cancer cells is much higher than that in ER-α66-positive breast cancer cells. ER-α36, a variant of ER-α66, is widely expressed in ER-α66-negative breast cancer, and its high expression mediates the resistance of ER-α66-positive breast cancer patients to tamoxifen therapy. The aim of the present study is to determine the relationship between the antiproliferation activity of pterostilbene and ER-α36 expression in breast cancer cells. Methyl-thiazolyl-tetrazolium (MTT) assay, apoptosis analysis, and an orthotropic xenograft mouse model were used to examine the effects of pterostilbene on breast cancer cells. The expressions of ER-α36 and caspase 3, the activation of ERK and Akt were also studied through RT-PCR, western blot analysis, and immunohistochemical (IHC) staining. ER-α36 knockdown was found to desensitize ER-α66-negative breast cancer cells to pterostilbene treatment both in vitro and in vivo, and high ER-α36 expression promotes pterostilbene-induced apoptosis in breast cancer cells. Western blot analysis data indicate that MAPK/ERK and PI3K/Akt signaling in breast cancer cells with high ER-α36 expression are mediated by ER-α36, and are inhibited by pterostilbene. These results suggest that ER-α36 is a therapeutic target in ER-α36-positive breast cancer, and pterostilbene is an inhibitor that targets ER-α36 in the personalized therapy against ER-α36-positive breast cancer. Topics: Animals; Apoptosis; Breast Neoplasms; Cell Line, Tumor; Cell Proliferation; Disease Models, Animal; Drug Resistance, Neoplasm; Estrogen Receptor alpha; Female; Gene Expression; Gene Silencing; Humans; MAP Kinase Signaling System; Mice; Phosphatidylinositol 3-Kinases; Proto-Oncogene Proteins c-akt; Stilbenes; Xenograft Model Antitumor Assays | 2014 |
Therapeutic potential of resveratrol in diabetic complications: In vitro and in vivo studies.
Various mechanisms with a complex integrating paradigm have been implicated in diabetic complications. The present study was aimed to evaluate the aldose reductase (AR) and advanced glycation end products (AGEs) inhibitory activity of resveratrol (RSV) and its potential in the treatment of diabetic complications such as cataract and nephropathy.. RSV was studied for its inhibitory activity against rat lens AR (RLAR) and rat kidney AR (RKAR) in vitro along with its ability to inhibit formation of AGEs. Anticataract activity of RSV was demonstrated using sugar induced lens opacity model in isolated cattle lens. Furthermore the involvement of RSV in streptozotocin-induced diabetic nephropathy was investigated by assessing the key markers of kidney function along with the formation of AGEs. The potent AR inhibitor, fidarestat was as a standard.. RSV exhibited inhibitory activity against RLAR and RKAR with IC50 values of 4.99 μg/ml (21.9 μM) and 5.49 μg/ml (24.5 μM), respectively. It also showed a significant inhibition of AGEs formation in vitro. In sugar-induced lens opacity model, RSV displayed a significant protective effect preventing opacification and formation of polyols in cattle lens. RSV significantly improved glycaemic status and renal function in diabetic rats with a significant decrease in the formation of AGEs in the kidneys.. The results obtained in this study underline the potential of RSV as a possible therapeutic agent against long-term diabetic complications. Topics: Aldehyde Reductase; Animals; Cataract; Cattle; Diabetes Mellitus, Experimental; Diabetic Nephropathies; Disease Models, Animal; Glycation End Products, Advanced; Imidazolidines; Inhibitory Concentration 50; Kidney Function Tests; Lens, Crystalline; Male; Rats; Rats, Wistar; Resveratrol; Stilbenes; Streptozocin | 2014 |
Resveratrol protects neurons and the myocardium by reducing oxidative stress and ameliorating mitochondria damage in a cerebral ischemia rat model.
Resveratrol has shown potent antioxidant activity in ischemia models. The present study was performed to determine whether resveratrol protects against cerebral ischemia-induced neuronal and myocardial injury by interfering with mitochondrial homeostasis.. Wistar rats were pretreated with resveratrol or vehicle intraperitoneally for one week and then subjected to cerebral ischemia via middle cerebral artery occlusion (MCAO) for 24 h. Oxidation was evaluated by quantitating SOD activity and MDA levels. Apoptosis and autophagy were measured based on TUNEL staining and the expression levels of Bcl-2, Bax and LC3II. Mitochondrial changes were evaluated by transmission electron microscopy and by analyzing the mitochondrial membrane potential.. Resveratrol significantly decreased mortality, neurological deficits, infarction volume and MDA levels and increased SOD activity. Furthermore, neurocyte apoptosis was alleviated by resveratrol as indicated by the increased Bcl-2/Bax ratio, increased LC3II expression and a decreased number of TUNEL-positive neurocytes. Resveratrol preserved the mitochondria in neurons and cardiomyocytes and significantly improved cardiac function.. Resveratrol protected brain tissues against ischemic damage by interfering with mitochondrial homeostasis and inhibiting apoptosis. Furthermore, resveratrol attenuated myocardial damage, suggesting that it may be a novel therapy for cerebral ischemia diseases. Topics: Animals; Apoptosis; Brain Ischemia; Cardiotonic Agents; Disease Models, Animal; Heart; Male; Membrane Potential, Mitochondrial; Mitochondria; Myocardium; Neurons; Neuroprotective Agents; Oxidative Stress; Rats; Rats, Wistar; Resveratrol; Stilbenes | 2014 |
Resveratrol inhibits epithelial-mesenchymal transition and renal fibrosis by antagonizing the hedgehog signaling pathway.
Epithelial-to-mesenchymal transition (EMT), a biologic process in which tubular cells lose their epithelial phenotypes and acquire new characteristic features of mesenchymal properties, is increasingly recognized as an integral part of renal tissue fibrogenesis. Recent studies indicate that resveratrol, a botanical compound derived mainly from the skins of red grapes, may have anti-fibrotic effects in many tissues, but the potential molecular mechanism remains unknown. In the present study, we identified that resveratrol inhibits the induction of EMT and deposition of extracellular matrix (ECM) through antagonizing the hedgehog pathway in vitro and in vivo. In rats with unilateral ureteral obstruction (UUO), administration of resveratrol (20mg/kg/day) significantly reduced serum creatinine. Resveratrol also decreased expression of TGF-β1, and inhibited the phenotypic transition from epithelial cells to mesenchymal cells, and the deposition of ECM in UUO rats. In cultured renal tubular epithelial cells (NRK-52E), TGF-β1-induced EMT and ECM synthesis was abolished with the treatment of resveratrol. The induction of EMT was associated with the activation of the hedgehog pathway. Resveratrol treatment markedly inhibited the over-activity of the hedgehog pathway in the obstructed kidney and in TGF-β1-treated NRK-52E cells, resulted in reduction of cellular proliferation, EMT and ECM accumulation. Thus, these results suggest that resveratrol is able to inhibit EMT and fibrosis in vivo and in vitro through antagonizing the hedgehog pathway, and resveratrol may have therapeutic potential for patients with fibrotic kidney diseases. Topics: Animals; Cell Line; Disease Models, Animal; Epithelial-Mesenchymal Transition; Extracellular Matrix; Fibrosis; Hedgehog Proteins; Kidney; Kidney Tubules; Male; Rats, Sprague-Dawley; Receptors, G-Protein-Coupled; Resveratrol; Signal Transduction; Smoothened Receptor; Stilbenes; Transforming Growth Factor beta1; Ureteral Obstruction | 2014 |
Protective effect of polydatin on learning and memory impairments in neonatal rats with hypoxic‑ischemic brain injury by up‑regulating brain‑derived neurotrophic factor.
Polydatin is a key component of Polygonum cuspidatum, a herb with medical and nutritional value. The present study investigated the protective effect of polydatin against learning and memory impairment in neonatal rats with hypoxic‑ischemic brain injury (HIBI). The unilateral common carotid artery ligation method was used to generate neonatal HIBI rats. Y‑maze testing revealed that rats with HIBI exhibited memory impairment, while rats with HIBI treated with polydatin displayed enhanced long‑term learning and memory. Of note, polydatin was found to upregulate the expression of hippocampal brain‑derived neurotrophic factor (BDNF) in rats with HIBI. BDNF has a role in protecting HIBI‑induced brain tissue injury and alleviating memory impairment. These findings showed that polydatin had a protective effect against learning and memory impairment in neonatal rats with HIBI and that the protective effect may be mediated through the upregulation of BDNF. Topics: Animals; Animals, Newborn; Brain-Derived Neurotrophic Factor; Disease Models, Animal; Glucosides; Hippocampus; Hypoxia-Ischemia, Brain; Learning; Memory; Memory Disorders; Protective Agents; Rats; Rats, Sprague-Dawley; Stilbenes; Up-Regulation | 2014 |
Resveratrol prevents tumorigenesis in mouse model of Kras activated sporadic colorectal cancer by suppressing oncogenic Kras expression.
Sporadic and non-hereditary mutations account for the majority of colorectal cancers (CRC). After the loss of adenomatous polyposis coli (APC) function and activation of the β-catenin/LEF signaling pathway, activating mutations in Kras are major drivers of sporadic CRC. Preventing the outgrowth of cells that develop sporadic mutations will decrease CRC. Resveratrol, a naturally occurring polyphenolic compound has anti-inflammatory, anti-oxidant and anti-cancer activities. We used a genetically engineered mouse model for sporadic CRC where the APC locus is knocked out and Kras is activated specifically in the distal colon to determine the effects of resveratrol on preventing and treating CRC. Feeding mice a diet supplemented with 150 or 300 ppm resveratrol (105 and 210mg daily human equivalent dose, respectively) before tumors were visible by colonoscopy resulted in a 60% inhibition of tumor production. In the 40% of mice that did develop tumors Kras expression was lost in the tumors. In a therapeutic assay where tumors were allowed to develop prior to treatment, feeding tumor bearing mice with resveratrol resulted in a complete remission in 33% of the mice and a 97% decrease in tumor size in the remaining mice. Analysis of miRNA expression in non-tumoral and tumoral colonic tissue of resveratrol treated mice showed an increased expression of miR-96, a miRNA previously shown to regulate Kras translation. These data indicate that resveratrol can prevent the formation and growth of colorectal tumors by downregulating Kras expression. Topics: Adenomatous Polyposis Coli Protein; Animals; Anticarcinogenic Agents; Blotting, Western; Cell Proliferation; Cell Transformation, Neoplastic; Colorectal Neoplasms; Disease Models, Animal; Female; Humans; Immunoenzyme Techniques; Male; Mice; Mice, Knockout; Mutation; Proto-Oncogene Proteins p21(ras); Real-Time Polymerase Chain Reaction; Resveratrol; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Stilbenes; Tumor Cells, Cultured | 2014 |
Silk fibroin nanoparticles constitute a vector for controlled release of resveratrol in an experimental model of inflammatory bowel disease in rats.
We aimed to evaluate the intestinal anti-inflammatory properties of silk fibroin nanoparticles, around 100 nm in size, when loaded with the stilbene compound resveratrol, in an experimental model of rat colitis.. Nanoparticles were loaded with resveratrol by adsorption. The biological effects of the resveratrol-loaded nanoparticles were tested both in vitro, in a cell culture of RAW 264.7 cells (mouse macrophages), and in vivo, in the trinitrobenzenesulfonic acid model of rat colitis, when administered intracolonically.. The resveratrol liberation in 1× phosphate-buffered saline (PBS; pH 7.4) was characterized by fast liberation, reaching the solubility limit in 3 hours, which was maintained over a period of 80 hours. The in vitro assays revealed immunomodulatory properties exerted by these resveratrol-loaded nanoparticles since they promoted macrophage activity in basal conditions and inhibited this activity when stimulated with lipopolysaccharide. The in vivo experiments showed that after evaluation of the macroscopic symptoms, inflammatory markers, and intestinal barrier function, the fibroin nanoparticles loaded with resveratrol had a better effect than the single treatments, being similar to that produced by the glucocorticoid dexamethasone.. Silk fibroin nanoparticles constitute an attractive strategy for the controlled release of resveratrol, showing immunomodulatory properties and intestinal anti-inflammatory effects. Topics: Analysis of Variance; Animals; Anti-Inflammatory Agents; Cell Line; Colon; Cytokines; Delayed-Action Preparations; Disease Models, Animal; Inflammatory Bowel Diseases; Nanoparticles; Particle Size; Rats; Resveratrol; Silk; Stilbenes | 2014 |
The sustained delivery of resveratrol or a defined grape powder inhibits new blood vessel formation in a mouse model of choroidal neovascularization.
The objective of this study was to determine whether resveratrol or a defined, reconstituted grape powder can attenuate the formation of new blood vessels in a mouse model of choroidal neovascularization (CNV). To accomplish this objective, C57BL/6J mice were randomized into control or treatment groups which received either resveratrol or grape powder by daily oral gavage, resveratrol or grape powder delivered ad libitum through the drinking water, or resveratrol by slow release via implanted osmotic pumps. A laser was used to rupture Bruch's membrane to induce CNV which was then detected in sclerochoroidal eyecups stained with antibodies against intercellular adhesion molecule-2. CNV area was measured using fluorescence microscopy and Image J software. Ad libitum delivery of both resveratrol and grape powder was shown to significantly reduce the extent of CNV by 68% and 57%, respectively. Parallel experiments conducted in vitro demonstrated that resveratrol activates p53 and inactivates Akt/protein kinase B in choroidal endothelial cells, contributing to its anti-proliferative and anti-migratory properties. In addition resveratrol was shown to inhibit the formation of endothelial cell networks, augmenting its overall anti-angiogenic effects. The non-toxic nature of resveratrol makes it an especially attractive candidate for the prevention and/or treatment of CNV. Topics: Angiogenesis Inhibitors; Animals; Bruch Membrane; Cell Adhesion Molecules; Choroidal Neovascularization; Delayed-Action Preparations; Disease Models, Animal; Endothelial Cells; Female; Lasers; Mice; Mice, Inbred C57BL; Microscopy, Fluorescence; Neovascularization, Pathologic; Powders; Proto-Oncogene Proteins c-akt; Resveratrol; Stilbenes; Tumor Suppressor Protein p53; Vitis | 2014 |
Resveratrol effectively attenuates α-naphthyl-isothiocyanate-induced acute cholestasis and liver injury through choleretic and anti-inflammatory mechanisms.
α-Naphthylisothiocyanate (ANIT) is a well-characterized cholestatic agent for rats. The aim of this study was to examine whether resveratrol could attenuate ANIT-induced acute cholestasis and liver injury in rats.. SD rats were treated with resveratrol (15 or 30 mg/kg, ip) or a positive control drug ursodeoxycholic acid (100 mg/kg, po) for 5 consecutive days followed by a single dose of ANIT (60 mg/kg, po). Bile flow, and serum biochemical markers and bile constituents were measured 48 h after ANIT administration. Hepatic levels of oxidative repair enzymes (glutathione peroxidase, catalase and MnSOD), myeloperoxidase activity, TNF-α, IL-6 and ATP content, as well as the expression of liver transporter genes and proteins were assayed.. ANIT exposure resulted in serious cholestasis and liver injury, as shown by marked neutrophil infiltration in liver, dramatically increased serum levels of ALT, AST, GGT, ALP, TBA, TBIL, IBIL and DBIL, and significantly decreased bile excretion and biliary output of GSH and HCO3(-). ANIT significantly increased TNF-α and IL-6 release and myeloperoxidase activity, decreased mitochondrial biogenesis in liver, but had little effect on hepatic oxidative repair enzymes and ATP content. Furthermore, ANIT significantly decreased the expression of Mrp2, FXR and Cyp7a1, markedly increased Mrp3 expression in liver. Pretreatment with resveratrol attenuated ANIT-induced acute cholestasis and liver injury, and other pathological changes. Pretreatment with ursodeoxycholic acid was less effective.. Resveratrol effectively attenuates ANIT-induced acute cholestasis and liver injury in rats, possibly through suppression of neutrophil infiltration, as well as upregulation of expression of hepatic transporters and enzymes, thus decreasing accumulation of bile acids. Topics: 1-Naphthylisothiocyanate; Adenosine Triphosphate; Animals; Anti-Inflammatory Agents; Bile; Biomarkers; Chemical and Drug Induced Liver Injury; Cholagogues and Choleretics; Cholestasis; Cytoprotection; Disease Models, Animal; DNA, Mitochondrial; Inflammation Mediators; Liver; Male; Membrane Transport Proteins; Neutrophil Infiltration; Oxidative Stress; Rats, Sprague-Dawley; Resveratrol; Stilbenes | 2014 |
Resveratrol attenuates HMGB1 signaling and inflammation in house dust mite-induced atopic dermatitis in mice.
Resveratrol is a polyphenol abundantly found in red grape skin and is effective against antiaging and anti-inflammation associated with immune responses. In this study, we have investigated the effect of resveratrol on skin lesion, high mobility group box (HMGB)1 and inflammation pathway in an atopic dermatitis (AD) mouse model. AD-like lesion was induced by the application of house dust mite extract to the dorsal skin of NC/Nga mouse. After AD induction, resveratrol (20 mg/kg, p.o.) was administered daily for 2 weeks. We evaluated dermatitis severity, histopathological changes, serum levels of T helper (Th) cytokines (interferon (IFN)γ, interleukin (IL)-4) and changes in protein expression by Western blotting for HMGB1, receptor for advanced glycation end products (RAGE), toll like receptor (TLR)4, nuclear factor (NF)κB, phosphatidylinositide 3-kinase (PI3K), extracellular signal-regulated kinase (ERK)1/2, cyclooxygenase (COX)2, tumor necrosis factor (TNF)α, IL-1β, IL-2Rα and other inflammatory markers in the skin of AD mice. Treatment of resveratrol inhibited the development of the AD-like skin lesions. Histological analysis showed that resveratrol inhibited hypertrophy, intracellular edema, mast cells and infiltration of inflammatory cells. Furthermore, resveratrol treatment down-regulated HMGB1, RAGE, p-NFκB, p-PI3K, p-ERK1/2, COX2, TNFα, IL-1β, IL-2Rα, IFNγ and IL-4. Considering all these findings together, the HMGB1 pathway might be a potential therapeutic target in skin inflammation, and resveratrol treatment could have beneficial effects on AD by modulating the HMGB1 protein expression. Topics: Animals; Anti-Inflammatory Agents; Cytokines; Dermatitis, Atopic; Disease Models, Animal; Female; HMGB1 Protein; Mice, Inbred Strains; Pyroglyphidae; Resveratrol; Severity of Illness Index; Signal Transduction; Skin; Stilbenes; Th1 Cells; Th2 Cells | 2014 |
Treatment with a vascular disrupting agent does not increase recruitment of indium labelled human endothelial outgrowth cells in an experimental tumour model.
The effect of vascular disrupting agents in tumour therapy depends on both the immediate vascular shutdown, and on the following re-vascularization of the tumour. The aim of this study was to use a tumour model to investigate whether endothelial outgrowth cells (EOCs) influenced the short term treatment efficiency of combretastatin A-4 disodium phosphate (CA4P) and 5,6-dimethylxanthenone-4-acetic acid (DMXAA) by increasing EOC tumour recruitment.. In order to visualize the recruitment of EOCs to the tumours, umbilical cord blood derived human EOCs were labelled with 111Indium-tropolone in a dose of 0.37 MBq pr 3×106 cells and were injected intravenously into mice carrying a C3H mammary carcinoma on their right rear foot. DMXAA and CA4P in different concentrations and at different exposure times were used to create a hypoxic environment in the C3H mammary carcinoma in the mice. Three different mice strains with various degrees of functional immune system were used to study the homing capability of EOCs.. Our data showed that approximately 4% of the total injected radioactive dose per gram of tissue was found in the tumour after treatment with CA4P and DMXAA. Regardless of the concentration and the treatment duration, CA4P did not increase EOC recruitment to the tumour in comparison to EOC recruitment in control tumours in any of the 3 mice strains studied.. Our data showed that regardless of the grade of the immune system, ranging from a fully working to a fully compromised immune system, treatment with CA4P did not increase recruitment of xenotransplanted EOCs to tumour tissue. Topics: Angiogenesis Inhibitors; Animals; Breast Neoplasms; Carcinoma; Cell Movement; Cell Survival; Cell Tracking; Cells, Cultured; Disease Models, Animal; Endothelial Cells; Female; Fetal Blood; Humans; Indium Radioisotopes; Mice; Mice, Nude; Stilbenes; Xanthones | 2014 |
Inhibition of AMPK expression in skeletal muscle by systemic inflammation in COPD rats.
Chronic obstructive pulmonary disease (COPD) is a disease characterized by airflow limitation and inflammation. Meanwhile, COPD also is associated with metabolic disorders, such as skeletal muscle weakness. Strikingly, activation of AMP-activated protein kinase (AMPK) exerts critical roles in energy metabolism. However, it remains unclear whether and how the expression levels of AMPK are affected in the COPD model rats which may lead to the dysfunction of the skeletal muscle in these rats.. Here we developed a rat model of COPD, and we investigated the morphological changes of peripheral skeletal muscle and measured the levels of tumor necrosis factor -α (TNF-α) and AMPK in skeletal muscle by using approaches that include immunohistochemistry and polymerase chain reaction (PCR).. We found that the expression levels of both AMPK mRNA and protein in skeletal muscles were significantly reduced in the COPD model rats, in comparison to those from the control rats, the COPD model rats that received treatments with AICAR and resveratrol, whereas the expression levels of TNF-α were elevated in COPD rats.. Such findings indicate that AMPK may serve as a target for therapeutic intervention in the treatment of muscle weakness in COPD patients. Topics: Aminoimidazole Carboxamide; AMP-Activated Protein Kinases; Animals; Anti-Inflammatory Agents; Disease Models, Animal; Down-Regulation; Gene Expression Regulation, Enzymologic; Male; Muscle Weakness; Muscle, Skeletal; Pulmonary Disease, Chronic Obstructive; Rats, Wistar; Resveratrol; Ribonucleotides; RNA, Messenger; Sirtuin 1; Stilbenes; Time Factors; Tumor Necrosis Factor-alpha | 2014 |
Resveratrol attenuated homocysteine-induced apoptosis of rat ventricular myocytes.
Topics: Angiogenesis Inhibitors; Animals; Animals, Newborn; Apoptosis; Disease Models, Animal; Heart Ventricles; Homocysteine; Myocytes, Cardiac; Platelet Aggregation Inhibitors; Rats; Rats, Sprague-Dawley; Resveratrol; Stilbenes | 2014 |
Resveratrol inhibits trophoblast apoptosis through oxidative stress in preeclampsia-model rats.
Resveratrol has been shown to be a therapeutic agent for cardiovascular disorders by maintaining a lower redox level in vivo through its anti-oxidant properties. Resveratrol can prevent cells from p53- and reactive oxygen species-dependent apoptosis induced by interleukin-1b. We identified an inhibitory effect of resveratrol against oxidative stress and apoptosis using the TUNEL assay in NG-Nitro-l-arginine methyl ester-induced preeclampsia in rats. To investigate a possible association between resveratrol and the apoptosis caused by oxidative stress in vitro, assays for superoxide dismutase and malondialdehyde as well as flow cytometric analyses were conducted in HTR-8/SVneo cells after hypoxic treatment with or without resveratrol for 24 h. These data suggest that resveratrol significantly opposes the effects of oxidative stress in vivo and in vitro. Topics: Animals; Antioxidants; Apoptosis; Blood Pressure; Cell Line; Disease Models, Animal; Female; Hypoxia; Oxidative Stress; Phenotype; Placenta; Pre-Eclampsia; Pregnancy; Rats; Resveratrol; Stilbenes; Trophoblasts | 2014 |
Polydatin attenuates ipopolysaccharide-induced acute lung injury in rats.
Anti-inflammatory and anti-apoptotic effects of polydatin (PD) have been demonstrated in our previous studies. Recently, we have found that PD treatment can ameliorate burn-induced acute lung injury (ALI). In the present study, we hypothesized that PD may provide protective effect against LPS-induced ALI through reducing inflammation and apoptosis. Rats were respectively pretreated with PD at doses of 15, 30 and 45 mg/kg weight, followed by intratracheal administration of lipopolysaccharide (LPS). LPS-challenged rats exhibited significant lung injury characterized by the deterioration of histopathology, pulmonary microvascular hyperpermeability, wet-to-dry weight ratio, and oxygenation index, which was attenuated by PD (30 and 45 mg/kg) treatment. Moreover, PD (30 and 45 mg/kg) treatment inhibited LPS-induced inflammatory response, as evidenced by the downregulation of lung myeloperoxidase activity, total cells and PMNs in bronchoalveolar lavage fluid, and the systemic levels of the pro-inflammatory cytokines. Furthermore, PD (30 and 45 mg/kg) treatment remarkably improved LPS-induced increase in TUNEL (deoxynucleotidyl transferase dUTP nick end labeling) staining-positive cells, caspase 3 activity, Bax over-expression and Bcl-2 down-expression. In conclusion, these results demonstrate that PD (30 and 45 mg/kg) treatment attenuates LPS-induced ALI through reducing lung inflammation and apoptosis. Topics: Acute Lung Injury; Animals; Anti-Inflammatory Agents; Apoptosis; Blotting, Western; Disease Models, Animal; Enzyme-Linked Immunosorbent Assay; Glucosides; In Situ Nick-End Labeling; Inflammation; Lipopolysaccharides; Male; Rats; Rats, Sprague-Dawley; Stilbenes | 2014 |
[Anti-hyperuricemia effect and mechanism of polydatin in mice].
Hyperuricemia mice model was established with uricase inhibitor (potassium oxonate) and uric acids in serum were observed. Polydatin (5, 10, 20 mg · kg(-1)) and benzbromarone (16.7 mg · kg(-1)) were given ig for 7 d in mice. Kidney tissues were used to detect gene contents ofurate anion transporter 1 (URAT1), organic anion transporter 1 (OAT1) and organic anion transporter 3 (OAT3) by real-time-PCR. The results showed that polydatin and benzbromarone can significantly reduce uric acid in blood of hyperuricemia mice (P < 0.05), compared with the model group. URAT1, OAT1 and OAT3 contents of the kidney in hyperuricemia mice changed significantly (P < 0.05), compared with the blank group. Polydatin can significantly inhibit the changing trends in these genes induced by potassium oxonate in a dose-dependent manner, the difference was significant (P < 0.05), compared with the model group. Those indicated that polysatin could reduce the level of the serum uric acid through promoting uric acid excretion. Topics: Animals; Disease Models, Animal; Glucosides; Hyperuricemia; Kidney; Mice; Stilbenes; Uric Acid | 2014 |
Sequential systemic administrations of combretastatin A4 Phosphate and radioiodinated hypericin exert synergistic targeted theranostic effects with prolonged survival on SCID mice carrying bifocal tumor xenografts.
Based on the soil-to-seeds principle, we explored the small-molecular sequential dual-targeting theranostic strategy (SMSDTTS) for prolonged survival and imaging detectability in a xenograft tumor model.. Thirty severe combined immunodeficiency (SCID) mice bearing bilateral radiation-induced fibrosarcoma-1 (RIF-1) subcutaneously were divided into group A of SMSDTTS with sequential intravenous injections of combretastatin A4 phosphate (CA4P) and (131)I-iodohypericin ((131)I-Hyp) at a 24 h interval; group B of single targeting control with CA4P and vehicle of (131)I-Hyp; and group C of vehicle control (10 mice per group). Tumoricidal events were monitored by in vivo magnetic resonance imaging (MRI) and planar gamma scintiscan, and validated by ex vivo autoradiography and histopathology. Besides, 9 mice received sequential intravenous injections of CA4P and (131)I-Hyp were subjected to biodistribution analysis at 24, 72 and 120 h.. Gamma counting revealed fast clearance of (131)I-Hyp from normal organs but intense accumulation in necrotic tumor over 120 h. After only one treatment, significantly prolonged survival (p<0.001) was found in group A compared to group B and C with median survival of 33, 22, and 21 days respectively. Tumor volume on day 15 was 2.0 ± 0.89, 5.66 ± 1.66, and 5.02 ± 1.0 cm(3) with tumor doubling time 7.8 ± 2.8, 4.4 ± 0.67, and 4.5 ± 0.5 days respectively. SMSDTTS treated tumors were visualized as hot spots on gamma scintiscans, and necrosis over tumor ratio remained consistently high on MRI, autoradiography and histology.. The synergistic antitumor effects, multifocal targetability, simultaneous theranostic property, and good tolerance of the SMSDTTS were evident in this experiment, which warrants further development for preclinical and clinical applications. Topics: Administration, Intravenous; Animals; Anthracenes; Antineoplastic Agents; Disease Models, Animal; Fibrosarcoma; Histocytochemistry; Humans; Iodine Radioisotopes; Magnetic Resonance Imaging; Male; Mice; Mice, SCID; Perylene; Radiography; Radionuclide Imaging; Stilbenes; Survival Analysis; Transplantation, Heterologous; Treatment Outcome | 2013 |
Resveratrol is a potent inhibitor of vascularization and cell proliferation in experimental endometriosis.
Does the phytochemical compound resveratrol inhibit vascularization of endometriotic lesions?. Resveratrol suppresses the development of new microvessels in endometriotic lesions by inhibiting endothelial cell proliferation.. Establishment and progression of endometriosis is crucially dependent on angiogenesis. Resveratrol is a pleiotropic agent, which dose-dependently suppresses the development of new blood vessels.. This was a randomized study in a mouse model of endometriosis. Twenty female BALB/c mice with surgically induced endometriosis were treated with resveratrol (40 mg/kg/day, n = 10) or vehicle (n = 10) for 4 weeks.. Peritoneal and mesenteric endometriotic lesions were surgically induced by uterine tissue transplantation into the abdominal cavity of BALB/c mice. The animals were daily treated with resveratrol (40 mg/kg) or vehicle by oral gavage. Lesion growth, vascularization, apoptosis and cell proliferation were subsequently analyzed by means of high-resolution ultrasound imaging, caliper measurements, histology and immunohistochemistry throughout an observation period of 4 weeks.. Resveratrol inhibited angiogenesis in peritoneal and mesenteric endometriotic lesions, as indicated by a significantly reduced microvessel density when compared with controls. Additional immunohistochemical analyses revealed that this was caused by a decreased proliferating activity of CD31-positive endothelial cells in the newly developing microvasculature of the lesions. In line with these findings, lesions in resveratrol-treated mice exhibited a reduced growth rate and a smaller final size than controls. This was associated with lower numbers of proliferating cell nuclear antigen- and Ki67-positive stromal and glandular cells. Apoptotic cells were not detectable in either group. To limit the role of chance, the experiments were conducted under standardized laboratory conditions with appropriate controls. Statistical significance was accepted for a value of P < 0.05.. Endometriotic lesions were surgically induced by uterine tissue transplantation without the use of pathological endometriotic tissue of human origin. Therefore, the results obtained in this mouse model may not fully correlate to human patients with endometriosis.. Resveratrol is a potent inhibitor of vascularization in endometriotic lesions. This, most probably, causes the suppression of lesion growth. Accordingly, resveratrol represents a promising candidate therapy for future phytochemical treatment of endometriosis.. This work was supported by a grant of the 'Freunde des Universitätsklinikums des Saarlandes'. The authors have no conflicts of interest to declare. Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Apoptosis; Cell Proliferation; Disease Models, Animal; Endometriosis; Endometrium; Female; Image Processing, Computer-Assisted; Immunohistochemistry; Mice; Mice, Inbred BALB C; Neovascularization, Pathologic; Platelet Endothelial Cell Adhesion Molecule-1; Resveratrol; Stilbenes; Time Factors | 2013 |
Resveratrol attenuates oxidative stress induced by balloon injury in the rat carotid artery through actions on the ERK1/2 and NF-kappa B pathway.
Oxidative stress plays a critical role in pathogenesis of the neointimal arterial hyperplasia. The aim of the study was to evaluate effects of resveratrol (RSV) on the vascular hyperplasia stimulated by oxidative damage.. Balloon vascular injury was induced in rats that were intraperitonealy exposed to resveratrol (1 mg/kg) on 7 or 14 days after surgical procedure. Animals were euthanized on 7 or 14 days after operation. The blood level of 8-iso-prostaglandin F2α, arterial morphology as well as expression of monocyte chemotactic protein-1 and interleukin-6 in carotid wall were measured. Vascular smooth muscle cells (VSMCs) were isolated from the thoracic aorta. Cellular proliferation and migration assays, reactive oxygen species (ROS), superoxide dismutase (SOD) and NADPH oxidative activity, protein level of β-actin, histone H3, NF-ĸB p65, IĸB, ERK1/2, phospho-ERK1/2, phospho-p38 as well as NF-ĸB transcription activity were evaluated in-vitro after angiotensin II stimulation and resveratrol (50-200 µmol/L) treatment.. Significant decreases in neointimal/medial area, serum prostaglandin level and genes expression were found in rats treated with resveratrol, when compared to the control group. Significant changes were also revealed for proliferation and migration rates, ROS level, as well as SOD, NADPH oxidase, ERK1/2 phosphorylation and NF-ĸB transcriptional activity in cell cultures exposed to highest dose of resveratrol. Insignificant changes were observed for NF-kappaB p65 translocation and IĸB degradation, p38 phosphorylation in MAPK pathway.. Resveratrol significantly suppressed the neointimal hyperplasia after balloon injury through inhibition of oxidative stress and inflammation by blocking the ERK1/2/NF-kappa B pathway. Topics: Animals; Antioxidants; Aorta, Thoracic; Carotid Arteries; Carotid Artery Injuries; Cell Movement; Cells, Cultured; Chemokine CCL2; Dinoprost; Disease Models, Animal; Interleukin-6; Male; Mitogen-Activated Protein Kinase 1; Mitogen-Activated Protein Kinase 3; Muscle, Smooth, Vascular; NADPH Oxidases; NF-kappa B; Oxidative Stress; p38 Mitogen-Activated Protein Kinases; Phosphorylation; Rats; Rats, Sprague-Dawley; Reactive Oxygen Species; Resveratrol; Signal Transduction; Stilbenes; Transcription Factor RelA; Transcription, Genetic | 2013 |
The inhibition of resveratrol to human skin squamous cell carcinoma A431 xenografts in nude mice.
Squamous cell carcinoma (SCC) is one of the commonest dermatological malignancies. Resveratrol (Res) is one type of polyphenolic compound which was first identified from the roots of Veratrum grandinorum in 1940. The previous studies found that Res can promote apoptosis of a variety of tumor cell, especially SCC cells. However it is rare to study the inhibition mechanism of Res in the animal model. In this study, through the establishment of human cutaneous SCC A431 xenografts in nude mice, we observed Res inhibition effect and investigated the inhibition mechanism by checking the expression of apoptosis-related factors, p53, ERK and survivin. The results showed that the xenograft volume and weight of Res groups were less than those of the control groups (P<0.05), but the net body mass of nude mice of Res groups was not significantly different from the control groups (P>0.05). The apoptotic index of Res groups were significantly higher than the control groups (P<0.05). The protein and mRNA expression of p53 and ERK were statistically positively correlated (P<0.05) and significantly increased in Res high- and medium-dose groups compared with the control groups (P<0.05). Moreover, the protein and mRNA expression of SVV were negatively correlated with p53 (P<0.05) and lower than the control groups (P<0.05). The results demonstrate Res inhibitory effect and indicate that the inhibition mechanism of Res is to upgrade the protein and mRNA expression of p53 and to downgrade the protein and mRNA expression of SVV, thus inducing the apoptosis of tumor cells. Topics: Animals; Antineoplastic Agents, Phytogenic; Apoptosis; Apoptosis Regulatory Proteins; Body Weight; Carcinoma, Squamous Cell; Cell Line, Tumor; Disease Models, Animal; Extracellular Signal-Regulated MAP Kinases; Humans; Inhibitor of Apoptosis Proteins; Mice; Mice, Inbred BALB C; Mice, Nude; Phytotherapy; Plant Extracts; Repressor Proteins; Resveratrol; RNA, Messenger; Skin Neoplasms; Stilbenes; Survivin; Transplantation, Heterologous; Tumor Suppressor Protein p53; Veratrum | 2013 |
Effects of glycine, pyruvate, resveratrol, and nitrite on tissue injury and cytokine response in endotoxemic rats.
Glycine, pyruvate, resveratrol, and nitrite are well-known protective compounds among others in ischemic tissue injury. Here, we compared their effects in acute lipopolysaccharide (LPS)-induced shock in rats to assess whether inhibition of the proinflammatory cytokine response is a prerequisite for their protective actions.. Rats (six or eight per group) were anesthetized, received LPS as an intravenous bolus (2.5 mg/kg), and were observed for 5 h. Glycine, sodium pyruvate, resveratrol, and sodium nitrite were continuously infused starting 30 min before LPS administration. Parameters included histopathologic changes, organ-specific cytokine levels, plasma nitrite and nitrate concentrations, and time courses of biomonitoring parameters, marker enzyme activities, and plasma cytokine concentrations.. Glycine, pyruvate, resveratrol, and nitrite enhanced arterial blood pressure after LPS-induced shock. Also, parameters reflecting tissue ischemia were significantly improved and plasma markers of organ injury ameliorated by all substances. Of the plasma cytokine concentrations increased by LPS, some were differently decreased or even further increased by the substances. None of them reduced the elevated plasma nitrite and nitrate concentration. Glycine diminished the increases in tissue cytokine levels organ specifically, pyruvate decreased some cytokine concentrations in all organs, and nitrite significantly affected only a few cytokine concentrations in some organs, whereas the levels of many cytokines were raised by resveratrol. All substances except resveratrol decreased granulocyte infiltrates in the liver.. The present results demonstrate that glycine, pyruvate, resveratrol, and nitrite protect against LPS-induced shock and tissue injury (cell death) in rats and suggest that inhibition of the proinflammatory cytokine response is not mandatory for their protective actions. Topics: Animals; Blood Gas Analysis; Blood Pressure; Cytokines; Disease Models, Animal; Drug Therapy, Combination; Electrolytes; Endotoxemia; Glycine; Hematocrit; Hemoglobins; Lipopolysaccharides; Male; Pyruvic Acid; Rats; Rats, Wistar; Resveratrol; Sodium Nitrite; Stilbenes | 2013 |
Resveratrol decreases periodontal breakdown and modulates local levels of cytokines during periodontitis in rats.
Resveratrol (3,4',5-trihydroxystilbene) is a naturally occurring product found in numerous plants. Among its biologic properties, resveratrol may promote immunomodulatory effects on the host response. This study investigates the effect of continuous administration of resveratrol on the progression of experimental periodontitis in rats.. Periodontitis was induced in rats in one of the first molars chosen to receive a ligature. Animals were assigned to one of two groups: 1) daily administration of the placebo solution (control group) or 2) 10 mg/kg resveratrol (RESV group). The therapies were administered systemically for 30 days: for 19 days before periodontitis induction and then for another 11 days. Then, the specimens were processed for morphometric analysis of bone loss, and the gingival tissue surrounding the first molar was collected for quantification of interleukin (IL)-1β, IL-4, and IL-17 using a multiplexing assay.. Intergroup comparisons of the morphometric outcomes revealed higher bone loss values in ligated molars and unligated teeth in the control group than the RESV group (P <0.05). The immunoenzymatic assay of the gingival tissue showed a lower concentration of IL-17 in the RESV group than the control group (P <0.05), whereas no differences in the IL-1β and IL-4 levels of the groups were observed (P >0.05).. Continuous administration of resveratrol may decrease periodontal breakdown induced experimentally in rats. In addition, lower levels of IL-17 were found in the RESV group. Future studies are important to confirm the mechanism through which resveratrol exerts its effects. Topics: Alveolar Bone Loss; Animals; Biofilms; Cytokines; Disease Models, Animal; Disease Progression; Gingiva; Immunologic Factors; Interleukin-17; Interleukin-1beta; Interleukin-4; Male; Periodontitis; Placebos; Random Allocation; Rats; Rats, Wistar; Resveratrol; Stilbenes | 2013 |
Regression of endometrial implants by resveratrol in an experimentally induced endometriosis model in rats.
To evaluate the effect of resveratrol on an experimentally induced endometriosis rat model.. After endometriotic implants were surgically formed, rats were randomly divided into 2 groups as control group (saline treated, n = 6) and resveratrol group (10 mg/kg/d, n = 6). The inflammatory markers and histopathological changes were assessed at the end of the treatment period. Results Our results showed (1) significant reduction in the implant size (P < .0005); (2) significantly decreased levels of vascular endothelial growth factor (VEGF) in the peritoneal fluid and plasma (P < .005); and monocyte chemotactic protein 1 (MCP-1) in the peritoneal fluid (P < .05), (3) highly significant suppression of VEGF expression in the endometriotic tissue (P < .0005); and (4) considerable histological changes in the endometriotic foci following resveratrol treatment.. Resveratrol appears to be effective on the development of endometriosis through its antiangiogenic and anti-inflammatory properties. Future studies with different doses of resveratrol might provide more comprehensive results regarding the treatment of endometriosis. Topics: Animals; Disease Models, Animal; Endometriosis; Endometrium; Female; Random Allocation; Rats; Rats, Sprague-Dawley; Remission Induction; Resveratrol; Stilbenes | 2013 |
Epigallocatechin-3-gallate is a potent phytochemical inhibitor of intimal hyperplasia in the wire-injured carotid artery.
Epigallocatechin-3-gallate (EGCG), a catechin gallate ester, is the major component of green tea and has been demonstrated to inhibit tumor growth as well as inhibit smooth muscle cell migration. We evaluated the effect of the phytochemicals resveratrol, allicin, sulforaphane (SFN), and EGCG on intimal hyperplasia in the carotid artery injury model.. Intimal hyperplasia was induced in carotid arteries of adult Sprague-Dawley rats with a wire injury. Experimental animals received intraperitoneal injections of one of the four phytochemicals daily beginning 1 day prior to surgery and continued for up to 4 weeks. Control animals were administered saline. Carotid specimens were harvested at 2 weeks and subjected to quantitative image analysis. In addition, EGCG specimens were analyzed for cell proliferation, immunohistochemistry, and Western blot analysis.. Quantitative image analysis showed significant phytochemical suppression of intimal hyperplasia at 2 and 4 weeks postoperatively with EGCG (62% decrease in intimal area). Significant decreases were also noted at 2 weeks for SFN (56%) and resveratrol (44%), whereas the decrease with allicin (24%) was not significant. Quantification of intimal hyperplasia by intima:media ratio showed similar results. Cell proliferation assay of specimens demonstrated suppression by EGCG. Immunohistochemical staining of EGCG-treated specimens showed extracellular signal-regulated kinase (ERK) suppression but not of the c-jun N-terminal kinase or p38 pathways. Western blot analysis confirmed reduced ERK activation in arteries treated with EGCG.. Intraperitoneal injection of the phytochemicals EGCG, SFN, resveratrol, and allicin have suppressive effects on the development of intimal hyperplasia in the carotid artery injury model, with maximal effect due to EGCG. The mechanism of EGCG action may be due to inhibition of ERK activation. EGCG may affect a common pathway underlying either neoplastic cellular growth or vascular smooth muscle cellular proliferation. Topics: Animals; Cardiovascular Agents; Carotid Artery Injuries; Carotid Artery, Common; Carotid Intima-Media Thickness; Catechin; Cell Proliferation; Disease Models, Animal; Disulfides; Enzyme Activation; Extracellular Signal-Regulated MAP Kinases; Hyperplasia; Injections, Intraperitoneal; Isothiocyanates; Male; Neointima; Protein Kinase Inhibitors; Rats; Rats, Sprague-Dawley; Resveratrol; Stilbenes; Sulfinic Acids; Sulfoxides; Time Factors | 2013 |
Resveratrol suppresses microcirculatory disturbance in a rat model of severe acute pancreatitis.
The present study sought to understand the mechanisms of attenuation of severe acute pancreatitis (SAP) by resveratrol (RES). SAP was experimentally induced in rats by injection of 4% sodium taurocholate in the retrograde pancreatic duct. Three study groups were evaluated: Group I (sham-operated animals), Group II (SAP animals), and Group III (SAP animals treated with RES at 20 mg/kg/body weight, 5 min after induction of SAP). The study outcomes were histopathologic changes and alterations in biochemical markers: plasma renin activity and levels of angiotensin II, endothelin, and nitric oxide in plasma. Biochemical markers were evaluated at 3, 6, and 12 h after induction of SAP. SAP was associated with significant (p < 0.05) histopathologic changes (saponification spots in the intraperitoneal cavity, severe pancreatic edema, blood congestion, varying degrees of necrosis, etc.), as well as with elevation of biochemical markers in blood plasma. RES treatment significantly (p < 0.05) attenuated changes of both histopathologic and biochemical markers induced by SAP. In conclusion, this study provides evidence that RES treatment is a promising therapeutic approach to suppress microcirculatory disturbance in SAP. Topics: Acute Disease; Angiotensin II; Animals; Anti-Inflammatory Agents, Non-Steroidal; Disease Models, Animal; Endothelins; Microcirculation; Nitric Oxide; Pancreas; Pancreatitis; Rats; Rats, Sprague-Dawley; Renin; Resveratrol; Stilbenes; Taurocholic Acid | 2013 |
Therapeutic and pharmacokinetic characterizations of an anti-amyloidogenic bis-styrylbenzene derivative for Alzheimer's disease treatment.
Alzheimer's disease drug discovery regarding exploration into the molecules and processes has focused on the intrinsic causes of the brain disorder correlated with the accumulation of amyloid-β. An anti-amyloidogenic bis-styrylbenzene derivative, KMS80013, showed excellent oral bioavailability (F=46.2%), facilitated brain penetration (26%, iv) in mouse and target specific in vivo efficacy in acute AD mouse model attenuating the cognitive deficiency in Y-maze test. Acute toxicity (LD50 >2000 mg/kg) and hERG channel inhibition (14% at 10 μM) results indicated safety of KMS80013. Topics: Administration, Oral; Alzheimer Disease; Aniline Compounds; Animals; Benzene Derivatives; Brain; Disease Models, Animal; Ether-A-Go-Go Potassium Channels; Half-Life; Male; Mice; Mice, Inbred ICR; Stilbenes | 2013 |
Resveratrol-loaded lipid-core nanocapsules treatment reduces in vitro and in vivo glioma growth.
The development of novel therapeutic strategies to treat gliomas remains critical as a result of the poor prognoses, inef-. ficient therapies and recurrence associated with these tumors. In this context, biodegradable nanoparticles are emerging as efficient drug delivery systems for the treatment of difficult-to-treat diseases such as brain tumors. In the current study, we evaluated the antiglioma effect of trans-resveratrol-loaded lipid-core nanocapsules (RSV-LNC) based on in vitro (C6 glioma cell line) and in vivo (brain-implanted C6 cells) models of the disease. In vitro, RSV-LNC decreased the viability of C6 glioma cells to a higher extent than resveratrol in solution. Interestingly, RSV-LNC treatment was not cytotoxic to hippocampal organotypic cultures, a model of healthy neural cells, suggesting selectivity for cancer cells. RSV-LNC induced losses in glioma cell viability through induction of apoptotic cell death, as assessed by Annexin-FITC/PI assay, which was preceded by an early arrest in the S and G1 phases of the cell cycle. In brain-implanted C6 tumors, treatment with RSV-LNC (5 mg/kg/day, i.p.) for 10 days promoted a marked decrease in tumor size and also reduced the incidence of some malignant tumor-associated characteristics, such as intratumoral hemorrhaging, intratumoral edema and pseudopalisading, compared to resveratrol in solution. Taken together, the results presented herein suggest that nanoencapsulation of resveratrol improves its antiglioma activity, thus providing a provocative foundation for testing the clinical usefulness of nanoformulations of this natural compound as a new chemotherapeutic strategy for the treatment of gliomas. Topics: Animals; Apoptosis; Brain Neoplasms; Cell Cycle Checkpoints; Cell Line, Tumor; Cell Proliferation; Cell Survival; Chemical Phenomena; Chemistry, Pharmaceutical; Disease Models, Animal; G1 Phase; Glioma; Hippocampus; Humans; Lipids; Male; Nanocapsules; Neoplasm Transplantation; Rats; Rats, Wistar; Resveratrol; S Phase; Solutions; Stilbenes; Tumor Burden | 2013 |
Does resveratrol improve insulin signaling in chronically ischemic myocardium?
Resveratrol is a naturally occurring polyphenol believed to be cardioprotective. We previously demonstrated that resveratrol improves insulin signaling and glucose metabolism in liver and skeletal muscle of swine with metabolic syndrome. Although resveratrol has metabolic benefits in peripheral tissues, its effect on insulin signaling in ischemic myocardium (IM) is unclear. Therefore, we developed a clinically relevant swine model of metabolic syndrome and chronic myocardial ischemia to investigate the effects of resveratrol on insulin signaling in cardiac tissue.. Thirteen male Yorkshire swine were fed a high-cholesterol diet for 4 wk then underwent surgical placement of an ameroid constrictor to their circumflex artery to induce chronic myocardial ischemia. The high-cholesterol control group was given no drug (n = 7). The experimental group was provided the same diet and received supplemental resveratrol (100 mg/kg/d) (n = 6). Tissue was harvested 7 wk after ameroid placement for western blot and histological analyses.. In IM, there was no significant difference between the two groups in the insulin signaling markers studied. In nonischemic myocardium, there was a significant decrease in phosphorylated AMP-activated protein kinase α (P = 0.021) in the group treated with resveratrol; otherwise, there were no significant differences between the groups. Immunostaining for glucose transporter 4 and Periodic acid-Schiff staining for myocardial glycogen stores was similar between the groups.. Resveratrol has complex effects on glucose metabolism. Although prior studies demonstrated that resveratrol supplementation improves insulin sensitivity in peripheral tissues, in chronically IM, there are no significant alterations. Topics: AMP-Activated Protein Kinases; Animals; Apoptosis; Cardiotonic Agents; Disease Models, Animal; Glucose; Insulin; Male; Metabolic Syndrome; Myocardial Ischemia; Myocardium; Resveratrol; Signal Transduction; Stilbenes; Swine | 2013 |
Resveratrol reduces acute lung injury in a LPS‑induced sepsis mouse model via activation of Sirt1.
The development of acute lung injury (ALI) during sepsis almost doubles the mortality rate of patients. The efficacy of current treatment strategies is low as treatment is usually initiated following the onset of symptoms. Inflammation is one of the main mechanisms of autoimmune disorders and is a common feature of sepsis. The suppression of inflammation is therefore an important mechanism for the treatment of sepsis. Sirtuin 1 (Sirt1) has been demonstrated to play a role in the regulation of inflammation. Resveratrol, a potent Sirt1 activator, exhibits anti‑inflammatory properties. However, the role of resveratrol for the treatment of ALI during sepsis is not fully understood. In the present study, the anti‑inflammatory role of Sirt1 in the lipopolysaccharide (LPS)‑induced TC‑1 cell line and its therapeutic role in ALI was investigated in a mouse model of sepsis. The upregulation of matrix metalloproteinase-9, interleukin (IL)‑1β, IL‑6 and inducible nitric oxide synthase was induced by LPS in the mouse model of sepsis and the TC‑1 cell line, and resveratrol suppressed the overexpression of these proinflammatory molecules in a dose‑dependent manner. Resveratrol decreased pulmonary edema in the mouse model of sepsis induced by LPS. In addition, resveratrol improved lung function and reduced pathological alterations in the mouse model of sepsis. Knockdown of Sirt1 by RNA interference resulted in an increased susceptibility of TC‑1 cells to LPS stimulation and diminished the anti‑inflammatory effect of resveratrol. These results demonstrated that resveratrol inhibits LPS‑induced ALI and inflammation via Sirt1, and indicated that Sirt1 is an efficient target for the regulation of LPS‑induced ALI and inflammation. The present study provides insights into the treatment of ALI during sepsis. Topics: Acute Lung Injury; Animals; Anti-Inflammatory Agents, Non-Steroidal; Cell Line; Disease Models, Animal; Inflammation; Interleukin-1beta; Interleukin-6; Lipopolysaccharides; Male; Matrix Metalloproteinase 9; Mice; Nitric Oxide Synthase Type II; Resveratrol; RNA Interference; RNA, Small Interfering; Sepsis; Sirtuin 1; Stilbenes; Up-Regulation | 2013 |
[Effects of polydatin on ALT, AST, TNF-alpha, and COX-2 in sepsis model mice].
To investigate the protective effects of polydatin on sepsis-induced acute liver injury (ALI) in mice, and to preliminarily study its mechanisms.. The sepsis model was established using cecal ligation and puncture (CLP).A sham-operation control group was also set up. Polydatin (50, 100, and 300 mg/kg, respectively) was administrated to mice 1 h before CLP. The survival and liver injury were evaluated subsequently per 6 h after CLP. The survived mice were scarified 24 h later. The serum and the liver tissue sample were collected. The serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were detected by colorimetric method. The content of tumor necrosis factor-alpha (TNF-alpha) was assayed by ELISA. The cyclooxygenase-2 (COX-2) expression in the liver tissue was detected by Western blot. The pathological changes of the hepatic tissue were analyzed by hematoxylin and eosin stain.. The mortality of mice reached as high as 50% at 24 h after CLP. The biochemical indices and the pathological changes of the liver tissue showed obvious lesion. The success rate of modeling was 90%. Compared with the sham-operation control group, the serum ALT,AST activity, the TNF-alpha content, and the hepatic COX-2 protein expression markedly increased in the CLP group (P < 0.01). Polydatin improved the sepsis-induced mortality dose-dependently, inhibited increased ALT, AST activity and TNF-alpha, decreased the hepatic COX-2 protein expression, and attenuated the pathological injury of the liver (P < 0.05).. Polydatin could effectively protect sepsis-induced ALI, which might be achieved possibly through inhibiting serum TNF-alpha production and hepatic COX-2 expression. Topics: Alanine Transaminase; Animals; Aspartate Aminotransferases; Cyclooxygenase 2; Disease Models, Animal; Glucosides; Liver; Mice; Mice, Inbred Strains; Sepsis; Stilbenes; Tumor Necrosis Factor-alpha | 2013 |
Resveratrol role in Staphylococcus aureus-induced corneal inflammation.
The aim of this study was to evaluate the role of trans-resveratrol on Staphylococcus aureus-induced keratitis. Rabbit corneas (intact corneas, abraded corneas and abraded corneas exposed to inactivated S. aureus strains) were placed in an ex vivo culture model. The abraded corneas exposed to S. aureus were divided into two 1-h-treatment sub-groups: corneas treated with trans-resveratrol and corneas treated with vehicle. The tissues were examined by immunohistochemical analyses and quantitative real-time RT-PCR to determine whether resveratrol could reduce TLR2-mediated recognition of S. aureus on epithelial cells and, if so, whether this reduction repressed the expression of inflammatory cytokines. The results demonstrated that resveratrol treatment effectively downregulated cell surface TLR2 on cells stimulated by S. aureus and reduced the expression of interleukin-8 gene. In addition, the corneal culture model tested, which is simple and reproducible, could be an alternative to in vivo animal testing for the development of novel specific therapies. Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Cornea; Disease Models, Animal; Gene Expression Profiling; Immunohistochemistry; Interleukin-8; Keratitis; Rabbits; Real-Time Polymerase Chain Reaction; Resveratrol; Staphylococcal Infections; Stilbenes; Toll-Like Receptor 2; Treatment Outcome | 2013 |
Cyclin d1 downregulation contributes to anticancer effect of isorhapontigenin on human bladder cancer cells.
Isorhapontigenin (ISO) is a new derivative of stilbene compound that was isolated from the Chinese herb Gnetum Cleistostachyum and has been used for treatment of bladder cancers for centuries. In our current studies, we have explored the potential inhibitory effect and molecular mechanisms underlying isorhapontigenin anticancer effects on anchorage-independent growth of human bladder cancer cell lines. We found that isorhapontigenin showed a significant inhibitory effect on human bladder cancer cell growth and was accompanied with related cell cycle G(0)-G(1) arrest as well as downregulation of cyclin D1 expression at the transcriptional level in UMUC3 and RT112 cells. Further studies identified that isorhapontigenin downregulated cyclin D1 gene transcription via inhibition of specific protein 1 (SP1) transactivation. Moreover, ectopic expression of GFP-cyclin D1 rendered UMUC3 cells resistant to induction of cell-cycle G(0)-G(1) arrest and inhibition of cancer cell anchorage-independent growth by isorhapontigenin treatment. Together, our studies show that isorhapontigenin is an active compound that mediates Gnetum Cleistostachyum's induction of cell-cycle G(0)-G(1) arrest and inhibition of cancer cell anchorage-independent growth through downregulating SP1/cyclin D1 axis in bladder cancer cells. Our studies provide a novel insight into understanding the anticancer activity of the Chinese herb Gnetum Cleistostachyum and its isolate isorhapontigenin. Topics: Animals; Antineoplastic Agents, Phytogenic; Binding Sites; Cell Cycle; Cell Line, Tumor; Cell Proliferation; Cyclin D1; Disease Models, Animal; Down-Regulation; Gene Expression Regulation, Neoplastic; Humans; Male; Mice; Promoter Regions, Genetic; Sp1 Transcription Factor; Stilbenes; Transcription, Genetic; Urinary Bladder Neoplasms; Xenograft Model Antitumor Assays | 2013 |
Stilbene analogs of resveratrol improve insulin resistance through activation of AMPK.
Resveratrol (RSV), 3,5,4'-trihydroxy-trans-stilbene, is known to have many beneficial physiological activities. We have synthesized several stilbene analogues and have reported that the hydroxyl group in the 4' position of RSV exhibited strong radical scavenging action. Using stilbene analogs, we investigated the structure of RSV to explain its protective effect against obesity and type 2 diabetes. All six analogs used in this study inhibited the differentiation of 3T3-L1 adipocytes. 3-Hydroxy-trans stilbene (3(OH)ST), and 3,4'-dihydroxy-trans stilbene (3,4'(OH)2ST) increased glucose uptake and induced adenosine monophosphate kinase (AMPK) phosphorylation in C2C12 myotubes independently of insulin. An in vivo study using mice fed high-fat diets indicated that 3(OH)ST was more effective than RSV in improving insulin resistance. In conclusion, RSV and its derivatives, particularly 3(OH)ST, inhibited adipocyte differentiation and enhanced glucose uptake in the myotubes, resulting in a reduction of obesity and an improvement in glucose tolerance in vivo. Topics: 3T3-L1 Cells; Adipocytes; AMP-Activated Protein Kinases; Animals; Diabetes Mellitus, Type 2; Disease Models, Animal; Glucose; Humans; Insulin; Insulin Resistance; Mice; Obesity; Resveratrol; Stilbenes | 2013 |
Resveratrol prevents development of eosinophilic rhinosinusitis with nasal polyps in a mouse model.
Since the recent establishment of a murine model of eosinophilic chronic rhinosinusitis with nasal polyps (CRSwNP), both the development of new drugs for treatment or prevention of eosinophilic CRSwNP and elucidation of their pathogenesis have been feasible. We investigated the therapeutic effects of resveratrol on CRSwNP and its mechanism of action using a murine model.. After induction of eosinophilic CRSwNP, the therapeutic effects of resveratrol were tested and compared with those of triamcinolone acetonide. Histopathologic changes were evaluated using hematoxylin and eosin for overall inflammation, Sirius red for eosinophils, and Masson's trichrome stain for collagen. The expression levels of the interleukin (IL)-4, IL-5, prostaglandin D synthase, and leukotriene C4 synthase genes were assessed by quantitative real-time PCR. Cyclooxygense-2 and 5-lipoxygense levels were evaluated by immunohistochemical staining and Western blot analysis.. The degree of eosinophilic infiltration and subepithelial fibrosis was significantly decreased by administration of high-dose resveratrol, the potency of which was similar to that of triamcinolone acetonide. The expression levels of the IL-4, IL-5, prostaglandin D synthase, and leukotriene C4 synthase genes were significantly decreased by administration of low- or high-dose resveratrol. The production of 5-lipoxygenase was strongly inhibited by high-dose resveratrol.. Resveratrol may be useful for the prevention of eosinophilic CRSwNP. A key mechanism of its action is believed to be its anti-inflammatory effect, particularly on eosinophils, by inhibiting the lipoxygenase pathway. Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Biopsy, Needle; Blotting, Western; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Administration Schedule; Eosinophilia; Immunohistochemistry; Mice; Mice, Inbred BALB C; Nasal Polyps; Random Allocation; Real-Time Polymerase Chain Reaction; Reference Values; Resveratrol; Rhinitis; Risk Assessment; Sinusitis; Statistics, Nonparametric; Stilbenes; Treatment Outcome | 2013 |
Resveratrol has anabolic effects on disc degeneration in a rabbit model.
This study was done to evaluate whether injections of resveratrol, a natural compound found in the skin of grapes, had anabolic effects on degenerated intervertebral discs in a rabbit model. Two non-continuous lumbar discs were punctured in rabbits to induce disc degeneration. Four weeks and 6 weeks after puncture, the rabbits were treated by injections with dimethylsulfoxide (DMSO) or resveratrol. At 4, 8, and 16 weeks after initial injection, rabbits were sacrificed and the spine was extracted for magnetic resonance image (MRI), mRNA expression, and histological staining. Resveratrol treatment resulted in stronger signal intensity in T2-weighted images. MRI grade showed significantly lower in the resveratrol group than the DMSO group (P = 0.039). In the resveratrol group, aggrecan gene expression was significantly increased than that in the DMSO group at 16 weeks after injection (P = 0.027). MMP-13 mRNA levels in the resveratrol group were significantly decreased than those in the DMSO group at 8 and 16 weeks (P = 0.006 and P = 0.048, respectively). In hematoxylin and eosin stain, resveratrol-treated discs showed the features of regeneration. Histologic grade revealed improvement in resveratrol-treated discs, compared with DMSO-treated discs (P = 0.024). These anabolic effects on degenerated discs indicate that resveratrol is a promising candidate for treatment of degenerative disc disease. Topics: Aggrecans; Anabolic Agents; Animals; Disease Models, Animal; Drug Administration Schedule; Intervertebral Disc Degeneration; Magnetic Resonance Imaging; Matrix Metalloproteinase 13; Rabbits; Radiography; Resveratrol; RNA, Messenger; Spine; Stilbenes | 2013 |
Reduced hemodynamic load aids low-dose resveratrol in reversing cardiovascular defects in hypertensive rats.
Cardiac hypertrophy and associated myocardial remodeling is one of the main complications of hypertension resulting in the development of heart failure. It is of great significance to explore novel treatments to reverse cardiac hypertrophy in hypertensives with or without affecting blood pressure. In the present study, we investigated whether low-dose resveratrol alone or in a combination with a blood pressure-lowering agent can reverse hypertension-induced cardiovascular dysfunction. Twenty-week-old male spontaneously hypertensive rats (SHRs) and Wistar-Kyoto rats were treated with resveratrol (2.5 mg kg⁻¹ per day) and/or hydralazine (25 mg kg⁻¹ per day) for 8 weeks. Blood pressure, cardiac structure and function, and electrocardiogram measurements were examined. Pressure myography of resistance arteries, histological examinations of heart tissues, oxidative stress and inflammatory measurements were also preformed to assess the efficacy of the treatment. Although resveratrol treatment alone was ineffective in reducing systolic blood pressure, diastolic blood pressure, diastolic dysfunction and vascular remodeling, it significantly prevented the systolic impairment and reduced myocardial fibrosis, and reduced oxidative stress and inflammation in hypertensive rats. Furthermore, a combination of resveratrol with hydralazine treatment significantly reduced blood pressure, improved systolic and diastolic function, decreased fibrosis and improved vascular geometry. In summary, low-dose resveratrol itself was unable to reduce systolic blood pressure, diastolic blood pressure, diastolic dysfunction and vascular remodeling. However, resveratrol alone alleviated cardiac fibrosis and some of the functional abnormalities in SHRs. And a combination of resveratrol with hydralazine was more effective than resveratrol or hydralazine alone in improving overall cardiovascular parameters. Topics: Animals; Antihypertensive Agents; Blood Pressure; Cardiomegaly; Cardiovascular System; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Therapy, Combination; Hemodynamics; Hydralazine; Hypertension; Male; Oxidative Stress; Rats; Rats, Inbred SHR; Rats, Inbred WKY; Resveratrol; Stilbenes | 2013 |
Resveratrol and grape juice differentially ameliorate cardiovascular autonomic modulation in L-NAME-treated rats.
Polyphenols consumption detected in red wine and grape juice may prevent or help in the treatment of hypertension. However, cardiovascular autonomic effects of polyphenols were poorly studied. Therefore, we evaluated the effects of resveratrol and grape juice treatments in hemodynamics, baroreflex sensitivity, heart rate (HR) and blood pressure (BP) variability and cardiac redox parameters. Male Wistar rats were divided in 3 groups (n=7/each) and treated for 30 days: only L-NAME-treated (60 mg/kg/day by oral gavage), L-NAME+resveratrol (L-NAME+R) and L-NAME+grape juice (L-NAME+G). BP signal was directly recorded and pulse interval (PI) and systolic arterial pressure (SAP) variability were analyzed in time and frequency domains. Baroreflex sensitivity (BRS) was determined by the alpha index. Oxidized and reduced glutathione concentrations were determined in cardiac tissue. L-NAME increased BP with no differences among groups (mean BP: L-NAME=124±4, L-NAME+R=126±3 and L-NAME+G=125±4 mmHg). PI and SAP variability expressed by total variance were also similar among groups. However, normalized low frequency (LF) and high frequency (HF) components of PI variability were lower and higher, respectively, in both R and G-treated groups when compared to only L-NAME group. Interestingly, sympathetic modulation to the vessels (LF from SAP variability) and BRS were decreased and increased, respectively, only in L-NAME+R rats. Additionally, GSH/GSSG ratios were higher in L-NAME+R and L-NAME+G than in L-NAME group. Our results indicate that resveratrol and grape juice treatments can modulate autonomic function and promote cardiac redox benefits even when nitric oxide is decreased. Moreover, resveratrol influences not only cardiac but also vascular autonomic modulation. Topics: Animals; Autonomic Nervous System; Beverages; Cardiovascular System; Disease Models, Animal; Enzyme Inhibitors; Hemodynamics; Hypertension; Male; NG-Nitroarginine Methyl Ester; Oxidation-Reduction; Rats; Rats, Wistar; Resveratrol; Stilbenes; Vasodilator Agents; Vitis | 2013 |
Piceatannol enhances cisplatin sensitivity in ovarian cancer via modulation of p53, X-linked inhibitor of apoptosis protein (XIAP), and mitochondrial fission.
Resistance to cisplatin (CDDP) in ovarian cancer (OVCA) arises from the dysregulation of tumor suppressors and survival signals. During genotoxic challenge, these factors can be influenced by secondary agents that facilitate the induction of apoptosis. Piceatannol is a natural metabolite of the stilbene resveratrol found in grapes and is converted from its parent compound by the enzyme CYP1BA1 p450. It has been hypothesized to exert specific effects against various cellular targets; however, its ability to influence CDDP resistance in cancer cells has not been investigated to date. Here, we show that piceatannol is a potent enhancer of CDDP sensitivity in OVCA, and this effect is achieved through the modulation of several major determinants of chemoresistance. Piceatannol enhances p53-mediated expression of the pro-apoptotic protein NOXA, increases XIAP degradation via the ubiquitin-proteasome pathway, and enhances caspase-3 activation. This response is associated with an increase in Drp1-dependent mitochondrial fission, leading to more effective induction of apoptosis. In vivo studies using a mouse model of OVCA reveal that a number of these changes occur in association with a greater overall reduction in tumor weight when mice are treated with both piceatannol and CDDP, in comparison to treatment with either agent alone. Taken together, these findings demonstrate the potential application of piceatannol to enhance CDDP sensitivity in OVCA, and it acts on p53, XIAP, and mitochondrial fission. Topics: Animals; Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Caspase 3; Cell Line, Tumor; Cell Proliferation; Cisplatin; Disease Models, Animal; Drug Resistance, Neoplasm; Dynamins; Female; Humans; Mice; Mitochondrial Dynamics; Models, Biological; Ovarian Neoplasms; Proteasome Endopeptidase Complex; Proteolysis; Proto-Oncogene Proteins c-bcl-2; Signal Transduction; Stilbenes; Tumor Suppressor Protein p53; Ubiquitination; X-Linked Inhibitor of Apoptosis Protein | 2013 |
Polydatin attenuated food allergy via store-operated calcium channels in mast cell.
To investigate the effect of polydatin (PD), a resveratrol glucoside, on mast cell degranulation and anti-allergic activity.. After the rats were orally sensitized with ovalbumin (OVA) for 48 d and underwent PD treatment for 4 d, all the rats were stimulated by 100 mg/mL OVA for 24 h and then sacrificed for the following experiments. The small intestines from all the groups were prepared for morphology examination by hematoxylin and eosin staining. We also used a smooth muscle organ bath to evaluate the motility of the small intestines. The OVA-specific immunoglobulin E (IgE) production and interleukin-4 (IL-4) levels in serum or supernatant of intestinal mucosa homogenates were analyzed by enzyme-linked immunosorbent assay (ELISA). Using toluidine blue stain, the activation and degranulation of isolated rat peritoneal mast cells (RPMCs) were analyzed. Release of histamine from RPMCs was measured by ELISA, and regulation of PD on intracellular Ca(2+) mobilization was investigated by probing intracellular Ca(2+) with fluo-4 fluorescent dye, with the signal recorded and analyzed.. We found that intragastric treatment with PD significantly reduced loss of mucosal barrier integrity in the small intestine. However, OVA-sensitization caused significant hyperactivity in the small intestine of allergic rats, which was attenuated by PD administration by 42% (1.26 ± 0.13 g vs OVA 2.18 ± 0.21 g, P < 0.01). PD therapy also inhibited IgE production (3.95 ± 0.53 ng/mL vs OVA 4.53 ± 0.52 ng/mL, P < 0.05) by suppressing the secretion of Th2-type cytokine, IL-4, by 34% (38.58 ± 4.41 pg/mL vs OVA 58.15 ± 6.24 pg/mL, P < 0.01). The ratio of degranulated mast cells, as indicated by vehicles (at least five) around the cells, dramatically increased in the OVA group by 5.5 fold (63.50% ± 15.51% vs phosphate-buffered saline 11.15% ± 8.26%, P < 0.001) and fell by 65% after PD treatment (21.95% ± 4.37% vs OVA 63.50% ± 15.51%, P < 0.001). PD mediated attenuation of mast cell degranulation was further confirmed by decreased histamine levels in both serum (5.98 ± 0.17 vs OVA 6.67 ± 0.12, P < 0.05) and intestinal mucosa homogenates (5.83 ± 0.91 vs OVA 7.35 ± 0.97, P < 0.05). Furthermore, we demonstrated that administration with PD significantly decreased mast cell degranulation due to reduced Ca(2+) influx through store-operated calcium channels (SOCs) (2.35 ± 0.39 vs OVA 3.51 ± 0.38, P < 0.01).. Taken together, our data indicate that PD stabilizes mast cells by suppressing intracellular Ca(2+) mobilization, mainly through inhibiting Ca(2+) entry via SOCs, thus exerting a protective role against OVA-sensitized food allergy. Topics: Animals; Calcium; Calcium Channels; Disease Models, Animal; Drugs, Chinese Herbal; Female; Food Hypersensitivity; Glucosides; Histamine; Immunoglobulin E; Interleukin-4; Intestine, Small; Mast Cells; Ovalbumin; Rats; Rats, Inbred BN; Stilbenes | 2013 |
Treatment with resveratrol attenuates sublesional bone loss in spinal cord-injured rats.
Sublesional osteoporosis predisposes individuals with spinal cord injury (SCI) to an increased risk of low-trauma fracture. The aim of the present work was to investigate the effect of treatment with resveratrol (RES) on sublesional bone loss in spinal cord-injured rats.. Complete SCI was generated by surgical transaction of the cord at the T10-12 level. Treatment with RES (400 mg·kg(-1) body mass per day(-1) , intragastrically) was initiated 12 h after the surgery for 10 days. Then, blood was collected and femurs and tibiae were removed for evaluation of the effects of RES on bone tissue after SCI.. Treatment of SCI rats with RES prevented the reduction of bone mass including bone mineral content and bone mineral density in tibiae, preserved bone structure including trabecular bone volume fraction, trabecular number, and trabecular thickness in tibiae, and preserved mechanical strength including ultimate load, stiffness, and energy in femurs. Treatment of SCI rats with RES enhanced femoral total sulfhydryl content, reduced femoral malondialdehyde and IL-6 mRNA levels. Treatment of SCI rats with RES suppressed the up-regulation of mRNA levels of PPARγ, adipose-specific fatty-acid-binding protein and lipoprotein lipase, and restored mRNA levels of Wnt1, low-density lipoprotein-related protein 5, Axin2, ctnnb1, insulin-like growth factor 1 (IGF-1) and receptor for IGF-1 in femurs and tibiae.. Treatment with RES attenuated sublesional bone loss in spinal-cord-injured rats, associated with abating oxidative stress, attenuating inflammation, depressing PPARγ signalling, and restoring Wnt/β-catenin and IGF-1 signalling. Topics: Animals; Bone Density; Bone Density Conservation Agents; Disease Models, Animal; Femur; Gene Expression Regulation; Inflammation Mediators; Male; Malondialdehyde; Osteoporosis; Oxidative Stress; Radiography; Rats; Rats, Sprague-Dawley; Resveratrol; RNA, Messenger; Signal Transduction; Spinal Cord Injuries; Stilbenes; Sulfhydryl Compounds; Tibia | 2013 |
Resveratrol prevents β-cell dedifferentiation in nonhuman primates given a high-fat/high-sugar diet.
Eating a "Westernized" diet high in fat and sugar leads to weight gain and numerous health problems, including the development of type 2 diabetes mellitus (T2DM). Rodent studies have shown that resveratrol supplementation reduces blood glucose levels, preserves β-cells in islets of Langerhans, and improves insulin action. Although rodent models are helpful for understanding β-cell biology and certain aspects of T2DM pathology, they fail to reproduce the complexity of the human disease as well as that of nonhuman primates. Rhesus monkeys were fed a standard diet (SD), or a high-fat/high-sugar diet in combination with either placebo (HFS) or resveratrol (HFS+Resv) for 24 months, and pancreata were examined before overt dysglycemia occurred. Increased glucose-stimulated insulin secretion and insulin resistance occurred in both HFS and HFS+Resv diets compared with SD. Although islet size was unaffected, there was a significant decrease in β-cells and an increase in α-cells containing glucagon and glucagon-like peptide 1 with HFS diets. Islets from HFS+Resv monkeys were morphologically similar to SD. HFS diets also resulted in decreased expression of essential β-cell transcription factors forkhead box O1 (FOXO1), NKX6-1, NKX2-2, and PDX1, which did not occur with resveratrol supplementation. Similar changes were observed in human islets where the effects of resveratrol were mediated through Sirtuin 1. These findings have implications for the management of humans with insulin resistance, prediabetes, and diabetes. Topics: Animals; Blood Glucose; Body Weight; Cell Dedifferentiation; Densitometry; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 2; Diet, High-Fat; Dietary Sucrose; Disease Models, Animal; Fluorescent Antibody Technique; Glucagon; Glucagon-Like Peptide 1; Glucagon-Secreting Cells; Glucose Tolerance Test; Glycated Hemoglobin; Homeobox Protein Nkx-2.2; Homeodomain Proteins; Insulin; Insulin Resistance; Insulin-Secreting Cells; Islets of Langerhans; Macaca mulatta; Nuclear Proteins; Protective Agents; Resveratrol; Sirtuin 1; Stilbenes; Transcription Factors | 2013 |
Resveratrol protects against functional impairment and cardiac structural protein degradation induced by secondhand smoke exposure.
Secondhand smoke (SHS) impairs cardiac function and resveratrol is cardioprotective, possibly via antioxidant and anti-inflammatory capabilities. Previously, it was shown that resveratrol protects against SHS-induced cardiac dysfunction, but the molecular mechanism is not clear.. We measured cardiac function in pigs exposed to SHS alone in a first experiment or with and without resveratrol (5 mg/kg/day) in a second experiment using echocardiography and compared this with proteomic changes.. In the first experiment after 28 days, end-diastolic volume, end-systolic volume, and stroke volume were all impaired in SHS pigs compared with control pigs, with cardiac output significantly depressed as early as 14 days. Depressed function corresponded to increased inflammation, oxidative stress, and matrix metalloproteinase-2, but decreased intact myosin light chain 1 in SHS compared with control pigs at 28 days. In our second study after 14 days, two-dimensional electrophoresis detected 6 significantly increased protein spots in SHS compared with control pigs. Mass spectrometry identified 4 spots as fragments of sarcomeric protein (1 myosin light chain 1, 1 β-myosin heavy chain, and 2 myosin-7), and 2 spots as glucose metabolism enzymes (lactate and pyruvate dehydrogenases). Resveratrol normalized the fragmented protein levels, but not the metabolic enzymes. At 14 days, matrix metalloproteinase-2 activity almost doubled in cardiac tissue from SHS compared with control pigs, and resveratrol appeared to normalize it.. Thus, the ventricular differences in protein expression might explain the mechanism by which SHS reduces critical hemodynamic parameters through the degradation of sarcomeres, appearing to be prevented by resveratrol administration. Topics: Animals; Antioxidants; Disease Models, Animal; Male; Myocardium; Oxidative Stress; Proteins; Proteolysis; Proteomics; Recovery of Function; Resveratrol; Stilbenes; Swine; Tobacco Smoke Pollution; Vasodilator Agents; Ventricular Dysfunction; Ventricular Function | 2013 |
Piceatannol suppresses endotoxin-induced ocular inflammation in rats.
Anti-inflammatory effect of piceatannol, a naturally occurring polyphenol and a potent free radical scavenger, on ocular inflammation is not known. We examined the anti-inflammatory role of piceatannol in ocular inflammatory response due to endotoxin-induced uveitis (EIU) in rats. EIU was induced in Lewis rats by subcutaneous injection of lipopolysaccharide (LPS; 150 ug/rat). Piceatannol (30mg/kg body wt, i.p) was injected either 2h prior to or 1h post LPS induction. A significant increase in the number of infiltrating cells, total protein, and various cytokines and chemokines in AqH were observed in the EIU rat eyes as compared to control groups. However, pre- or post-treatment of piceatannol significantly blocked the LPS-induced changes. Further, piceatannol also suppressed the expression of cyclooxygenase-2 (Cox-2), inducible nitric oxide synthase (iNOS) and activation of NF-κB in the ciliary bodies as well as retina. Further, piceatannol also inhibited the expression of Cox-2, iNOS, and phosphorylation of NF-κB in primary human non-pigmented ciliary epithelial cells (HNPECs) treated with LPS. Similarly, piceatannol also diminished LPS-induced level of NO and prostaglandin E2 in HNPECs. Thus our results demonstrate an anti-inflammatory role of piceatannol in suppressing ocular inflammation induced by endotoxin in rats. Topics: Animals; Aqueous Humor; Cells, Cultured; Cyclooxygenase 2; Cytokines; Disease Models, Animal; Free Radical Scavengers; Gene Expression Regulation; Humans; Male; NF-kappa B; Nitric Oxide Synthase Type II; Rats; Rats, Inbred Lew; Retina; Shock, Septic; Stilbenes; Uveitis | 2013 |
Neuroprotection by tetrahydroxystilbene glucoside in the MPTP mouse model of Parkinson's disease.
Our in vitro experiments suggested that tetrahydroxystilbene glucoside (TSG) affords a significant neuroprotective effect against MPP⁺-induced damage and apoptosis in PC12 cells though activation of the PI3K/Akt pathway. This study was aimed to investigate the potential neuroprotective effect of TSG in 1-methyl-4-phenyl-1,2,3,6-tetrahydropypridine (MPTP)-treated mouse model of Parkinson's disease (PD). We found that treatment of TSG protected dopaminergic neurons by preventing MPTP-induced decreases in substantia nigra tyrosine hydroxylase (TH)-positive cells and striatal dopaminergic transporter (DAT) protein levels. Furthermore, it was also associated with increasing striatal Akt and GSK3β phosphorylation, up-regulation of the Bcl-2/BAD ratio, and inhibition of the activation of caspase-9 and caspase-3. These results showed that TSG promoted dopamine neuron survival in vivo, the PI3K/Akt signaling pathway may have mediated the protection of TSG against MPTP, suggesting that TSG treatment might represent a neuroprotective treatment for PD. Topics: 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine; Animals; Apoptosis Regulatory Proteins; Ataxia; Behavior, Animal; Cell Survival; Corpus Striatum; Disease Models, Animal; Dopamine Plasma Membrane Transport Proteins; Dopaminergic Neurons; Glucosides; Glycogen Synthase Kinase 3; Glycogen Synthase Kinase 3 beta; Male; Mice; Mice, Inbred C57BL; Nerve Tissue Proteins; Neuroprotective Agents; Parkinson Disease; Proto-Oncogene Proteins c-akt; Signal Transduction; Stilbenes; Substantia Nigra; Tyrosine 3-Monooxygenase | 2013 |
Role of standardized grape polyphenol preparation as a novel treatment to improve synaptic plasticity through attenuation of features of metabolic syndrome in a mouse model.
Metabolic syndrome has become an epidemic and poses tremendous burden on the health system. People with metabolic syndrome are more likely to experience cognitive decline. As obesity and sedentary lifestyles become more common, the development of early prevention strategies is critical. In this study, we explore the potential beneficial effects of a combinatory polyphenol preparation composed of grape seed extract, Concord purple grape juice extract, and resveratrol, referred to as standardized grape polyphenol preparation (SGP), on peripheral as well as brain dysfunction induced by metabolic syndrome.. We found dietary fat content had minimal effect on absorption of metabolites of major polyphenols derived from SGP. Using a diet-induced animal model of metabolic syndrome (DIM), we found that brain functional connectivity and synaptic plasticity are compromised in the DIM mice. Treatment with SGP not only prevented peripheral metabolic abnormality but also improved brain synaptic plasticity.. Our study demonstrated that SGP, comprised of multiple bioavailable and bioactive components targeting a wide range of metabolic syndrome related pathological features, provides greater global protection against peripheral and central nervous system dysfunctions and can be potentially developed as a novel prevention/treatment for improving brain connectivity and synaptic plasticity important for learning and memory. Topics: Animals; Biological Availability; Brain; Dietary Fats; Disease Models, Animal; Female; Grape Seed Extract; Male; Metabolic Syndrome; Mice; Mice, Inbred C57BL; Neuronal Plasticity; Polyphenols; Rats; Rats, Sprague-Dawley; Resveratrol; Stilbenes; Synapses; Vitis | 2013 |
Vascular disrupting effects of combretastatin A4 phosphate on murine endometriotic lesions.
To study the effect of combretastatin A4 phosphate (CA4P) on the vascularization of endometriotic lesions.. Intravital microscopic, histologic, and immunohistochemical study.. University institute.. BALB/c mice.. Murine endometriotic lesions were induced by syngeneic transplantation of endometrium into dorsal skinfold chambers. After 6 days, the mice received an intraperitoneal injection of 80 mg/kg CA4P or vehicle.. Vascularization of the lesions and the surrounding tissue was analyzed by intravital fluorescence microscopy over 8 days. Lesion morphology, vessel maturation, viability, and proliferation of endometrial glands and stroma were assessed by histology and immunohistochemistry.. All lesions were initially well vascularized, containing immature and mature microvessels. Injection of CA4P induced a selective vessel collapse in the lesions without affecting the surrounding microvasculature. This resulted in a decreased functional capillary density and blood perfusion of CA4P-treated lesions after 2 hours when compared with controls. However, the vascularization of the lesions progressively normalized, and their numbers of proliferating and apoptotic cells did not differ from those of controls.. This study demonstrates a selective vascular disrupting effect of CA4P on endometriotic lesions, indicating that vascular disrupting agents may be suitable for endometriosis therapy. Topics: Animals; Apoptosis; Capillaries; Cell Proliferation; Disease Models, Animal; Endometriosis; Endometrium; Female; Injections, Intraperitoneal; Mice; Mice, Inbred BALB C; Neovascularization, Pathologic; Stilbenes; Time Factors; Tissue Survival | 2013 |
Resveratrol stimulates mitochondrial bioenergetics to protect retinal pigment epithelial cells from oxidative damage.
Resveratrol (RSV) alleviates oxidative damage in human adult retinal pigment epithelial (ARPE) cells. Mitochondrial bioenergetics is associated with oxidative stress. The purpose of this study was to examine the role of mitochondrial bioenergetics in the cytoprotective effect of RSV. Its role in protection against the adverse effects of cigarette smoke (CS) in experimental choroidal neovascularization (CNV) was also examined.. Cultured ARPE-19 cells were treated with acrolein alone or acrolein with added RSV. Temporal changes in cell viability, expression of the antioxidant protein, and mitochondrial bioenergetics were evaluated. In an animal study, CNV lesions were created in Brown Norway rats by laser-induced photocoagulation. Effects of CS alone or with additional RSV treatment on CNV lesions were quantified by fundus fluorescein angiography.. In ARPE-19 cells, RSV rescued acrolein-induced cell death, alongside reversal of acrolein-induced superoxide dismutase expression. Resveratrol increased the mitochondrial bioenergetics, including basal respiratory rate, adenosine triphosphate synthesis via oxidative phosphorylation, and maximal mitochondrial capacity. In animal experiments, CS induced a significant increase in CNV following laser injury, and this increase in CNV was appreciably prevented following peripheral infusion of RSV.. Our results indicate that RSV, a major polyphenol found in red wine, exerts protection against acrolein-induced cytotoxicity in human ARPE-19 cells via increases in the mitochondrial bioenergetics. In addition, the antioxidant effect of RSV may contribute to protection against laser-induced CNV in animals exposed to CS. Therefore, RSV might be beneficial for treatment of acrolein-induced or CS-evoked RPE degeneration. Topics: Adult; Angiogenesis Inhibitors; Animals; Cell Survival; Cytoprotection; Disease Models, Animal; DNA Damage; Energy Metabolism; Enzyme Inhibitors; Female; Humans; Macular Degeneration; Mitochondria; Oxidative Stress; Rats; Rats, Inbred BN; Resveratrol; Retinal Pigment Epithelium; Stilbenes | 2013 |
Riccardin D Exerts Its Antitumor Activity by Inducing DNA Damage in PC-3 Prostate Cancer Cells In Vitro and In Vivo.
We recently reported that Riccardin D (RD) was able to induce apoptosis by targeting Topo II. Here, we found that RD induced cell cycle arrest in G2/M phase in PC-3 cells, and caused remarkable DNA damage as evidenced by induction of γH2AX foci, micronuclei, and DNA fragmentation in Comet assay. Time kinetic and dose-dependent studies showed that ATM/Chk2 and ATR/Chk1 signaling pathways were sequentially activated in response to RD. Blockage of ATM/ATR signaling led to the attenuation of RD-induced γH2AX, and to the partial recovery of cell proliferation. Furthermore, RD exposure resulted in the inactivation of BRCA1, suppression of HR and NHEJ repair activity, and downregulation of the expressions and DNA-end binding activities of Ku70/86. Consistent with the observations, microarray data displayed that RD triggered the changes in genes responsible for cell proliferation, cell cycle, DNA damage and repair, and apoptosis. Administration of RD to xenograft mice reduced tumor growth, and coordinately caused alterations in the expression of genes involved in DNA damage and repair, along with cell apoptosis. Thus, this finding identified a novel mechanism by which RD affects DNA repair and acts as a DNA damage agent in prostate cancer. Topics: Animals; Antigens, Nuclear; Antineoplastic Agents, Phytogenic; Apoptosis; Ataxia Telangiectasia Mutated Proteins; Cell Cycle Checkpoints; Cell Line, Tumor; Cell Proliferation; Checkpoint Kinase 1; Checkpoint Kinase 2; Disease Models, Animal; DNA Damage; DNA End-Joining Repair; DNA-Binding Proteins; Gene Expression Regulation, Neoplastic; Humans; Ku Autoantigen; Male; Mice; Phenyl Ethers; Prostatic Neoplasms; Protein Kinases; Recombinational DNA Repair; Signal Transduction; Stilbenes; Transcriptome; Xenograft Model Antitumor Assays | 2013 |
Resveratrol exacerbates both autoimmune and viral models of multiple sclerosis.
The polyphenol compound resveratrol is reported to have multiple functions, including neuroprotection, and no major adverse effects have been reported. Although the neuroprotective effects have been associated with sirtuin 1 activation by resveratrol, the mechanisms by which resveratrol exerts such functions are a matter of controversy. We examined whether resveratrol can be neuroprotective in two models of multiple sclerosis: experimental autoimmune encephalomyelitis (EAE) and Theiler's murine encephalomyelitis virus-induced demyelinating disease (TMEV-IDD). EAE was induced in C57BL/6 mice, which were fed a control diet or a diet containing resveratrol during either the induction or effector phase or through the whole course of EAE. SJL/J mice were infected with TMEV and fed a control diet or a diet containing resveratrol during the chronic phase of TMEV-IDD. In EAE, all groups of mice treated with resveratrol had more severe clinical signs than the control group. In particular, resveratrol treatment during the induction phase resulted in the most severe EAE, both clinically and histologically. Similarly, in the viral model, the mice treated with resveratrol developed significantly more severe TMEV-IDD than the control group. Thus, surprisingly, the resveratrol treatment significantly exacerbated demyelination and inflammation without neuroprotection in the central nervous system in both models. Our findings indicate that caution should be exercised in potential therapeutic applications of resveratrol in human inflammatory demyelinating diseases, including multiple sclerosis. Topics: Animals; Autoimmunity; Axons; Disease Models, Animal; Disease Progression; Encephalomyelitis, Autoimmune, Experimental; Humans; Mice; Mice, Inbred C57BL; Multiple Sclerosis; Myelin-Oligodendrocyte Glycoprotein; Nerve Degeneration; Neuroprotective Agents; Resveratrol; Stilbenes; Theilovirus; Virulence | 2013 |
The effects of pterostilbene on neutrophil activity in experimental model of arthritis.
It has been demonstrated that pterostilbene inhibits reactive oxygen species production in neutrophils in vitro. However, little is known about its effects on neutrophils during inflammation in vivo. In this study, the effect of pterostilbene on neutrophil activity was investigated in experimental arthritis model. Lewis rats were injected by a single intradermal injection of heat-killed Mycobacterium butyricum in Freund's adjuvant to develop arthritis. Another group of arthritic animals received pterostilbene 30 mg/kg, daily, p.o. The number and activity of neutrophils in blood were measured on a weekly basis during the whole experiment. Moreover, the total radical trapping potential in plasma was measured at the end of the experiment. In the pterostilbene treated arthritic group, the treatment significantly lowered the number of neutrophils in blood on days 14 and 21 without significant downregulation of neutrophil oxidative burst. Pterostilbene nonsignificantly increased total radical trapping potential in arthritic animals. These results indicate that the promising effects of pterostilbene on reactive oxygen species operate by different mechanisms in vitro and in the animal model of inflammation. In conclusion, the positive effects of pterostilbene in the model of arthritis may be attributed to regulation of neutrophil number. Topics: Animals; Arthritis, Experimental; Cross-Priming; Disease Models, Animal; Down-Regulation; Leukocyte Count; Male; Neutrophils; Peroxides; Rats; Rats, Inbred Lew; Reactive Oxygen Species; Stilbenes | 2013 |
[Resveratrol reduces inflammatory cytokines via inhibiting nuclear factor-κB and mitogen-activated protein kinase signal pathway in a rabbit atherosclerosis model].
Inflammation serves as the initial pathologic step of cardiovascular diseases including atherosclerosis. Resveratrol possesses many pharmacological properties including antioxidant, cardioprotective and anti-cancer effects. In this study, we investigate the anti-inflammatory effect and mechanisms of resveratrol in an atherosclerotic rabbit model.. Rabbit were assigned to six groups (n = 10 each): control, high fat diet group, resveratrol low, medium and high dose groups, resveratrol pretreatment group. The serum tumor necrosis factor-α (TNF- α), interleukin-6 (IL-6) and interleukin-1β (IL-1β) were analyzed by Enzyme-linked immuno sorbent assay(ELISA). Phosphorylation levels of mitogen-activated protein kinases (MAPKs) cascades and NF-κB were determined by Western blot.. Compared with the control group, the expression of serum inflammatory factors IL-1β, IL-6, TNF-α were increased in high-fat group (all P < 0.05). Compared with high-fat group, the expressions of IL-6, IL-1β, TNF-α were significantly reduced in resveratrol low, medium, high dose groups and resveratrol pretreatment group (all P < 0.01), and this effect is dose-dependent. In addition, the NF-κB, p38MAPK, JNK, ERK1/2 protein phosphorylation in high-fat group were significantly upregulated compared with control group (P < 0.05), which (except ERK1/2 phosphorylation level) were significantly downregulated in resveratrol treatment group and resveratrol pretreatment group.. This study indicates that resveratrol reduces serum inflammatory cytokines in this atherosclerotic rabbit model via down-regulation phosphorylation of NF-κB, and MAPKs signaling, which might serve as the anti-inflammatory molecular basis of resveratrol. Topics: Animals; Atherosclerosis; Disease Models, Animal; Interleukin-1beta; Interleukin-6; Male; Mitogen-Activated Protein Kinases; NF-kappa B; Phosphorylation; Rabbits; Resveratrol; Signal Transduction; Stilbenes; Tumor Necrosis Factor-alpha | 2013 |
Amelioration of behavioural, biochemical, and neurophysiological deficits by combination of monosodium glutamate with resveratrol/alpha-lipoic acid/coenzyme Q10 in rat model of cisplatin-induced peripheral neuropathy.
Cisplatin or cis-diamminedichloroplatinum (II) (CDDP) is a cytotoxic chemotherapeutic agent with dose-dependent peripheral neuropathy as a foremost side effect characterised by ataxia, pain, and sensory impairment. Cumulative drug therapy of CDDP is known to produce severe oxidative damage. It mainly targets and accumulates in dorsal root ganglia that in turn cause damage resulting in secondary nerve fibre axonopathy. In the present study, we investigated the neuroprotective effect of the combination of monosodium glutamate (MSG) with three individual antioxidants, that is, resveratrol, alpha-lipoic acid (ALA), and coenzyme Q10 (CoQ10), in cisplatin (2 mg/kg i.p. twice weekly) induced peripheral neuropathy in rats. After 8 weeks of treatment the degree of neuroprotection was determined by measuring behavioral and electrophysiological properties and sciatic nerve lipid peroxidation, as well as glutathione and catalase levels. The results suggested that pretreatment with the combination of MSG (500 mg/kg/day po) with resveratrol (10 mg/kg/day i.p.) or ALA (20 mg/kg/day i.p.) or CoQ10 (10 mg/kg weekly thrice i.p.) exhibited neuroprotective effect. The maximum neuroprotection of MSG was observed in the combination with resveratrol. Topics: Animals; Behavior, Animal; Catalase; Disease Models, Animal; Drug Therapy, Combination; Glutathione; Lipid Peroxidation; Neural Conduction; Neuroprotective Agents; Peripheral Nervous System Diseases; Psychomotor Performance; Rats; Resveratrol; Sciatic Neuropathy; Sodium Glutamate; Stilbenes; Thioctic Acid; Ubiquinone | 2013 |
In vitro and in vivo evaluation of resveratrol and 3,5-dihydroxy-4'-acetoxy-trans-stilbene in the treatment of human prostate carcinoma and melanoma.
Resveratrol (RESV) is a naturally occurring compound that may possess anticancer capabilities in both prostate carcinoma and melanoma.. The in vitro and in vivo cytotoxic activity of RESV and 3,5-dihydroxy-4'-acetoxy-trans-stilbene (4-ACE) was tested using cellular assays and a xenograft model. Five prostate carcinoma cell lines were used for in vitro evaluation. A melanoma cell line (Duke melanoma 738 [DM738]) and the prostate carcinoma line CWR22 were used for in vivo experiments. Mice were randomized to osmotic mini pumps with 200 μL of RESV (250 mg/mL), 4-ACE (335 mg/mL), or vehicle (50% dimethyl sulfoxide, 50% polyethylene glycol). Serum drug and metabolite levels were calculated by high-performance liquid chromatography with diode-array detection. Western blots were performed on treated tumors. Results were analyzed using a student's t-test, analysis of variance, and the Mann-Whitney rank sum test.. RESV and 4-ACE were cytotoxic in a time- and dose-dependent manner in all prostate carcinoma cell lines tested. Enhanced growth compared with controls was seen at the 24 h time point in four lines treated with RESV and two lines treated with 4-ACE (Ps < 0.048). In vivo, no difference in either tumor growth or postmortem tumor weight was detected in either DM738 (P = 0.555, P = 0.562) or CWR22 (P = 0.166, P = 0.811) xenografts treated with either drug. Serum drug levels did not correlate with tumor growth rates for any treatment group (all Ps > 0.11). Treated tumors demonstrated protein changes by western blot.. Although in vitro data were promising, RESV and 4-ACE have limited potential as single agents in the treatment of prostate carcinoma and melanoma. Topics: Animals; Antineoplastic Agents; Cell Line, Tumor; Cell Proliferation; Disease Models, Animal; Dose-Response Relationship, Drug; Humans; In Vitro Techniques; Male; Melanoma; Mice; Mice, Nude; Prostatic Neoplasms; Resveratrol; Skin Neoplasms; Stilbenes; Time Factors; Treatment Outcome; Xenograft Model Antitumor Assays | 2013 |
Resveratrol decreases inflammation and increases utrophin gene expression in the mdx mouse model of Duchenne muscular dystrophy.
Duchenne muscular dystrophy (DMD) is a lethal genetic disease with no cure. Reducing inflammation or increasing utrophin expression can alleviate DMD pathology. Resveratrol can reduce inflammation and activate the utrophin promoter. The aims of this study were to identify an active dose of resveratrol in mdx mice and examine if this dose decreased inflammation and increased utrophin expression.. 5-week old mdx mice were given 0, 10, 100, or 500 mg/kg of resveratrol everyday for 10 days. Sirt1 was measured by qRT-PCR and used to determine the most active dose. Muscle inflammation was measured by H&E staining, CD45 and F4/80 immunohistochemistry. IL-6, TNFα, PGC-1α, and utrophin gene expression were measured by qRT-PCR. Utrophin, Sirt1, and PGC-1α protein were quantified by western blot.. The 100 mg/kg dose of resveratrol, the most active dose, increased Sirt1 mRNA 60 ± 10% (p < 0.01), reduced immune cell infiltration 21 ± 6% (H&E) and 42 ± 8% (CD45 immunohistochemistry (p < 0.05)), reduced macrophage infiltration 48 ± 10% (F4/80 immunohistochemistry (p < 0.05)), and increased IL-6, PGC-1α, and utrophin mRNA 247 ± 77%, 27 ± 17%, and 43 ± 23% respectively (p ≤ 0.05). Utrophin, Sirt1, and PGC-1α protein expression did not change.. Resveratrol may be a therapy for DMD by reducing inflammation. Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Body Weight; Dietary Supplements; Disease Models, Animal; Inflammation Mediators; Leukocytes; Macrophages; Male; Mice; Mice, Inbred mdx; Muscle Development; Muscle, Skeletal; Muscular Dystrophy, Duchenne; Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha; Resveratrol; RNA, Messenger; Sirtuin 1; Stilbenes; Trans-Activators; Transcription Factors; Up-Regulation; Utrophin | 2013 |
Evaluation of the effects of resveratrol and bevacizumab on experimental corneal alkali burn.
To evaluate the effects of resveratrol and bevacizumab on experimental corneal neovascularization.. A corneal alkali burn was performed in 62 eyes of 31 male white Vienna rabbits. Resveratrol (group 1), dimethyl sulfoxide (group 2), bevacizumab (group 3) and 0.9% NaCl (group 4) were administered to both eyes of the rabbits by subconjunctival injection for 7 days. Corneal photos were taken at 15 days after alkali injury. Inflammatory index scores and neovascularization areas were calculated.. In bevacizumab group both inflammatory index scores and the calculation of the corneal neovascularization area was significantly less than the groups.. The subconjunctival administration of bevacizumab inhibits corneal neovascularization effectively in the rabbit corneal alkali burn model. No effect of resveratrol to the corneal neovascularization on experimental model of the corneal alkali burn was seen at the doses of usage. Topics: Alkalies; Angiogenesis Inhibitors; Animals; Anti-Inflammatory Agents, Non-Steroidal; Antibodies, Monoclonal, Humanized; Bevacizumab; Burns, Chemical; Corneal Neovascularization; Disease Models, Animal; Eye Burns; Male; Rabbits; Resveratrol; Stilbenes | 2013 |
Targeted acetylation of NF-kappaB/RelA and histones by epigenetic drugs reduces post-ischemic brain injury in mice with an extended therapeutic window.
Nuclear factor-kappaB (NF-κB) p50/RelA is a key molecule with a dual effect in the progression of ischemic stroke. In harmful ischemia, but not in preconditioning insult, neurotoxic activation of p50/RelA is characterized by RelA-specific acetylation at Lys310 (K310) and deacetylation at other Lys residues. The derangement of RelA acetylation is associated with activation of Bim promoter.. With the aim of producing neuroprotection by correcting altered acetylation of RelA in brain ischemia, we combined the pharmacological inhibition of histone deacetylase (HDAC) 1-3, the enzymes known to reduce global RelA acetylation, and the activation of sirtuin 1, endowed with a specific deacetylase activity on the K310 residue of RelA. To afford this aim, we tested the clinically used HDAC 1-3 inhibitor entinostat (MS-275) and the sirtuin 1 activator resveratrol.. We used the mouse model of transient middle cerebral artery occlusion (MCAO) and primary cortical neurons exposed to oxygen glucose deprivation (OGD).. The combined use of MS-275 and resveratrol, by restoring normal RelA acetylation, elicited a synergistic neuroprotection in neurons exposed to OGD. This effect correlated with MS-275 capability to increase total RelA acetylation and resveratrol capability to reduce RelA K310 acetylation through the activation of an AMP-activated protein kinase-sirtuin 1 pathway. The synergistic treatment reproduced the acetylation state of RelA peculiar of preconditioning ischemia. Neurons exposed to the combined drugs totally recovered the optimal histone H3 acetylation. Neuroprotection was reproduced in mice subjected to MCAO and treated with MS-275 (20μg/kg and 200μg/kg) or resveratrol (6800μg/kg) individually. However, the administration of lowest doses of MS-275 (2μg/kg) and resveratrol (68μg/kg) synergistically reduced infarct volume and neurological deficits. Importantly, the treatment was effective even when administered 7h after the stroke onset. Chromatin immunoprecipitation analysis of cortices harvested from treated mice showed that the RelA binding and histone acetylation increased at the Bcl-xL promoter and decreased at the Bim promoter.. Our study reveals that epigenetic therapy shaping acetylation of both RelA and histones may be a promising strategy to limit post-ischemic injury with an extended therapeutic window. Topics: Acetylation; Animals; Benzamides; Brain; Brain Ischemia; Cell Hypoxia; Disease Models, Animal; Epigenesis, Genetic; Glucose; Histone Deacetylase Inhibitors; Histones; Infarction, Middle Cerebral Artery; Male; Mice, Inbred C57BL; Neurons; Neuroprotective Agents; NF-kappa B; Pyridines; Resveratrol; Sirtuin 1; Stilbenes; Transcription Factor RelA | 2013 |
Neuroprotective effect of resveratrol against prenatal stress induced cognitive impairment and possible involvement of Na(+), K(+)-ATPase activity.
Resveratrol, an active ingredient of red wine extracts, has been shown to exhibit neuroprotective effects in several experimental models. Hence in the present study, the protective effects of resveratrol on cognitive deficits induced by prenatal stress were evaluated in offspring, and the possible involvement of Na(+), K(+)-ATPase in learning deficits were explored. Pregnant rats were subjected to restraint stress during early or late gestational period. Another set of rats received resveratrol during the entire gestational period along with early or late gestational stress. The study parameters included various behavioral tests like open field test and Morris water maze test. At the end of the behavioral tests (on 40th postnatal day), the offspring were sacrificed, and their brain homogenate was subjected to Na(+), K(+)-ATPase estimation. Early and late gestational stress affected spatial learning and memory and prenatal resveratrol has reversed these cognitive deficits. The Na(+), K(+)-ATPase activity in the offspring brain homogenate was reduced in the late gestational stress group; however prenatal resveratrol treatment has not affected this activity. These data suggest the neuroprotective efficacy of resveratrol against prenatal stress induced cognitive impairment. Though late gestational stress involves Na(+), K(+)-ATPase activity in rat brain homogenate, this would not be the primary cause in prenatal stress-induced cognitive dysfunction. Topics: Animals; Antioxidants; Brain; Cognition Disorders; Disease Models, Animal; Female; Male; Maze Learning; Neuroprotective Agents; Pregnancy; Prenatal Exposure Delayed Effects; Rats, Wistar; Restraint, Physical; Resveratrol; Sodium-Potassium-Exchanging ATPase; Stilbenes; Stress, Psychological | 2013 |
Sirtuin 1 activator SRT1720 suppresses inflammation in an ovalbumin-induced mouse model of asthma.
In asthma, reduced histone deacetylase activity and enhanced histone acetyltransferase activity in the lungs have been reported. However, the precise function of Sirtuin 1 (Sirt1), a class III histone deacetylase, and the effect of the Sirt1 activator SRT1720 on allergic inflammation have not been fully elucidated.. The effect of SRT1720, a synthetic activator of Sirt1, in an ovalbumin (OVA)-induced asthma mouse model was investigated. The effect of SRT1720 and resveratrol on OVA stimulation in splenocytes from OVA-sensitized and challenged mice was also examined.. In OVA-sensitized and challenged mice (OVA mice) compared with saline-sensitized and challenged mice (control mice), Sirt1 messenger RNA expression in the lungs was decreased (P = 0.02), while cellular infiltration, airway eosinophilia and bronchoalveolar lavage (BAL) fluid levels of interleukin (IL)-4, IL-5 and IL-13 were increased (P < 0.01). In OVA mice, SRT1720 treatment decreased total and eosinophil cell counts and IL-5 and IL-13 levels in the BAL fluid compared with the vehicle treatment (P < 0.05). In OVA mice, SRT1720 treatment also decreased inflammatory cell lung infiltrates histologically (P = 0.002). Both SRT1720 and resveratrol suppressed OVA-induced cell proliferation and IL-6 (P < 0.05) and tumour necrosis factor-α (TNF-α) (P < 0.05) production in splenocytes (P < 0.01).. The Sirt1 activator SRT1720 suppressed inflammatory cell infiltration and cytokine production in an OVA-induced mouse model of asthma. SRT1720 and resveratrol suppressed OVA-induced splenocyte proliferation and TNF-α and IL-6 production. Sirt1 activators might have beneficial effects in asthmatics by suppressing inflammation. Topics: Administration, Oral; Animals; Anti-Inflammatory Agents, Non-Steroidal; Asthma; Cytokines; Disease Models, Animal; Female; Heterocyclic Compounds, 4 or More Rings; Lung; Mice; Mice, Inbred BALB C; Ovalbumin; Pneumonia; Respiratory System; Resveratrol; RNA, Messenger; Sirtuin 1; Stilbenes | 2013 |
Natural therapies assessment for the treatment of endometriosis.
Can resveratrol and epigallocatechin-3-gallate (EGCG) inhibit the growth and survival of endometriotic-like lesions in vivo in a BALB/c model of endometriosis, and in vitro in primary cultures of human endometrial epithelial cells (EECs)?. Resveratrol and EGCG exerted a potent inhibitory effect on the development of endometriosis in a BALB/c murine model and on the survival of EECs.. Endometriosis is a common condition associated with infertility and pelvic pain in women of reproductive age. Resveratrol and EGCG are two polyphenols with anticarcinogenic and antioxidant properties that have been proposed as natural therapies to treat endometriosis.. Fifty-six 2-month-old female BALB/c mice underwent surgical induction of endometriosis. Treatments with resveratrol or EGCG started 15 days post-surgery and continued for 4 weeks. Human biopsies were taken with a metal Novak curette from the posterior uterine wall from 16 patients with untreated endometriosis and 15 controls who underwent diagnostic laparoscopy for infertility.. After the treatments, animals were sacrificed and lesions were counted, measured, excised and fixed. Immunohistochemistry for proliferating cell nuclear antigen and CD34 was performed for cell proliferation and vascularization assessment in the lesions. The terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end labeling (TUNEL) technique was performed for apoptosis evaluation. Peritoneal fluid was collected to analyze vascular endothelial growth factor levels. Human EECs were purified from proliferative-phase endometrial biopsies and cultured. The effect of both polyphenols on cell proliferation was determined by a colorimetric assay using the CellTiter 96®AQueous One Solution Cell Proliferation Assay kit and on apoptosis by the TUNEL technique, using an In Situ Cell Death Detection Kit with Fluorescein.. In the mouse model, both treatments significantly reduced the mean number (P < 0.05 versus control) and the volume of established lesions (P < 0.05 versus control). Treatments consistently statistically significantly diminished cell proliferation (resveratrol P < 0.01 and EGCG P < 0.05, versus control), reduced vascular density (resveratrol P < 0.01 and EGCG P < 0.001, versus control) and increased apoptosis within the lesions (resveratrol P < 0.01 and EGCG P < 0.05, versus control). Both compounds induced reduction in human EEC proliferation (P < 0.05 versus basal) and increased apoptosis (P < 0.05 versus basal) in primary cultures.. In vitro studies were only carried out in epithelial cells from human eutopic endometrium.. The present findings are promising and will assist the development of novel natural treatments for endometriosis.. This study was supported by ANPCYT (PICT 6384 BID 1201 OC-AR) and CONICET (PIP 5471), Argentina. None of the authors has any conflict of interest to declare. Topics: Angiogenesis Inhibitors; Animals; Antioxidants; Apoptosis; Catechin; Cell Proliferation; Cells, Cultured; Disease Models, Animal; Dose-Response Relationship, Drug; Endometriosis; Endometrium; Female; Humans; Injections, Intraperitoneal; Intestinal Diseases; Mice; Mice, Inbred BALB C; Neovascularization, Pathologic; Random Allocation; Resveratrol; Stilbenes | 2013 |
Dietary resveratrol prevents Alzheimer's markers and increases life span in SAMP8.
Resveratrol is a polyphenol that is mainly found in grapes and red wine and has been reported to be a caloric restriction (CR) mimetic driven by Sirtuin 1 (SIRT1) activation. Resveratrol increases metabolic rate, insulin sensitivity, mitochondrial biogenesis and physical endurance, and reduces fat accumulation in mice. In addition, resveratrol may be a powerful agent to prevent age-associated neurodegeneration and to improve cognitive deficits in Alzheimer's disease (AD). Moreover, different findings support the view that longevity in mice could be promoted by CR. In this study, we examined the role of dietary resveratrol in SAMP8 mice, a model of age-related AD. We found that resveratrol supplements increased mean life expectancy and maximal life span in SAMP8 and in their control, the related strain SAMR1. In addition, we examined the resveratrol-mediated neuroprotective effects on several specific hallmarks of AD. We found that long-term dietary resveratrol activates AMPK pathways and pro-survival routes such as SIRT1 in vivo. It also reduces cognitive impairment and has a neuroprotective role, decreasing the amyloid burden and reducing tau hyperphosphorylation. Topics: Aging; Alzheimer Disease; Animals; Biomarkers; Blotting, Western; Caloric Restriction; Cognition; Dietary Supplements; Disease Models, Animal; Enzyme Inhibitors; Immunohistochemistry; Longevity; Mice; Resveratrol; Ribonucleotide Reductases; Stilbenes | 2013 |
Polydatin ameliorates renal injury by attenuating oxidative stress-related inflammatory responses in fructose-induced urate nephropathic mice.
A series of studies have recently demonstrated that the oxidative stress, nuclear factor-kappa B (NF-κB) activation and the subsequent coordinated inflammatory responses played an important role in the pathogenesis of urate nephropathy (UN). Polydatin has been suggested to have the properties of anti-oxidative, anti-inflammatory and nephroprotective effects. However, the possible protective and beneficial effects of polydatin on UN are not fully elucidated. Therefore, we investigated the potential beneficial effects and possible mechanisms of polydatin on UN. In this study, polydatin showed inhibitory activities on xanthine oxidase to repress the level of serum uric acid in vivo and in vitro. Further investigations revealed that polydatin displayed little toxic effects and significantly ameliorated the renal function in fructose-induced UN mice. The nephroprotective activities of polydatin was not only due to the effects on remarkably attenuating the oxidative stress induced by uric acid, but also on markedly suppressing the oxidative stress-related inflammatory cascade, including decreasing the expressions of NF-κB p65, COX-2 and iNOS proteins and inhibiting the productions of TNF-α, PGE(2) and IL-1β. These findings elucidated that polydatin exhibited prominent nephroprotective activities and low toxic effects. Topics: Animals; Blood Chemical Analysis; Body Weight; Cyclooxygenase 2; Dinoprostone; Disease Models, Animal; Drugs, Chinese Herbal; Fructose; Glucosides; Inflammation; Interleukin-1beta; Kidney; Kidney Diseases; Male; Mice; Mice, Inbred Strains; NF-kappa B; Nitric Oxide Synthase Type II; Oxidative Stress; Protective Agents; Stilbenes; Tumor Necrosis Factor-alpha; Uric Acid; Xanthine Oxidase | 2013 |
Lack of resveratrol neuroprotection in developing rats treated with kainic acid.
In adult rats, trans-resveratrol attenuates kainic acid (KA)-induced convulsions and the associated hippocampal neurotoxicity. Increased neuronal survival was correlated with reduced lipid peroxidation. Since free radical generation after KA is age dependent and does not correlate with the onset of seizure-induced injury, the present study investigated whether daily trans-resveratrol treatment in development could protect the juvenile hippocampus from seizures and onset of damage at postnatal (P) day 21. Rat pups were treated with daily injections of trans-resveratrol under three dosage regimens (1-15 mg/kg and 20-50mg/kg). Weight, electroencephalography (EEG), histology, and N-methyl-d-aspartate (NMDA) receptor expression were determined. Malondialdehyde (MDA) concentration was assessed from separate animals. trans-Resveratrol did not interfere with growth or attenuate KA-induced EEG seizures. However, modest protection was afforded in the CA1, the subregion most sensitive to injury at this age. The CA3 and entorhinal amygdala cortex (AMG/EC) were not spared. Changes in NR1 subunit or NR1 C2 splice variant expression were also not prevented. Baseline MDA concentrations of hippocampal subfields were low at P14, P21, and P60 and high in aged adults. Glutamate (100 μM) to stimulate peroxidation products was significant at young ages but was much greater at older ages. After KA, elevated MDA levels were observed at 24h but only in adult preparations. Thus, while antioxidant therapy with trans-resveratrol may be considered as an adjunctive therapy to hinder epileptic activity and neurodegeneration at adult ages, it had only modest effects at young ages when production of free radicals within limbic structures is limited in this experimental model of seizures. Topics: Age Factors; Analysis of Variance; Animals; Animals, Newborn; Body Weight; Brain Waves; Cell Count; Disease Models, Animal; Electroencephalography; Excitatory Amino Acid Agonists; Female; Gene Expression Regulation, Developmental; Hippocampus; Kainic Acid; Lipid Peroxidation; Male; Malondialdehyde; Neuroprotective Agents; Phosphopyruvate Hydratase; Rats; Rats, Sprague-Dawley; Receptors, N-Methyl-D-Aspartate; Resveratrol; Status Epilepticus; Stilbenes | 2013 |
Antidepressant-like effect of trans-resveratrol in chronic stress model: behavioral and neurochemical evidences.
Trans-resveratrol is a phenolic compound enriched in polygonum cuspidatum and has diverse biological activities. There is only limited information about the antidepressant-like effect of trans-resveratrol. The present study investigated whether trans-resveratrol has antidepressant-like activity in rats exposed to chronic stress by using two behavioral tasks, shuttle box and sucrose preference tests. The monoamines (5-HT, noradrenaline and dopamine) and their metabolites as well as monoamine oxidase (MAO) enzyme activities in different brain regions were also measured. Compared to unstressed rats, those exposed to chronic stress paradigm showed performance deficits in the shuttle box, reduced sucrose preference, less weight gain and the increase in the ratio of adrenal gland to body weight, which were reversed by chronic treatment with trans-resveratrol (40 and 80 mg/kg, i.g.). The neurochemical assay showed that higher dose of trans-resveratrol (80 mg/kg) produced a marked increase of 5-HT levels in three brain regions, the frontal cortex, hippocampus and hypothalamus. Noradrenaline and dopamine levels were also increased both in the frontal cortex and striatum. Furthermore, chronic treatment with trans-resveratrol was found to inhibit monoamine oxidase-A (MAO-A) activity in all the four brain regions, particularly in the frontal cortex and hippocampus; while MAO-B activity was not affected. These findings indicate that the antidepressant-like effect of trans-resveratrol involves the regulation of the central serotonin and noradrenaline levels and the related MAO-A activities. Topics: Adrenal Glands; Animals; Antidepressive Agents; Body Weight; Brain; Chronic Disease; Disease Models, Animal; Dose-Response Relationship, Drug; Escape Reaction; Fluoxetine; Food Preferences; Gene Expression Regulation; Imipramine; Male; Rats; Rats, Sprague-Dawley; Resveratrol; Stilbenes; Stress, Psychological; Sucrose; Sweetening Agents; Time Factors; Water Deprivation | 2013 |
Polydatin--a new mitochondria protector for acute severe hemorrhagic shock treatment.
The aim of the study was find out whether neuronal mitochondrial injury does take place in severe shock and to explore effective therapy for severe shock.. Rats were divided in the following group: sham, shock + normal saline (NS), shock + cyclosporine A (CsA), shock + resveratrol (Res) and shock + polydatin (PD). Rats were subjected to shock for 2 h, followed by administration of NS, CsA, Res and PD, and infusion of shed blood. Morphology, metabolism and function of mitochondria were measured.. Increased lipid peroxides (LPO) levels, lysosomal injury and mitochondrial permeability transition pore opening took place in neurons, resulting in swollen mitochondria with poorly defined cristae, decreased mitochondrial membrane potential (ΔΨ) and reduced ATP content in shock + NS group, indicating mitochondrial dysfunction. Mitochondrial protectors, such as CsA, Res and PD, partially inhibited these alterations, especially following PD protection, ATP level increased from 44.14 ± 13.81% in shock + NS group to 89.57 ± 9.21% and the survival time was prolonged from 6.3 ± 5.9 h in the shock + NS group to 31.6 ± 13.7 h in shock + PD group.. The study shows that neuronal mitochondrial injury is involved in the genesis of severe shock and PD may be the best choice for protection of neuron against mitochondrial injury in severe shock. Topics: Acute Disease; Animals; Disease Models, Animal; Dose-Response Relationship, Drug; Drugs, Chinese Herbal; Glucosides; Lipid Peroxidation; Lipid Peroxides; Membrane Potential, Mitochondrial; Mitochondria; Mitochondrial Membrane Transport Proteins; Mitochondrial Permeability Transition Pore; Neurons; Parietal Lobe; Protective Agents; Rats; Rats, Wistar; Severity of Illness Index; Shock, Hemorrhagic; Stilbenes; Survival Analysis | 2013 |
Resveratrol improves intrahepatic endothelial dysfunction and reduces hepatic fibrosis and portal pressure in cirrhotic rats.
Resveratrol, a polyphenol found in a variety of fruits, exerts a wide range of beneficial effects on the endothelium, regulates multiple vasoactive substances and decreases oxidative stress, factors involved in the pathophysiology of portal hypertension. Our study aimed at evaluating the effects of resveratrol on hepatic and systemic hemodynamics, hepatic endothelial dysfunction, and hepatic fibrosis in CCl₄ cirrhotic rats.. Resveratrol (10 and 20 mg/kg/day) or its vehicle was administered to cirrhotic rats for two weeks and hepatic and systemic hemodynamics were measured. Moreover, we evaluated endothelial function by dose-relaxation curves to acetylcholine, hepatic NO bioavailability and TXA2 production. We also evaluated liver fibrosis by Sirius Red staining of liver sections, collagen-1, NFκB, TGFβ mRNA expression, and desmin and α-smooth muscle actin (α-SMA) protein expression, as a surrogate of hepatic stellate cell activation.. Resveratrol administration significantly decreased portal pressure compared to vehicle (12.1 ± 0.9 vs. 14.3 ± 2.2 mmHg; p <0.05) without significant changes in systemic hemodynamics. Reduction in portal pressure was associated with an improved vasodilatory response to acetylcholine, with decreased TXA2 production, increased endothelial NO, and with a significant reduction in liver fibrosis. The decrease in hepatic fibrosis was associated with a reduced collagen-1, TGFβ, NFκB mRNA expression and desmin and α-SMA protein expression.. Resveratrol administration reduces portal pressure, hepatic stellate cell activation and liver fibrosis, and improves hepatic endothelial dysfunction in cirrhotic rats, suggesting it may be a useful dietary supplement in the treatment of portal hypertension in patients with cirrhosis. Topics: Animals; Antioxidants; Carbon Tetrachloride; Disease Models, Animal; Dose-Response Relationship, Drug; Endothelium, Vascular; Hypertension, Portal; Liver; Liver Cirrhosis; Liver Cirrhosis, Experimental; Male; Nitric Oxide Synthase Type III; Portal Pressure; Rats; Rats, Wistar; Resveratrol; Stilbenes; Thromboxane A2 | 2013 |
Evidence for the analgesic activity of resveratrol in acute models of nociception in mice.
The effects of trans-resveratrol (1) were evaluated in acute nociception models induced by capsaicin or glutamate in mice, in an attempt to further characterize its mechanism of action. The oral administration of 1 (50 and 100 mg/kg) reduced significantly the licking behavior elicited by capsaicin (1.6 μg/paw) or glutamate (10 μmol/paw). The co-administration of 1 into the mouse paw (200 μg/site) markedly prevented glutamate-induced licking, without affecting capsaicin responses. In addition, the intrathecal (it) injection of 1 (150 to 600 μg/site) greatly reduced the licking behavior caused by capsaicin, but not glutamate. Similarly, the intracerebroventricular injection of 1 (300 μg/site) caused a potent inhibition of capsaicin-induced nociception, while the glutamate responses remained unaffected. However, the co-administration of 1 (300 μg/site) reduced the biting behavior induced by spinal injection of glutamate (30 μg/site, it), leaving capsaicin (6.4 μg/site)-induced biting unaltered. Notably, the oral administration of 1 (100 mg/kg) inhibited significantly the capsaicin-induced increase of c-Fos and COX-2 labeling in the spinal cord and COX-2 expression in the cortex, but failed to affect c-Fos and COX-2 expression in the glutamate model. This study has explored the effects of 1 in both the capsaicin and glutamate models, extending current knowledge on the analgesic effects of trans-resveratrol. Topics: Analgesics; Animals; Behavior, Animal; Capsaicin; Cyclooxygenase 2; Disease Models, Animal; Dose-Response Relationship, Drug; Glutamic Acid; Male; Mice; Molecular Structure; Nociception; Pain Measurement; Proto-Oncogene Proteins c-fos; Resveratrol; Stereoisomerism; Stilbenes | 2013 |
Neuroprotective effect of resveratrol prophylaxis on experimental retinal ischemic injury.
The purpose of the present study was to investigate whether systemically administered resveratrol can protect against acute retinal ischemic reperfusion injury. Two groups of adult male Sprague Dawley rats (n = 6 per group) were used for this study. Resveratrol (30 mg/kg) or an equal volume of vehicle (30% Solutol HS 15 in 0.9% saline) was administered daily for 5 days via intraperitoneal injection. On the third day of treatment, retinal ischemic injury was induced by elevation of intraocular pressure for 45 min. Prior to resveratrol administration and one-week following ischemic insult, retinal function was measured by scotopic electroretinography (ERG). Retinas were harvested and morphologically analyzed one week after ischemic insult. ERG a- and b-wave amplitudes were significantly reduced following ischemic reperfusion injury. Resveratrol treatment attenuated ischemic-induced loss of retinal function. In control vehicle-treated rats, ischemic reperfusion injury elicited marked thinning of inner retinal layers. Resveratrol prophylactic treatment reduced ischemia-mediated thinning of the whole retina and in particular the inner retinal layers. Therefore, resveratrol may have therapeutic value for the management of retinal ischemic disorders. Topics: Animals; Cytoprotection; Disease Models, Animal; Electroretinography; Injections, Intraperitoneal; Male; Neuroprotective Agents; Rats; Rats, Sprague-Dawley; Reperfusion Injury; Resveratrol; Retina; Retinal Diseases; Stilbenes; Time Factors | 2013 |
Resveratrol protects against age-associated infertility in mice.
Does resveratrol counteract age-associated infertility in a mouse model of reproductive aging?. Long-term-oral administration of resveratrol protects against the reduction of fertility with reproductive aging in mice.. Loss of oocytes and follicles and reduced oocyte quality contribute to age-associated ovarian aging and infertility. Accumulation of free radicals with age leads to DNA mutations, protein damage, telomere shortening, apoptosis and accelerated ovarian aging. Increasing evidence shows that resveratrol, enriched in certain foods, for example red grapes and wine, has anti-tumor and anti-aging effects on somatic tissues by influencing various signaling pathways, including anti-oxidation, as well as activating Sirt1 and telomerase. We investigated the potential of resveratrol to stave off ovarian aging in the inbred C57/BL6 mouse model.. Young C57/BL6 females (aged 2-3 months) were fed with resveratrol added to drinking water at 30 mg/l (providing ∼7.0 mg/kg/day) for 6 or 12 months, and the fertility and ovarian functions were compared among mice treated with or without resveratrol, and young mice served as reproductive controls. Experiments were repeated three times, with an average of 25 females randomly allocated to each treatment group for each repeat.. Reproductive performance of female mice was determined by litter size, ovarian follicles and oocyte quantity and quality, and compared with age-matched controls. The impact of resveratrol on telomeres and telomerase activity, and expression of genes associated with cell senescence also was evaluated.. Young mice fed with resveratrol for 12 months retained the capacity to reproduce, while age-matched controls produced no pups. Consistently, mice fed with resveratrol for 12 months exhibited a larger follicle pool than controls (P < 0.05). Furthermore, telomerase activity, telomere length and age-related gene expression in ovaries of mice fed with resveratrol resembled those of young mice, but differed (P < 0.05) from those of age-matched old mice. Resveratrol improved (P < 0.05) the number and quality of oocytes, as evidenced by spindle morphology and chromosome alignment. Also, resveratrol affected embryo development in vitro in a dose-dependent manner.. The doses of resveratrol and the experimental conditions used by different research groups have varied considerably, and the dosage influences both the effectiveness and toxicity of resveratrol. Fine-tuning the dosage of resveratrol likely will optimize its anti-aging effects on ovarian function.. Our data provide a proof of principle of the fertility-sparing effect of resveratrol in female mice. Although depletion of the ovarian reserve of high-quality oocytes also contributes to increased infertility with reproductive aging in women, the data obtained using a mouse model may not extrapolate directly to human reproduction, and more extensive research is needed if any clinic trials are to be attempted.. This work was supported by MOST of China National Basic Research Program (grant number: 2010CB94500 and 2012CB911200). The authors have no competing interests to declare. Topics: Aging; Animals; Antioxidants; Apoptosis; Disease Models, Animal; Ectogenesis; Female; Gene Expression Regulation, Developmental; Infertility, Female; Mice; Mice, Inbred C57BL; Mice, Inbred ICR; Oogenesis; Ovary; Oxidative Stress; Primary Ovarian Insufficiency; Proto-Oncogene Proteins p21(ras); Random Allocation; Resveratrol; Sirtuin 1; Stilbenes; Telomerase; Telomere Shortening | 2013 |
Resveratrol prevents global cerebral ischemia-induced decrease in lipid content.
The present study was undertaken to evaluate whether resveratrol (RSV) modulates membrane lipid composition, as well as on ganglioside profile in ischemia/reperfusion injury.. Global cerebral ischemia was induced by four-vessel occlusion for 10 minutes. RSV (30 mg/kg) or vehicle was intraperitoneally administered to rats 7 days prior to ischemia. Brain structures were homogenized with chloroform/methanol for ganglioside, phospholipids, and cholesterol levels.. RSV significantly prevented the reduction in the total content of gangliosides, phospholipids, and cholesterol in hippocampi and cerebral cortex induced by global cerebral ischemia. Although ischemia/reperfusion decreased ganglioside content, the ganglioside profiles were apparently not modified.. Our experiments suggest that lipid metabolism is important for development of ischemic damage and indicate that RSV treatment 7 days prior to ischemia may prevent membrane lipid loss. Topics: Animals; Antioxidants; Brain Ischemia; Cholesterol; Chromatography, Thin Layer; Disease Models, Animal; Gangliosidoses; Lipid Metabolism Disorders; Male; Phospholipids; Rats; Rats, Wistar; Resveratrol; Stilbenes | 2013 |
Resveratrol decreases inflammation in the brain of mice with mild traumatic brain injury.
Following a mild traumatic brain injury (TBI) event, the secondary brain injury that persists after the initial blow to the head consists of excitotoxicity, decreased cerebral glucose levels, oxidant injury, mitochondrial dysfunction, inflammation, and neuronal cell death. To date, there are no effective interventions used at decreasing secondary brain injury after mild TBI.. In this study, male mice were treated with either placebo or resveratrol (100 mg/kg) at 5 minutes and 12 hours after mild TBI. The mice were injured using the controlled cortical impact device. In this closed-head model, a midline incision was made to access the skull and the impactor tip was aligned on the sagittal suture midway between the bregma and lambda sutures. The mice were injured at a depth of 2.0 mm, velocity of 4 m/s, and a delay time of 100 milliseconds. At 72 hours following injury, the animals were intracardially perfused with 0.9% saline followed by 10% phosphate-buffered formalin. The whole brain was removed, sliced, and stained for microglial activation (Iba1). In addition, using the enzyme-linked immunosorbent assay, tissue levels of interleukin 6 (IL-6) and IL-12 were measured in the cerebral cortex and hippocampus.. In this study, we found that in the placebo treatment group, there was a significant increase in Iba1 staining in the brain. The levels of microglial activation was reduced by resveratrol in the cerebral cortex (p < 0.001), corpus callosum (p < 0.001), and dentate gyrus (p < 0.005) brain regions after mild TBI. In addition to Iba1, resveratrol decreased the brain levels of IL-6 (p < 0.0001) and IL-12 (p < 0.004), which were observed in the hippocampus of the placebo group. In our model, no increase of IL-6 or IL-12 was observed in the cerebral cortex following TBI.. Resveratrol given acutely after TBI results in a decrease in neuroinflammation. These results suggest that resveratrol may be beneficial in reducing secondary brain injury after experiencing a mild TBI. Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Brain Injuries; Disease Models, Animal; Encephalitis; Enzyme-Linked Immunosorbent Assay; Hippocampus; Interleukin-12; Interleukin-6; Male; Mice; Mice, Inbred C57BL; Microglia; Resveratrol; Stilbenes | 2013 |
Enhancing melanoma treatment with resveratrol.
Resveratrol (RESV) is a naturally occurring compound that possesses anti-cancer capabilities. The goal of this study was to evaluate the potential of RESV as an adjunct to chemotherapy in melanoma treatment.. The in vitro and in vivo cytotoxic activity of RESV with or without chemotherapy was tested using cellular assays and a xenograft model. Two Duke melanoma cell lines (DM738, DM443) were used for both in vivo and in vitro experiments, and two nonmalignant human fibroblast lines (NHDF, HS68) were used for in vitro cellular assays. Xenografts were randomized to treatment arms and tumors measured to evaluate response. Results were analyzed using a Student's t-test and ANOVA. Western blots were performed on in vivo tissue.. In vitro RESV significantly decreased melanoma cell viability in all lines tested (all P < 0.0001). Treatment of fibroblast cell lines revealed that RESV selectively spared NHDF and HS68 cells compared with its cytotoxic effects on melanoma cells (P < 0.0001). Treatment of malignant cells with 50 μM RESV and temozolomide (TMZ) for 72 h significantly enhanced cytotoxicity compared with treatment with TMZ alone (P < 0.0001). In vivo, however, there was no significant difference between any treatment arms (P = 0.65).. RESV shows promise as a novel therapeutic in the management of melanoma for its selective anti-tumor activity in vitro. Translating in vitro results to in vivo models has proven difficult. Barriers thought to prevent such translation are identified, and a rationale for overcoming them is discussed. Topics: Animals; Antineoplastic Agents; Cell Line; Cell Line, Tumor; Chemotherapy, Adjuvant; Dacarbazine; Disease Models, Animal; Drug Therapy, Combination; Humans; In Vitro Techniques; Melanoma; Melphalan; Mice; Mice, Nude; Mice, SCID; Resveratrol; Skin Neoplasms; Stilbenes; Temozolomide; Treatment Outcome; Xenograft Model Antitumor Assays | 2012 |
Effect of resveratrol on cartilage protection and apoptosis inhibition in experimental osteoarthritis of rabbit.
To observe the effect of resveratol on cartilage, chondrocyte apoptosis, and nitric oxide in experimental osteoarthritis (OA) of rabbit and to study the mechanism of resveratol in the treatment of osteoarthritis. Thirty New Zealand rabbits were randomly divided into 5 groups: group A (normal control group), group B (model control group), group C (resveratrol intervention high-dosage group), group D (resveratrol intervention middle dosage group), and group E (resveratrol intervention low-dosage group). The model of OA of the knee was established using Hulth technique in groups B, C, D, and E. After 4 weeks, group A and group B rabbits were administered daily a knees injection of dimethylsulfoxide (DMSO), whereas groups C, D, and E were administered daily a knees injection of resveratrol in DMSO in different dosages for 2 weeks. Daily dosage for rabbits of groups C, D, and E was fixed at 50, 20, and 10 μmol/kg, respectively. Then, the rabbits were killed, and the lateral cartilage sections of right femoral medial condyle were evaluated using a histological scoring system (H&E and safranin-O staining) and analyzed by TUNEL for apoptosis. Nitric oxide (NO) in synovial fluid was measured by nitrate reduction method. Histological evaluation of cartilage tissue revealed a significantly reduced cartilage destruction; the evaluation also revealed the loss of matrix proteoglycan content in cartilage in resveratrol intervention groups compared to the model control. Resveratrol reduced the apoptosis rate of chondrocyte and level of NO in the synovial fluid. In the above experiments of OA rabbits, the protective effects of resveratrol were enhanced with increased resveratrol dosage. Resveratrol controls the progression of experimental OA. One of the mechanism(s) responsible for this effect would include lowering of the apoptosis rate of chondrocyte and reducing the production of NO in experimental OA. Topics: Animals; Apoptosis; Cartilage; Chondrocytes; Cytoprotection; Disease Models, Animal; Female; In Situ Nick-End Labeling; Injections, Intra-Articular; Knee Joint; Male; Nitric Oxide; Osteoarthritis, Knee; Rabbits; Resveratrol; Stilbenes; Synovial Fluid; Time Factors | 2012 |
Diffusion-weighted MR imaging allows monitoring the effect of combretastatin A4 phosphate on rabbit implanted VX2 tumor model: 12-day dynamic results.
To investigate the 12-day dynamic characteristics of tumor response to intravenous administration of CA4P in rabbit VX2 tumor models.. Study protocol was approved by local ethical committee for animal care and use. Sixteen rabbits with 32 tumors on bilateral legs were randomly divided into treated and control groups. Conventional and DWI images were acquired before and 24 h, 4 days, 8 days and 12 days after treatment. The dynamic changes of tumor on images were correlated with histological results. ADCs were compared among and between groups at different time points.. The tumors in treated group grew slower than those in control group. In treaded group, the mean ADC decreased slightly at 24 h point due to cell edema caused by ischemia. Then, it increased significantly at 4 days and 8 days because of progressive central necrosis. Finally, peripheral tumor proliferation caused a second decrease of ADC at 12 days. The significant difference of ΔADC% between the two groups at 24 h, 4 days and 8 days indicated that the change of ADC in treated group was really caused by CA4P.. The dynamic histological changes of tumor caused by CA4P as reflected exactly by diffusion-weighted MR imaging indicate a noninvasive measure for monitoring tumor vascular targeting treatment. Topics: Animals; Diffusion Magnetic Resonance Imaging; Disease Models, Animal; Hindlimb; Infusions, Intravenous; Neoplasms, Experimental; Rabbits; Random Allocation; Stilbenes | 2012 |
The effect of resveratrol on blood pressure in a rat model of preeclampsia.
To examine the hypothesis that resveratrol administration could result in blood pressure and blood flow decrease in a rat preeclampsia model.. Desoxycorticosterone acetate (DOCA) was used to produce hypertension. The Wistar albino rats were divided randomly into three groups: control (n = 12), DOCA injected (n = 11), and DOCA injected and resveratrol treated (n = 13). Rats were sacrificed on gestational day 16-20. The systolic blood pressure was measured by the tail-cuff method. Urine protein was expressed as protein/creatinine. Laser Doppler measurements of the blood flow were made in one placenta, the left kidney and both parietal lobes of brain. Placentas were examined by light microscopy.. DOCA injected group exhibited significant differences in blood pressure and protein/creatinine. Mean blood pressure in DOCA-treated rats was 130.1 ± 12.9 mmHg at baseline and 148.4 ± 20.1 mmHg at the time of euthanization (p = 0.044). Resveratrol did not significantly affect blood pressure, placental and renal blood flows. There were also no significant differences in placental pathology parameters among the three groups.. The present study demonstrated that resveratrol did not decrease blood pressure, and did not result in a significant response in blood flows and placental pathology parameters. Topics: Animals; Antihypertensive Agents; Antioxidants; Blood Pressure; Disease Models, Animal; Down-Regulation; Drug Evaluation, Preclinical; Female; Male; Pre-Eclampsia; Pregnancy; Rats; Rats, Wistar; Renal Circulation; Resveratrol; Stilbenes | 2012 |
Resveratrol improves renal microcirculation, protects the tubular epithelium, and prolongs survival in a mouse model of sepsis-induced acute kidney injury.
The mortality rate of patients who develop acute kidney injury during sepsis nearly doubles. The effectiveness of therapy is hampered because it is usually initiated only after the onset of symptoms. As renal microvascular failure during sepsis is correlated with the generation of reactive nitrogen species, the therapeutic potential of resveratrol, a polyphenol vasodilator that is also capable of scavenging reactive nitrogen species, was investigated using the cecal ligation and puncture (CLP) murine model of sepsis-induced acute kidney injury. Resveratrol when given at 5.5 h following CLP reversed the decline in cortical capillary perfusion, assessed by intravital microscopy, at 6 h in a dose-dependent manner. Resveratrol produced the greatest improvement in capillary perfusion and increased renal blood flow and the glomerular filtration rate without raising systemic pressure. A single dose at 6 h after CLP was unable to improve renal microcirculation assessed at 18 h; however, a second dose at 12 h significantly improved microcirculation and decreased the levels of reactive nitrogen species in tubules, while improving renal function. Moreover, resveratrol given at 6, 12, and 18 h significantly improved survival. Hence, resveratrol may have a dual mechanism of action to restore the renal microcirculation and scavenge reactive nitrogen species, thus protecting the tubular epithelium even when administered after the onset of sepsis. Topics: Acute Kidney Injury; Animals; Antioxidants; Blood Pressure; Disease Models, Animal; Epithelium; Glomerular Filtration Rate; Heart Rate; Kidney; Kidney Tubules; Male; Mice; Mice, Inbred C57BL; Microcirculation; Reactive Nitrogen Species; Resveratrol; Sepsis; Stilbenes; Survival Analysis; Time Factors; Vasodilator Agents | 2012 |
Low-dose pterostilbene, but not resveratrol, is a potent neuromodulator in aging and Alzheimer's disease.
Recent studies have implicated resveratrol and pterostilbene, a resveratrol derivative, in the protection against age-related diseases including Alzheimer's disease (AD). However, the mechanism for the favorable effects of resveratrol in the brain remains unclear and information about direct cross-comparisons between these analogs is rare. As such, the purpose of this study was to compare the effectiveness of diet-achievable supplementation of resveratrol to that of pterostilbene at improving functional deficits and AD pathology in the SAMP8 mouse, a model of accelerated aging that is increasingly being validated as a model of sporadic and age-related AD. Furthermore we sought to determine the mechanism of action responsible for functional improvements observed by studying cellular stress, inflammation, and pathology markers known to be altered in AD. Two months of pterostilbene diet but not resveratrol significantly improved radial arm water maze function in SAMP8 compared with control-fed animals. Neither resveratrol nor pterostilbene increased sirtuin 1 (SIRT1) expression or downstream markers of sirtuin 1 activation. Importantly, markers of cellular stress, inflammation, and AD pathology were positively modulated by pterostilbene but not resveratrol and were associated with upregulation of peroxisome proliferator-activated receptor (PPAR) alpha expression. Taken together our findings indicate that at equivalent and diet-achievable doses pterostilbene is a more potent modulator of cognition and cellular stress than resveratrol, likely driven by increased peroxisome proliferator-activated receptor alpha expression and increased lipophilicity due to substitution of hydroxy with methoxy group in pterostilbene. Topics: Aging; Alzheimer Disease; Analysis of Variance; Animals; Biological Availability; Brain; Dietary Supplements; Disease Models, Animal; Female; Gas Chromatography-Mass Spectrometry; Gene Expression Regulation; Male; MAP Kinase Kinase 4; Maze Learning; Mice; Neurotransmitter Agents; NF-kappaB-Inducing Kinase; Phosphorylation; PPAR alpha; Protein Serine-Threonine Kinases; Resveratrol; Signal Transduction; Sirtuin 1; Stilbenes; tau Proteins | 2012 |
Resveratrol ameliorates the deleterious effect of severe acute pancreatitis.
Resveratrol (RES) is a traditional Chinese herbal medicine having anti-inflammatory properties. We sought to explore the role of RES in intestinal injury during severe acute pancreatitis (SAP) in a rat model study. For this purpose, RES-treated and sham-operated (SO) SAP rat models were established, and SAP was induced in rats by injecting 4% sodium taurocholate into the biliary-pancreatic duct. In the RES group, RES was infused intravenously immediately after the SAP induction in rats; SO group served as controls. Histopathological analysis, determination of tissue levels of superoxide dismutase (SOD) and malondialdehyde (MDA) and serum levels of TNF-α as well as ICAM-1 and VCAM-1 expression were carried out at 3, 6, and 12 h following SAP induction. The data show that following SAP induction, SOD levels decreased and MDA levels increased along with ICAM-1 and VCAM-1 expression in the intestine. Serum TNF-α levels increased in the SAP group. Importantly, RES treatment significantly reversed all the pathological changes. In conclusion, this study confirmed the anti-inflammatory properties of RES and demonstrated the prevention of injury to the intestinal barrier in the rat SAP model. Topics: Acute Disease; Animals; Anti-Inflammatory Agents, Non-Steroidal; Disease Models, Animal; Intercellular Adhesion Molecule-1; Male; Malondialdehyde; Pancreatitis; Rats; Rats, Sprague-Dawley; Resveratrol; Stilbenes; Superoxide Dismutase; Taurocholic Acid; Tumor Necrosis Factor-alpha; Vascular Cell Adhesion Molecule-1 | 2012 |
Resveratrol mitigates lipopolysaccharide- and Aβ-mediated microglial inflammation by inhibiting the TLR4/NF-κB/STAT signaling cascade.
Activation of microglia, the resident macrophages of the brain, around the amyloid plaques is a key hallmark of Alzheimer's disease (AD). Recent evidence in mouse models indicates that microglia are required for the neurodegenerative process of AD. Amyloid-β (Aβ) peptides, the core components of the amyloid plaques, can trigger microglial activation by interacting with several Toll-like receptors (TLRs), including TLR4. In this study, we show that resveratrol, a natural polyphenol associated with anti-inflammatory effects and currently in clinical trials for AD, prevented the activation of murine RAW 264.7 macrophages and microglial BV-2 cells treated with the TLR4 ligand, lipopolysaccharide (LPS). Resveratrol preferentially inhibited nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) activation upon LPS stimulation by interfering with IKK and IκB phosphorylation, an effect that potently reduced the transcriptional stimulation of several NF-κB target genes, including tumor necrosis factor-α and interleukin-6. Consequently, downstream phosphorylation of signal transducer and activator of transcription (STAT)1 and STAT3 upon LPS stimulation was also inhibited by resveratrol. We found that resveratrol acted upstream in the activation cascade by interfering with TLR4 oligomerization upon receptor stimulation. Resveratrol treatment also prevented the pro-inflammatory effect of fibrillar Aβ on macrophages by potently inhibiting the effect of Aβ on IκB phosphorylation, activation of STAT1 and STAT3, and on tumor necrosis factor-α and interleukin-6 secretion. Importantly, orally administered resveratrol in a mouse model of cerebral amyloid deposition lowered microglial activation associated with cortical amyloid plaque formation. Together this work provides strong evidence that resveratrol has in vitro and in vivo anti-inflammatory effects against Aβ-triggered microglial activation. Further studies in cell culture systems showed that resveratrol acted via a mechanism involving the TLR4/NF-κB/STAT signaling cascade. Topics: Alzheimer Disease; Amyloid beta-Peptides; Amyloid beta-Protein Precursor; Animals; Anti-Inflammatory Agents, Non-Steroidal; Cell Line, Transformed; Cytokines; Disease Models, Animal; Drug Interactions; Humans; I-kappa B Proteins; Inflammation Mediators; Lipopolysaccharides; Male; Mice; Mice, Transgenic; Microglia; NF-KappaB Inhibitor alpha; Presenilin-1; Resveratrol; Signal Transduction; Statistics, Nonparametric; Stilbenes; Time Factors; Toll-Like Receptors; Tumor Necrosis Factor-alpha | 2012 |
Resveratrol given intraperitoneally does not inhibit the growth of high-risk t(4;11) acute lymphoblastic leukemia cells in a NOD/SCID mouse model.
The efficacy of resveratrol as a preventive agent against the growth of t(4;11) acute lymphoblastic leukemia (ALL) was evaluated in NOD.CB17-Prkdcscid/J mice engrafted with the human t(4;11) ALL SEM cell line. SEM cells were injected into the tail vein and engraftment was monitored by flow cytometry. Once engraftment was observed, mice were injected intraperitoneally with resveratrol (10 mg/kg body weight) dissolved in dimethylsulfoxide (DMSO) or DMSO alone (control) every other day, or vincristine (0.5 mg/kg body weight) 3 times per week for 4 weeks (n=16 per group). Comparisons of the percent of human leukemia cells in blood and survival curves showed resveratrol did not inhibit progression of the disease. Liquid chromatography-tandem mass spectrometry analyses of mouse sera showed resveratrol was rapidly metabolized to glucuronidated and sulfated forms 1 h post-injection, with low to no resveratrol or metabolites observed in sera by 24-48 h. These data indicate that in contrast to findings in in vitro models, parenterally administered resveratrol does not have potential as a preventive agent against high risk t(4;11) ALL. Topics: Animals; Anticarcinogenic Agents; Antineoplastic Agents, Phytogenic; Disease Models, Animal; Female; Humans; Infusions, Parenteral; Mice; Mice, Inbred NOD; Mice, SCID; Precursor Cell Lymphoblastic Leukemia-Lymphoma; Resveratrol; Stilbenes | 2012 |
Resveratrol causes antiatherogenic effects in an animal model of atherosclerosis.
Resveratrol protects the cardiovascular system by a number of mechanisms, including antioxidant and anti-platelet activities.. To assess the potential anti-inflammatory and antiatherogenic effects of resveratrol using rabbits fed a hypercholesterolemic diet (1% cholesterol).. Twenty white male rabbits were selected and divided into two groups: control group (CG), 10 rabbits; and resveratrol group (RG), 10 rabbits. The animals were fed a hypercholesterolemic diet for 56 days. For the RG diet, resveratrol (2 mg/kg weight/day) was added from days 33-56.. There was no significant difference in the total serum cholesterol, HDL-cholesterol, LDL-cholesterol, and triglycerides between the groups. Of the CG, 70% had advanced aortic atherosclerotic lesions (types III, IV, V, or VI). All animals from the RG had mild aortic atherosclerotic lesions (types I or II, or no lesions). The intima area and the intima/media layer area ratio was significantly lower in the RG as compared to the CG (p<0.001). Positive areas for VCAM-1 molecules were lower in the RG (p=0.007). The MCP-1 and IL-6 concentrations were lower in the RG than the CG (p=0.039 and p=0.015, respectively).. Resveratrol had significant anti-atherogenic and anti-inflammatory effects in an animal model with rabbits fed a hypercholesterolemic diet (1% cholesterol). Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Atherosclerosis; Cholesterol, Dietary; Disease Models, Animal; Drug Evaluation, Preclinical; Hypercholesterolemia; Male; Platelet Aggregation Inhibitors; Rabbits; Random Allocation; Resveratrol; Statistics, Nonparametric; Stilbenes | 2012 |
Protective role of resveratrol against cisplatin induced ototoxicity in guinea pigs.
The aim of this study was to evaluate the effectiveness of systemic administration of resveratrol against cisplatin-induced ototoxicity in guinea pigs.. Healthy guinea pigs (n=24) were randomly divided into four groups. Group 1 (n=6) received resveratrol+cisplatin, group 2 (n=6) received 4% ethanol+cisplatin, group 3 (n=6) received cisplatin, and group 4 (n=6) received saline. Cisplatin was administered at a dose of 10mg/kg/day on days 14 and 15 of the study. Resveratrol (10mg/kg/day), 4% ethanol, and saline were administered throughout the study. Baseline auditory brainstem responses (ABR) (4 kHz, 8 kHz, and click stimulus) were determined for all groups. ABR was repeated 72 h after the last dose of cisplatin in order to record the threshold shifts. The ABR threshold shifts for the click stimulus, 4-kHz- and 8-kHz-frequency stimuli were compared after drug administration. After follow-up ABRs the animals sacrificed under deep sedation and their cochleae were removed. Left cochleae were immediately harvested for measurement of level of reactive oxygen species (ROS). Right cochleae were prepared for histological changes which were observed by scanning electron microscopy (SEM).. For the all stimulus, there was a significant threshold difference among the groups (p<0.01). Group 3 had a significantly higher threshold shift at all stimuli when compared with groups 1 and 4. There was no significant threshold shifts in all stimuli between groups 2 and 3. The resveratrol-treated group 1 showed preservation of threshold in ABR (p ≤ 0.05). SEM showed that inner and outer hair cells were preserved in the group 1. Level of reactive oxygen species (ROS) were significantly higher in groups 2 and 3 compared with groups 1 and 4 (p ≤ 0.05).. These results indicated that systemic administration of resveratrol afforded statistically significant protection to the cochlea of guinea pigs from cisplatin toxicity. Experimental dose of resveratrol injections may have a protective effect against cisplatin ototoxicity in guinea pigs. Topics: Animals; Antineoplastic Agents; Antioxidants; Cisplatin; Cochlea; Disease Models, Animal; Evoked Potentials, Auditory, Brain Stem; Guinea Pigs; Hearing Loss, Sensorineural; Male; Reactive Oxygen Species; Resveratrol; Stilbenes | 2012 |
Resveratrol engages AMPK to attenuate ERK and mTOR signaling in sensory neurons and inhibits incision-induced acute and chronic pain.
Despite advances in our understanding of basic mechanisms driving post-surgical pain, treating incision-induced pain remains a major clinical challenge. Moreover, surgery has been implicated as a major cause of chronic pain conditions. Hence, more efficacious treatments are needed to inhibit incision-induced pain and prevent the transition to chronic pain following surgery. We reasoned that activators of AMP-activated protein kinase (AMPK) may represent a novel treatment avenue for the local treatment of incision-induced pain because AMPK activators inhibit ERK and mTOR signaling, two important pathways involved in the sensitization of peripheral nociceptors.. To test this hypothesis we used a potent and efficacious activator of AMPK, resveratrol. Our results demonstrate that resveratrol profoundly inhibits ERK and mTOR signaling in sensory neurons in a time- and concentration-dependent fashion and that these effects are mediated by AMPK activation and independent of sirtuin activity. Interleukin-6 (IL-6) is thought to play an important role in incision-induced pain and resveratrol potently inhibited IL-6-mediated signaling to ERK in sensory neurons and blocked IL-6-mediated allodynia in vivo through a local mechanism of action. Using a model of incision-induced allodynia in mice, we further demonstrate that local injection of resveratrol around the surgical wound strongly attenuates incision-induced allodynia. Intraplantar IL-6 injection and plantar incision induces persistent nociceptive sensitization to PGE2 injection into the affected paw after the resolution of allodynia to the initial stimulus. We further show that resveratrol treatment at the time of IL-6 injection or plantar incision completely blocks the development of persistent nociceptive sensitization consistent with the blockade of a transition to a chronic pain state by resveratrol treatment.. These results highlight the importance of signaling to translation control in peripheral sensitization of nociceptors and provide further evidence for activation of AMPK as a novel treatment avenue for acute and chronic pain states. Topics: Acute Pain; AMP-Activated Protein Kinases; Animals; Chronic Pain; Disease Models, Animal; Dose-Response Relationship, Drug; Eukaryotic Initiation Factor-4F; Extracellular Signal-Regulated MAP Kinases; Hyperalgesia; Interleukin-6; Male; Mice; Mice, Inbred ICR; Pain, Postoperative; Protein Biosynthesis; Resveratrol; Sensory Receptor Cells; Signal Transduction; Sirtuin 1; Stilbenes; Time Factors; TOR Serine-Threonine Kinases; Trigeminal Ganglion | 2012 |
Effects of resveratrol on the amelioration of insulin resistance in KKAy mice.
Resveratrol (Res) has attracted great interest regarding its effects related to metabolic syndrome, especially for lipid metabolic disorder or insulin resistance; however, the underlying mechanisms remain elusive. To explore the effects of Res on insulin sensitivity and the underlying mechanism, insulin-resistant KKA(y) mice were treated with 2 and 4 g/kg diets of Res for 12 weeks. After the treatment, blood glucose, serum insulin, glucose tolerance, and insulin tolerance, as well as other indices such as adiponectin mRNA in epididymal adipose tissues, silent information regulator 1 (Sirt1), AMP-activated protein kinase (AMPK), insulin receptor substrate 1 (IRS1), and phosphorylated protein kinase B (PKB/AKT) proteins in liver and soleus muscles, were investigated. The results indicate that Res intervention reduces blood glucose and serum insulin levels, improves insulin and glucose tolerance, increases serum adiponectin and adiponectin mRNA levels in epididymal adipose tissues, and more importantly, elevates Sirt1, p-AMPK, p-IRS1, and p-AKT levels in liver and soleus muscles. In conclusion, Res could improve insulin sensitivity and ameliorate insulin resistance in KKA(y) mice, which may be associated with the upregulation of Sirt1 protein in liver and soleus muscles and consequent AMPK activation, as well as insulin-signaling related proteins. Topics: Adiponectin; Adipose Tissue; AMP-Activated Protein Kinases; Animals; Blood Glucose; Disease Models, Animal; Glucose Metabolism Disorders; Glucose Tolerance Test; Insulin; Insulin Receptor Substrate Proteins; Insulin Resistance; Liver; Male; Mice; Mice, Inbred C57BL; Muscle, Skeletal; Phosphorylation; Proto-Oncogene Proteins c-akt; Resveratrol; RNA, Messenger; Sirtuin 1; Stilbenes; Time Factors | 2012 |
The blood-brain barrier is disrupted in a mouse model of infantile neuronal ceroid lipofuscinosis: amelioration by resveratrol.
Disruption of the blood-brain barrier (BBB) is a serious complication frequently encountered in neurodegenerative disorders. Infantile neuronal ceroid lipofuscinosis (INCL) is a devastating childhood neurodegenerative lysosomal storage disorder caused by palmitoyl-protein thioesterase-1 (PPT1) deficiency. It remains unclear whether BBB is disrupted in INCL and if so, what might be the molecular mechanism(s) of this complication. We previously reported that the Ppt1-knockout (Ppt1-KO) mice that mimic INCL manifest high levels of oxidative stress and neuroinflammation. Recently, it has been reported that CD4(+) T-helper 17 (T(H)17) lymphocytes may mediate BBB disruption and neuroinflammation, although the precise molecular mechanism(s) remain unclear. We sought to determine: (i) whether the BBB is disrupted in Ppt1-KO mice, (ii) if so, do T(H)17-lymphocytes underlie this complication, and (iii) how might T(H)17 lymphocytes breach the BBB. Here, we report that the BBB is disrupted in Ppt1-KO mice and that T(H)17 lymphocytes producing IL-17A mediate disruption of the BBB by stimulating production of matrix metalloproteinases (MMPs), which degrade the tight junction proteins essential for maintaining BBB integrity. Importantly, dietary supplementation of resveratrol (RSV), a naturally occurring antioxidant/anti-inflammatory polyphenol, markedly reduced the levels of T(H)17 cells, IL-17A and MMPs, and elevated the levels of tight junction proteins, which improved the BBB integrity in Ppt1-KO mice. Intriguingly, we found that RSV suppressed the differentiation of CD4(+) T lymphocytes to IL-17A-positive T(H)17 cells. Our findings uncover a mechanism by which T(H)17 lymphocytes mediate BBB disruption and suggest that small molecules such as RSV that suppress T(H)17 differentiation are therapeutic targets for neurodegenerative disorders such as INCL. Topics: Animals; Blood-Brain Barrier; Brain; Disease Models, Animal; Enzyme Inhibitors; Mice; Mice, Knockout; Neuronal Ceroid-Lipofuscinoses; Resveratrol; Stilbenes; Thiolester Hydrolases | 2012 |
Resveratrol inhibits LPS-induced epithelial-mesenchymal transition in mouse melanoma model.
Epithelial to mesenchymal transition (EMT) has been linked to metastasis. Resveratrol exhibits potential antitumor activities; however, the inhibitory effects of resveratrol on the EMT of melanoma have not been demonstrated. Here, a new role for LPS in promoting EMT is described. LPS-induced EMT was identified by examining the markers of EMT. To assess the activation of NF-κB signal transduction pathway, we performed a reporter assay by using tumor cells transfected with the luciferase gene under the control of NF-κB response elements. The antitumor effects of resveratrol were evaluated in an experimental mouse metastasis tumor model. LPS increased N-cadherin and Snail expression and decreased zonula occludens-1 expression in a dose- and time-dependent manner. Meanwhile, LPS stimulated cell migration through activation of TLR4/NF-κB signal pathway. LPS-induced EMT is critical for inflammation-initiated metastasis. Nuclear translocation and transcriptional activity of p65 NF-κB, an important inducer of EMT, were inhibited by resveratrol. Resveratrol inhibited LPS-induced tumor migration and markers of EMT, significantly prolonged animal survival and reduced the tumor size. Thus, resveratrol plays an important role in the inhibition of LPS-induced EMT in mouse melanoma through the down-regulation of NF-κB activity. The data provide an insight into the mechanisms on the function of resveratrol during the processes of EMT. Topics: Animals; Antineoplastic Agents, Phytogenic; Biomarkers, Tumor; Cadherins; Disease Models, Animal; Epithelial-Mesenchymal Transition; Gene Expression Regulation, Neoplastic; Humans; Lipopolysaccharides; Male; Melanoma; Mice; Mice, Inbred C3H; NF-kappa B; Resveratrol; Signal Transduction; Skin Neoplasms; Snail Family Transcription Factors; Stilbenes; Transcription Factors | 2012 |
Resveratrol has antiinflammatory and antifibrotic effects in the peptidoglycan-polysaccharide rat model of Crohn's disease.
Resveratrol has antiinflammatory and antifibrotic effects. Resveratrol decreases proliferation and collagen synthesis by intestinal smooth muscle cells. We hypothesized that resveratrol would decrease inflammation and fibrosis in an animal model of Crohn's disease.. Peptidoglycan-polysaccharide (PG-PS) or human serum albumin (HSA) was injected into the bowel wall of Lewis rats at laparotomy. Resveratrol or vehicle was administered daily by gavage 1-27 days postinjection. On day 28, gross abdominal and histologic findings were scored. Cecal collagen content was measured by colorimetric analysis of digital images of trichrome-stained sections. Cecal levels of procollagen, cytokine, and growth factor mRNAs were determined.. PG-PS-injected rats (vehicle-treated) developed more fibrosis than HSA-injected rats by all measurements: gross abdominal score (P < 0.001), cecal collagen content (P = 0.04), and procollagen I and III mRNAs (P ≤ 0.0007). PG-PS-injected rats treated with 40 mg/kg resveratrol showed a trend toward decreased gross abdominal score, inflammatory cytokine mRNAs, and procollagen mRNAs. PG-PS-injected rats treated with 100 mg/kg resveratrol had lower inflammatory cytokine mRNAs (IL-1β [3.50 ± 1.08 vs. 10.79 ± 1.88, P = 0.005], IL-6 [17.11 ± 9.22 vs. 45.64 ± 8.83, P = 0.03], tumor necrosis factor alpha (TNF-α) [0.80 ± 0.14 vs. 1.89 ± 0.22, P = 0.002]), transforming growth factor beta 1 (TGF-β1) mRNA (2.24 ± 0.37 vs. 4.06 ± 0.58, P = 0.01), and histologic fibrosis score (6.4 ± 1.1 vs. 9.8 ± 1.0; P = 0.035) than those treated with vehicle. There were trends toward decreased gross abdominal score and decreased cecal collagen content. Procollagen I, procollagen III, and IGF-I mRNAs also trended downward.. Resveratrol decreases inflammatory cytokines and TGF-β1 in the PG-PS model of Crohn's disease and demonstrates a promising trend in decreasing tissue fibrosis. These findings may have therapeutic applications in inflammatory bowel disease. Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Colon; Crohn Disease; Cytokines; Disease Models, Animal; Female; Fibrosis; Ileum; Peptidoglycan; Polysaccharides; Procollagen; Rats; Rats, Inbred Lew; Resveratrol; Serum Albumin; Stilbenes | 2012 |
Polydatin protects learning and memory impairments in a rat model of vascular dementia.
Polydatin is one of the most common encountered stilbenes of nature and a key component of the Chinese herb Polygonum cuspidatum. This study is to investigate the effects of polydatin on learning and memory impairments induced by chronic cerebral hypoperfusion in rats, as well as the potential mechanism. Both common carotid arteries and both vertebral arteries occlusion (four-vessel occlusion, 4-VO) induced severe cognitive deficits tested by water maze task, along with oxidative stress in hippocampus. Oral administration of polydatin for 30 days markedly attenuated cognitive deficits compared with the control (p < 0.05). Biochemical determination revealed that polydatin decreased the production of malondialdehyde (MDA) and significantly increased the activities of superoxide dismutase (SOD) and catalase (CAT). Additionally, polydatin effectively alleviated the injuries of cultured neurons induced by oxygen-glucose deprivation (OGD). These results suggest that polydatin exhibit therapeutic potential for vascular dementia, which is most likely related, at least in part, to its anti-oxidant activity and the direct protection of neurons. Topics: Animals; Catalase; Cells, Cultured; Dementia, Vascular; Disease Models, Animal; Drugs, Chinese Herbal; Fallopia japonica; Glucosides; Hippocampus; Learning; Male; Malondialdehyde; Maze Learning; Memory Disorders; Neurons; Neuroprotective Agents; Protective Agents; Rats; Rats, Sprague-Dawley; Stilbenes; Superoxide Dismutase | 2012 |
Endoplasmic reticulum stress in retinal vascular degeneration: protective role of resveratrol.
Endoplasmic reticulum (ER) stress has been demonstrated to contribute to neurodegeneration in multiple ocular diseases. However, whether ER stress can induce vascular degeneration in the retina remains unknown. We investigated the possible role of ER stress in retinal vascular degeneration in vivo, and the effects of resveratrol on tunicamycin and ischemia and reperfusion (I/R)-induced retinal vascular degeneration.. Different dosages of tunicamycin, an ER stress inducer, were injected into the vitreous of mouse eyes. Retinal I/R injury was induced by elevating the intraocular pressure for 60 minutes followed by reperfusion in mice. Two dosages of resveratrol (5 and 25 mg/kg body weight per day) were administrated 2 days before retinal I/R injury, while 100 μM resveratrol were injected into the vitreous together with tunicamycin. Formation of acellular capillaries was assessed 7 days after I/R injury and tunicamycin injection, while cell bodies in ganglion cell layer and brain-specific homeobox/POU domain protein 3A (Brn3a) staining on retinal flat-mounts were analyzed 4 days after I/R injury. ER stress markers, including eukaryotic initiation factor 2α (eIF2α), CCAAT enhancer-binding protein homologous protein (CHOP), immunoglobulin binding protein (Bip), inositol requiring enzyme 1α (IRE1α), C-jun N-terminal kinase (JNK)1/2 and Xbp1 splicing, were examined by RT-PCR, or Western blots or immunostaining from retinas 1 or 2 days after tunicamycin injection and I/R injury.. Tunicamycin caused ER stress and capillary degeneration in vivo, both of which were inhibited by resveratrol. Pretreatment of high dosage of resveratrol also significantly inhibited retinal I/R injury-induced capillary degeneration; however, neither of the dosages prevented the injury-induced neurodegeneration. Levels of CHOP, phosphorylated eIF2α, IRE1α, phosphorylated JNK1/2, Xbp1 splicing and Bip were elevated after I/R injury. High dosage of resveratrol pretreatment inhibited the injury-induced up-regulation of eIF2α-CHOP and IRE1α-XBP1 pathways.. ER stress is an important contributor to vascular degeneration in retina. Resveratrol suppresses I/R injury and tunicamycin-induced vascular degeneration by inhibiting ER stress. Topics: Angiogenesis Inhibitors; Animals; Antioxidants; Apoptosis; bcl-2-Associated X Protein; Blotting, Western; Disease Models, Animal; DNA-Binding Proteins; Endoplasmic Reticulum; Endoplasmic Reticulum Stress; Mice; Mice, Inbred C57BL; Oligopeptides; Protein Serine-Threonine Kinases; Regulatory Factor X Transcription Factors; Reperfusion Injury; Resveratrol; Retinal Degeneration; Retinal Ganglion Cells; Retinal Vessels; Reverse Transcriptase Polymerase Chain Reaction; RNA; Stilbenes; Transcription Factor CHOP; Transcription Factors; Tunicamycin; Up-Regulation; X-Box Binding Protein 1 | 2012 |
Curcumin and resveratrol in combination modulates benzo(a)pyrene-induced genotoxicity during lung carcinogenesis.
The present study attempted to explore the efficacy of curcumin and resveratrol in modulating mitotic catastrophe and apoptosis during lung carcinogenesis. The mice were segregated into five groups, which included normal control, benzo(a)pyrene (BP)-treated, BP + curcumin (C)-treated, BP + resveratrol (R)-treated and BP + C + R-treated groups. The BP treatment resulted in a significant increase in the formation of micronuclei as well as in the protein expression of bcl-2 in the lungs of mice. On the other hand, a significant decrease was observed in the number of apoptotic cells and protein expression of bax in the lungs of BP-treated mice. Supplementation of curcumin and resveratrol individually to BP-treated animals resulted in a decrease in the micronuclei formation; however, it was not statistically significant. Interestingly, combination of curcumin and resveratrol resulted in a statistically significant decrease in micronuclei formation. Moreover, phytochemicals in combination significantly reduced the protein expression of bcl-2 in BP-treated mice. Furthermore, supplementation of phytochemicals in combination brought a noticeable improvement in the number of apoptotic cells as well as in the protein expression of bax. The present study, therefore, concludes that the combined treatment with curcumin and resveratrol modulates mitotic catastrophe by stimulating apoptosis in BP-treated mice. Topics: Animals; Antimutagenic Agents; Apoptosis; Benzo(a)pyrene; Carcinogens; Curcumin; Disease Models, Animal; Drug Therapy, Combination; Lung; Lung Neoplasms; Male; Mice; Micronuclei, Chromosome-Defective; Micronucleus Tests; Mitosis; Proto-Oncogene Proteins c-bcl-2; Resveratrol; Stilbenes | 2012 |
Resveratrol prevents impairment in activation of retinoic acid receptors and MAP kinases in the embryos of a rodent model of diabetic embryopathy.
Diabetes induces impairments in gene expression during embryonic development that leads to premature and improper tissue specialization. Retinoic acid receptors (RARs and retinoid X receptor [RXRs]) and mitogen-activated protein kinases (MAPKs) play crucial roles during embryonic development, and their suppression or activation has been shown as a determinant of the fate of embryonic organogenesis. We studied the activation of RARs and MAPKs in embryonic day 12 (E12) in embryos of rats under normal, diabetic, and diabetic treated with resveratrol ([RSV]; 100 mg/kg body weight) conditions. We found downregulation of RARs and RXRs expressions as well as their DNA-binding activities in the embryos exhibiting developmental delays due to diabetes. Furthermore, the phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 was decreased and phosphorylation of c-Jun N-terminal kinase (JNK) 1/2 and p38 was increased. Interestingly, embryos of diabetic rats treated with RSV showed normalized patterns of RARs, RXRs, neuronal markers, and ERK, JNK and p38 phosphorylation. Topics: Animals; Disease Models, Animal; Enzyme Inhibitors; Female; Fetal Diseases; Mitogen-Activated Protein Kinases; Neural Tube Defects; Pregnancy; Pregnancy in Diabetics; Rats; Receptors, Retinoic Acid; Resveratrol; Stilbenes | 2012 |
Chronic resveratrol administration has beneficial effects in experimental model of type 2 diabetic rats.
The present study was designed to evaluate whether long-term resveratrol administration has beneficial effects on the metabolic control and oxidative stress in diabetic rats.. Male Wistar rats were divided into four groups: normal control, diabetic control, normal treated with resveratrol, and diabetic treated with resveratrol. Diabetes was induced by injection of streptozotocin (50 mg/kg; i.p.), fifteen minutes after the administration of nicotinamide (110 mg/kg; i.p.) in 12 h fasted rats.. Four-month oral resveratrol administration (5 mg/kg/day) significantly attenuated the elevated levels of the blood glucose, glycosylated hemoglobin, total protein, albumin, urea, creatinine, and 8-isoprostane in diabetic rats. Moreover, resveratrol administration to diabetic rats improved the reduced levels of glutathione, total antioxidant capacity, and the antioxidant enzymes activities (superoxide dismutase, glutathione peroxidase, and catalase). No significant differences were observed in the activities of plasma aminotransferases (ALT and AST) and insulin levels between diabetic rats treated with resveratrol and diabetic controls.. The results suggest that chronic resveratrol administration is safe and effective, and may be considered as a beneficial therapeutic compound in diabetes. Topics: Alanine Transaminase; Animals; Antioxidants; Aspartate Aminotransferases; Catalase; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 2; Disease Models, Animal; Glutathione Peroxidase; Glutathione Peroxidase GPX1; Hyperglycemia; Male; Oxidative Stress; Rats; Rats, Wistar; Resveratrol; Stilbenes; Superoxide Dismutase | 2012 |
Resveratrol inhibits neointimal formation after arterial injury through an endothelial nitric oxide synthase-dependent mechanism.
Revascularization procedures used for treatment of atherosclerosis often result in restenosis. Resveratrol (RSV), an antioxidant with cardiovascular benefits, decreases neointimal formation after arterial injury by a mechanism that is still not fully clarified. Our main objective was to address the role of nitric oxide synthases (NOSes) and more specifically the endothelial-NOS (eNOS) isoform as a mediator of this effect. RSV (4 mg/kg/day, s.c.) alone or in combination with the NOS inhibitor N-nitro-L-arginine methyl ester (L-NAME) (2 mg/kg/day, s.c.) was given to Sprague-Dawley rats beginning at 3 days before arterial (carotid or aortic) injury. RSV reduced neointimal formation by 50% (P<0.01), decreased intimal cell proliferation by 37% (P<0.01) and reduced inflammatory markers such as PECAM and MMP-9 mRNA. These effects of RSV were all abolished by coadministration of l-NAME. Oral RSV (beginning at 5 days before arterial injury) reduced neointimal thickness after femoral wire injury in mice, however this effect was not observed in eNOS knockout mice. This is the first report of RSV decreasing neointimal cell proliferation and neointimal growth through an eNOS-dependent mechanism. Topics: Administration, Oral; Animals; Aorta; Cardiovascular Agents; Carotid Arteries; Carotid Artery Injuries; Cell Proliferation; Disease Models, Animal; Enzyme Inhibitors; Femoral Artery; Gene Expression Regulation; Male; Matrix Metalloproteinase 9; Mice; Mice, Inbred C57BL; Mice, Knockout; Neointima; NG-Nitroarginine Methyl Ester; Nitric Oxide Synthase Type III; Platelet Endothelial Cell Adhesion Molecule-1; Rats; Rats, Sprague-Dawley; Resveratrol; RNA, Messenger; Stilbenes; Time Factors; Vascular System Injuries | 2012 |
Premature mitochondrial senescence and related ultrastructural changes during lung carcinogenesis modulation by curcumin and resveratrol.
The present study attempted to explore the efficacy of curcumin and resveratrol in modulating premature mitochondria senescence and ultrastructural changes during lung carcinogenesis. The mice were segregated into 5 groups, which included normal control, benzo[a]pyrene (BP) treated, BP + curcumin (C) treated, BP + resveratrol (R) treated, and BP + C + R treated groups. Animals were given a single ip injection of benzo[a]pyrene in corn oil at a dose level of 100 mg/kg body weight. Treatments of curcumin and resveratrol were given orally in drinking water at a dose level of 60 mg/kg body weight and 5.7 µg/mL drinking water, respectively, 3 times a week for a total duration of 22 weeks. Ultrastructure of BP-treated mice revealed disruptions in cellular integrity along with nuclear deformation and premature mitochondrial senescence. Interestingly, supplementation of curcumin and resveratrol individually resulted in improvement of ultrahistoarchitecture of BP-treated mice but the improvement was much greater with combined supplementation of phytochemicals. Further, benzo[a]pyrene treatment revealed alterations in lung histoarchitecture, which, however, was improved appreciably following combined supplementation with curcumin and resveratrol. The present study concludes that combined supplementation with curcumin and resveratrol effectively modulates histoarchitecture as well as ultrahistoarchitecture during benzo[a]pyrene-induced lung carcinogenesis in mice. Cancer is a public health problem worldwide. Lung cancer is a major cause of mortality throughout the world and is responsible for the deaths of more than one million people annually. Phytochemicals have shown great potential in preventing the occurrence of cancer and other chronic diseases that result from oxidative stress induced by free radicals. Phytochemicals are nonnutritive products of plants and, being nontoxic, are presently being studied the world over for their chemopreventive actions in controlling various diseases, including cancer. In the present study, curcumin and resveratrol are the phytochemicals of interest. Curcumin, a polyphenol, has been reported to have anti-invasive properties. Further, curcumin has been shown to activate apoptotic machinery in patients with lung cancer. On the other hand, resveratrol (trans-3,4,5- thihydroxystibene) is a phytoalexin that is present naturally in grapes as well as in a variety of medicinal plants and has been shown to exhibit antioxidant activity wit Topics: Animals; Anticarcinogenic Agents; Benzo(a)pyrene; Carcinogens; Cellular Senescence; Curcumin; Disease Models, Animal; Drug Therapy, Combination; Lung Neoplasms; Male; Mice; Mitochondria; Pulmonary Alveoli; Resveratrol; Stilbenes | 2012 |
Impaired adenosine monophosphate-activated protein kinase signalling in dorsal root ganglia neurons is linked to mitochondrial dysfunction and peripheral neuropathy in diabetes.
Mitochondrial dysfunction occurs in sensory neurons and may contribute to distal axonopathy in animal models of diabetic neuropathy. The adenosine monophosphate-activated protein kinase and peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) signalling axis senses the metabolic demands of cells and regulates mitochondrial function. Studies in muscle, liver and cardiac tissues have shown that the activity of adenosine monophosphate-activated protein kinase and PGC-1α is decreased under hyperglycaemia. In this study, we tested the hypothesis that deficits in adenosine monophosphate-activated protein kinase/PGC-1α signalling in sensory neurons underlie impaired axonal plasticity, suboptimal mitochondrial function and development of neuropathy in rodent models of type 1 and type 2 diabetes. Phosphorylation and expression of adenosine monophosphate-activated protein kinase/PGC-1α and mitochondrial respiratory chain complex proteins were downregulated in dorsal root ganglia of both streptozotocin-diabetic rats and db/db mice. Adenoviral-mediated manipulation of endogenous adenosine monophosphate-activated protein kinase activity using mutant proteins modulated neurotrophin-directed neurite outgrowth in cultures of sensory neurons derived from adult rats. Addition of resveratrol to cultures of sensory neurons derived from rats after 3-5 months of streptozotocin-induced diabetes, significantly elevated adenosine monophosphate-activated protein kinase levels, enhanced neurite outgrowth and normalized mitochondrial inner membrane polarization in axons. The bioenergetics profile (maximal oxygen consumption rate, coupling efficiency, respiratory control ratio and spare respiratory capacity) was aberrant in cultured sensory neurons from streptozotocin-diabetic rats and was corrected by resveratrol treatment. Finally, resveratrol treatment for the last 2 months of a 5-month period of diabetes reversed thermal hypoalgesia and attenuated foot skin intraepidermal nerve fibre loss and reduced myelinated fibre mean axonal calibre in streptozotocin-diabetic rats. These data suggest that the development of distal axonopathy in diabetic neuropathy is linked to nutrient excess and mitochondrial dysfunction via defective signalling of the adenosine monophosphate-activated protein kinase/PGC-1α pathway. Topics: Adenosine Triphosphate; AMP-Activated Protein Kinases; Analysis of Variance; Animals; Anti-Inflammatory Agents, Non-Steroidal; Blood Glucose; Body Weight; Cells, Cultured; Diabetes Mellitus, Experimental; Disease Models, Animal; Dose-Response Relationship, Drug; Ganglia, Spinal; Gene Expression Regulation; Green Fluorescent Proteins; Hyperalgesia; Male; Membrane Potentials; Mice; Mitochondrial Diseases; Mitochondrial Membranes; Mutation; Nerve Fibers, Myelinated; Neurites; Oxygen Consumption; Patch-Clamp Techniques; Peripheral Nervous System Diseases; Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha; Physical Stimulation; Rats; Rats, Sprague-Dawley; Reaction Time; Resveratrol; RNA-Binding Proteins; Sensory Receptor Cells; Signal Transduction; Stilbenes; Transcription Factors; Transduction, Genetic | 2012 |
Piceatannol, a resveratrol derivative, promotes glucose uptake through glucose transporter 4 translocation to plasma membrane in L6 myocytes and suppresses blood glucose levels in type 2 diabetic model db/db mice.
The skeletal muscle cells are one of the main sites of glucose uptake through glucose transporter 4 (GLUT4) in response to insulin. In muscle cells, 5' adenosine monophosphate-activated protein kinase (AMPK) is known as another GLUT4 translocation promoter. Natural compounds that activate AMPK have a possibility to overcome insulin resistance in the diabetic state. Piceatannol is a natural analog and a metabolite of resveratrol, a known AMPK activator. In this study, we investigate the in vitro effect of piceatannol on glucose uptake, AMPK phosphorylation and GLUT4 translocation to plasma membrane in L6 myocytes, and its in vivo effect on blood glucose levels in type 2 diabetic model db/db mice. Piceatannol was found to promote glucose uptake, AMPK phosphorylation and GLUT4 translocation by Western blotting analyses in L6 myotubes under a condition of insulin absence. Promotion by piceatannol of glucose uptake as well as GLUT4 translocation to plasma membrane by immunocytochemistry was also demonstrated in L6 myoblasts transfected with a glut4 cDNA-coding vector. Piceatannol suppressed the rises in blood glucose levels at early stages and improved the impaired glucose tolerance at late stages in db/db mice. These in vitro and in vivo findings suggest that piceatannol may be preventive and remedial for type 2 diabetes and become an antidiabetic phytochemical. Topics: AMP-Activated Protein Kinase Kinases; Animals; Blood Glucose; Cell Line; Cell Membrane; Diabetes Mellitus, Type 2; Disease Models, Animal; Enzyme Activation; Glucose; Glucose Transporter Type 4; Mice; Molecular Imaging; Muscle Cells; Protein Kinases; Rats; Resveratrol; Stilbenes | 2012 |
A dietary resveratrol-rich grape extract prevents the developing of atherosclerotic lesions in the aorta of pigs fed an atherogenic diet.
The presence of grape and wine polyphenol resveratrol (RES) in the diet is negligible. Therefore, the cardiovascular benefits of this molecule, in a dietary context, remain to be established. We aimed to investigate, through dietary intervention, the effects of a resveratrol-rich grape extract (GE-RES) on the prevention of early aortic lesions in pigs fed an atherogenic diet (AD). These effects were compared with those produced by a grape extract lacking RES (GE) or RES alone. Pigs fed the AD for 4 months showed early atherosclerotic lesions in the thoracic aorta: degeneration and fragmentation of elastic fibers, increase of intima thickness, subendothelial fibrosis, and accumulation of fatty cells and anion superoxide radicals. GE-RES was the most effective treatment and prevented the disruption of aortic elastic fibers, decreased their alteration (57%), and reduced the intima thickness (33%) and the accumulation of fatty cells (42%) and O(2)(•-) (38%) in aortic tissue. In addition, GE-RES moderately downregulated the expression of the suppressors of cytokine signaling 1 (SOCS1) and 3 (SOCS3), key regulators of vascular cell responses, in peripheral mononuclear blood cells. Our results suggest that the consumption of this GE-RES nutraceutical, in a dietary prevention context, could prevent early atherosclerotic events. The presence of RES in the grape extract strengthened these effects. Topics: Animals; Aorta; Atherosclerosis; Diet, Atherogenic; Disease Models, Animal; Female; Humans; In Vitro Techniques; Male; Plant Extracts; Resveratrol; Stilbenes; Swine; Swine, Miniature; Vitis | 2012 |
Activation of peroxisome proliferator-activated receptor-γ coactivator 1α ameliorates mitochondrial dysfunction and protects podocytes from aldosterone-induced injury.
Glomerular podocytes are highly specialized epithelial cells whose injury in glomerular diseases causes proteinuria. Since mitochondrial dysfunction is an early event in podocyte injury, we tested whether a major regulator of oxidative metabolism and mitochondrial function, the transcriptional coactivator peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α), affects podocyte damage. Aldosterone-induced injury decreased PGC-1α expression, and induced mitochondrial and podocyte damage in dose- and time-dependent manners. The suppression of endogenous PGC-1α by RNAi caused podocyte mitochondrial damage and apoptosis while its increase by infection with an adenoviral vector prevented aldosterone-induced mitochondrial malfunction and inhibited injury. Overexpression of the silent mating type information regulation 2 homolog 1, a gene upstream of PGC-1α, prevented aldosterone-induced mitochondrial damage and podocyte injury by upregulating PGC-1α at both the transcriptional and post-translational levels. Resveratrol, a SIRT1 activator, attenuated aldosterone-induced mitochondrial malfunction and podocyte injury in vitro and in aldosterone-infused mice in vivo. Hence, endogenous PGC-1α may be important for maintenance of mitochondrial function in podocytes under normal conditions. Activators of SIRT1, such as resveratol, may be therapeutically useful in glomerular diseases to promote and maintain PGC-1α expression and, consequently, podocyte integrity. Topics: Aldosterone; Animals; Apoptosis; Cell Line; Cytoprotection; Disease Models, Animal; Enzyme Activation; Gene Expression Regulation; Genes, Reporter; Kidney Diseases; Mice; Mice, Inbred C57BL; Mineralocorticoid Receptor Antagonists; Mitochondria; Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha; Podocytes; Promoter Regions, Genetic; Receptors, Mineralocorticoid; Respiratory Syncytial Virus Infections; Respiratory Syncytial Viruses; Resveratrol; RNA Interference; Sirtuin 1; Stilbenes; Time Factors; Trans-Activators; Transcription Factors; Transfection | 2012 |
Resveratrol helps recovery from fatty liver and protects against hepatocellular carcinoma induced by hepatitis B virus X protein in a mouse model.
Resveratrol is a natural polyphenol that has beneficial effects across species and various disease models. Here, we investigate whether resveratrol is effective against hepatitis B virus (HBV)-associated hepatocellular carcinoma (HCC) using HBV X protein (HBx) transgenic mice. We found that resveratrol (30 mg/kg/d) has a therapeutic effect on HBx-induced fatty liver and the early stages of liver damage. Resveratrol decreased intracellular reactive oxygen species and transiently stimulated hepatocyte proliferation. Interestingly, resveratrol inhibited LXRα and downregulated the expression of the lipogenic genes, Srebp1-c and PPARγ. The decrease in Srebp1-c seems to further downregulate the expression of its target genes, Acc and Fas. In addition, resveratrol stimulated the activity of Ampk and SirT1. Thus, resveratrol has a pleiotropic effect on HBx transgenic mice in terms of the downregulation of lipogenesis, the promotion of transient liver regeneration, and the stimulation of antioxidant activity. Furthermore, at the later precancerous stages, resveratrol delayed HBx-mediated hepatocarcinogenesis and reduced HCC incidence from 80% to 15%, a 5.3-fold reduction. Resveratrol should be considered as a potential chemopreventive agent for HBV-associated HCC. Topics: Animals; Antineoplastic Agents, Phytogenic; Blotting, Western; Carcinoma, Hepatocellular; Disease Models, Animal; Fatty Liver; Glutathione; Humans; Immunoenzyme Techniques; Liver Neoplasms, Experimental; Liver Regeneration; Male; Mice; Mice, Inbred C57BL; Mice, Transgenic; Reactive Oxygen Species; Real-Time Polymerase Chain Reaction; Resveratrol; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Stilbenes; Trans-Activators; Tumor Cells, Cultured; Viral Regulatory and Accessory Proteins | 2012 |
The small molecule inhibitor G6 significantly reduces bone marrow fibrosis and the mutant burden in a mouse model of Jak2-mediated myelofibrosis.
Philadelphia chromosome-negative myeloproliferative neoplasms, including polycythemia vera, essential thrombocytosis, and myelofibrosis, are disorders characterized by abnormal hematopoiesis. Among these myeloproliferative neoplasms, myelofibrosis has the most unfavorable prognosis. Furthermore, currently available therapies for myelofibrosis have little to no efficacy in the bone marrow and hence, are palliative. We recently developed a Janus kinase 2 (Jak2) small molecule inhibitor called G6 and found that it exhibits marked efficacy in a xenograft model of Jak2-V617F-mediated hyperplasia and a transgenic mouse model of Jak2-V617F-mediated polycythemia vera/essential thrombocytosis. However, its efficacy in Jak2-mediated myelofibrosis has not previously been examined. Here, we hypothesized that G6 would be efficacious in Jak2-V617F-mediated myelofibrosis. To test this, mice expressing the human Jak2-V617F cDNA under the control of the vav promoter were administered G6 or vehicle control solution, and efficacy was determined by measuring parameters within the peripheral blood, liver, spleen, and bone marrow. We found that G6 significantly reduced extramedullary hematopoiesis in the liver and splenomegaly. In the bone marrow, G6 significantly reduced pathogenic Jak/STAT signaling by 53%, megakaryocytic hyperplasia by 70%, and the Jak2 mutant burden by 68%. Furthermore, G6 significantly improved the myeloid to erythroid ratio and significantly reversed the myelofibrosis. Collectively, these results indicate that G6 is efficacious in Jak2-V617F-mediated myelofibrosis, and given its bone marrow efficacy, it may alter the natural history of this disease. Topics: Amino Acid Substitution; Animals; Bone Marrow; Disease Models, Animal; Hematopoiesis, Extramedullary; Humans; Hyperplasia; Janus Kinase 2; Megakaryocytes; Mice; Mice, Inbred C57BL; Mice, Mutant Strains; Myeloid Cells; Phosphorylation; Primary Myelofibrosis; Protein Kinase Inhibitors; Reticulin; Small Molecule Libraries; Spleen; Splenomegaly; STAT5 Transcription Factor; Stilbenes | 2012 |
3-[2-(3,5-Dimethoxyphenyl)vinyl]furan protects hippocampal neurons against ischemic damage.
Resveratrol, an ingredient in grapes, has been reported to exhibit anti-cancer activity, anti-inflammatory activity, and cardiovascular protection property. Interestingly, resveratrol has been recently reported to have neuroprotective effect. This study reports the neuroprotective effect of a resveratrol derivative, 3-[2-(3,5-dimethoxyphenyl)vinyl]furan (DPVF). This synthetic DPVF conferred more protection than resveratrol against neuronal cell damage induced by oxygen and glucose deprivation in a rat hippocampal slice culture. In addition, DPVF inhibited ATP depletion following oxygen and glucose deprivation in the adult hippocampal slice. Moreover, we found that DPVF is neuroprotective against ischemic damage in rats. DPVF showed potent neuroprotection on a 4-velssel-occusion model and inhibited iron-induced malondialdehyde (MDA) formation in the rat brain tissue. These results demonstrate that DPVF might be a useful agent in reducing ischemic neuronal damage. Topics: Animals; Brain Ischemia; Cell Death; Disease Models, Animal; Furans; Hippocampus; Neurons; Neuroprotective Agents; Organ Culture Techniques; Rats; Resveratrol; Stilbenes | 2012 |
Longitudinal in vivo SPECT/CT imaging reveals morphological changes and cardiopulmonary apoptosis in a rodent model of pulmonary arterial hypertension.
Pulmonary arterial hypertension (PAH) has a complex pathogenesis involving both heart and lungs. Animal models can reflect aspects of the human pathology and provide insights into the development and underlying mechanisms of disease. Because of the variability of most animal models of PAH, serial in vivo measurements of cardiopulmonary function, morphology, and markers of pathology can enhance the value of such studies. Therefore, quantitative in vivo SPECT/CT imaging was performed to assess cardiac function, morphology and cardiac perfusion utilizing (201)Thallium ((201)Tl) in control and monocrotaline-treated rats. In addition, lung and heart apoptosis was examined with (99m)Tc-Annexin V ((99m)Tc-Annexin) in these cohorts. Following baseline imaging, rats were injected with saline or monocrotaline (50 mg/kg, i.p.) and imaged weekly for 6 weeks. To assess a therapeutic response in an established pulmonary hypertensive state, a cohort of rats received resveratrol in drinking water (3 mg/kg/day) on days 28-42 post-monocrotaline injection to monitor regression of cardiopulmonary apoptosis. PAH in monocrotaline-treated rats was verified by conventional hemodynamic techniques on day 42 (right ventricular systolic pressure (RSVP) = 66.2 mmHg in monocrotaline vs 28.8 mmHg in controls) and in terms of right ventricular hypertrophy (RV/LVS = 0.70 in monocrotaline vs 0.32 in controls). Resveratrol partially reversed both RVSP (41.4 mmHg) and RV/LVS (0.46), as well as lung edema and RV contractility +dP/dt(max). Serial (99m)Tc-Annexin V imaging showed clear increases in pulmonary and cardiac apoptosis when compared to baseline, which regressed following resveratrol treatment. Monocrotaline induced modest changes in whole-heart perfusion as assessed by (201)TI imaging and cardiac morphological changes consistent with septal deviation and enlarged RV. This study demonstrates the utility of functional in vivo SPECT/CT imaging in rodent models of PAH and further confirms the efficacy of resveratrol in reversing established monocrotaline-induced PAH presumably by attenuation of cardiopulmonary apoptosis. Topics: Animals; Annexins; Apoptosis; Blood Pressure; Disease Models, Animal; Familial Primary Pulmonary Hypertension; Heart Ventricles; Humans; Hypertension, Pulmonary; Lung; Male; Monocrotaline; Myocardium; Perfusion; Rats; Rats, Sprague-Dawley; Resveratrol; Stilbenes; Systole; Tomography, Emission-Computed, Single-Photon; Tomography, X-Ray Computed; Ventricular Remodeling | 2012 |
Small molecules that protect against β-amyloid-induced cytotoxicity by inhibiting aggregation of β-amyloid.
Aggregated β-amyloid (Aβ) plays crucial roles in Alzheimer's disease (AD) pathogenesis, therefore blockade of Aβ aggregation is considered as a potential therapeutic target. We designed and synthesized small molecules to reduce Aβ-induced cytotoxicity by inhibiting Aβ aggregation. The small molecules were screened via ThT, MTT, and cell-based cytotoxicity assay (Aβ burden assay). Selected compounds 1c, 1d, 1e, and 1f were then investigated by evaluating their effects on cognitive impairment of acute AD mice model. Learning and memory dysfunction by injection of Aβ(1-42) was recovered by administration of these molecules. Especially, 1d showed the best recovery activity in Y-maze task, object recognition task, and passive avoidance task with dose dependent manner. These results suggest that 1d has high potential as a therapeutic agent for AD. Topics: Amyloid beta-Peptides; Animals; Benzene Derivatives; Benzothiazoles; Cells, Cultured; Coumaric Acids; Curcumin; Disease Models, Animal; Dose-Response Relationship, Drug; Male; Mice; Mice, Inbred ICR; Molecular Structure; Molecular Weight; Peptide Fragments; Resveratrol; Stilbenes; Thiazoles | 2012 |
Resveratrol preserves myocardial function and perfusion in remote nonischemic myocardium in a swine model of metabolic syndrome.
Resveratrol has been shown to reverse some of the detrimental effects of metabolic syndrome (MetS). We sought to define the impact of supplemental resveratrol on normal myocardium remote from an ischemic territory in a swine model of MetS and chronic myocardial ischemia.. Yorkshire swine were fed a normal diet (control), a high cholesterol diet (HCD), or a high cholesterol diet with orally supplemented resveratrol (HCD-R; 100 mg/kg/day). Four weeks after diet modification, myocardial ischemia was induced by ameroid constrictor placement. Seven weeks later, myocardial tissue from a territory remote from the ischemia was harvested. Animals in the HCD and HCD-R groups underwent functional cardiac MRI before ischemia and before sacrifice. Tissue was harvested for protein expression analysis.. After 7 weeks of ischemia, regional left ventricular systolic function was significantly increased in HCD-R as compared with HCD animals. During ventricular pacing the HCD group had significantly decreased flow (p = 0.03); perfusion in the HCD-R was preserved as compared with the control. There was no difference in microvascular relaxation. Expression of metabolic proteins Sirt-1 (p = 0.002), AMPkinase (p = 0.02), and carnitine palmitoyltransferase-I (p = 0.002) were upregulated in the HCD-R group. Levels of protein oxidative stress were significantly increased in the HCD and HCD-R groups, as compared with the controls (p = 0.003). Activated endothelial nitric oxide synthase (eNOS) was increased in the HCD-R group (p = 0.01). There was no difference in myocardial endothelial cell density between the groups; however, dividing endothelial cells were decreased in the HCD and HCD-R groups (p = 0.006).. Resveratrol supplementation improves regional left ventricular function and preserves perfusion to myocardium remote from an area of ischemia in an animal model of metabolic syndrome and chronic myocardial ischemia. Topics: Animals; Antioxidants; Biomarkers; Blotting, Western; Coronary Vessels; Diet, High-Fat; Disease Models, Animal; Fluorescent Antibody Technique; Heart; Magnetic Resonance Imaging; Metabolic Syndrome; Myocardial Ischemia; Myocardium; Oxidative Stress; Resveratrol; Stilbenes; Swine; Ventricular Function, Left | 2012 |
Resveratrol inhibits postoperative adhesion formation in a rat uterine horn adhesion model.
Adhesion formation is one of the most important problems occuring after pelvic surgery in the majority of women. The aim of this experimental study was to investigate the effects of the antioxidant resveratrol (3,5,4'-o-trihydroxystilbene) on adhesion formation in a rat uterine horn adhesion model.. Thirty Wistar-Albino female rats were randomly divided into three groups with equal numbers. In Group A, 5.9 mg/kg/day resveratrol was applied by the orogastric route for 10 days before and 20 days after surgery. In Group B, resveratrol was given only for 20 days after surgery. In the control group, no drug was applied before or after surgery. A uterine serosal injury was created using a standard technique after laparotomy in all rats. All animals were sacrificed 3 weeks after surgery and intrapelvic adhesions determined macroscopically and microscopically.. Adhesion formation, total adhesion score and the severity of adhesions were all significantly lower in both resveratrol treatment groups than in the control group (p < 0.05). Notably, the severity of adhesions was much less in Group A in which the rats received resveratrol before and after surgical operation.. This study suggests that 5 ± 1 mg/kg/day perioperative resveratrol administration is an effective strategy for the prevention of postoperative peritoneal adhesion formation after pelvic surgery in a rat model. Topics: Animals; Antioxidants; Disease Models, Animal; Female; Postoperative Complications; Rats; Rats, Wistar; Resveratrol; Stilbenes; Tissue Adhesions; Uterine Diseases; Uterus | 2012 |
Resveratrol improves myocardial ischemia and ischemic heart failure in mice by antagonizing the detrimental effects of fractalkine*.
To test the hypothesis that resveratrol would improve cardiac remodeling by inhibiting the detrimental effects of fractalkine. We previously reported that fractalkine exacerbates heart failure. Furthermore, this study sought to determine whether resveratrol targets fractalkine to improve myocardial ischemia and cardiac remodeling.. Randomized and controlled laboratory investigation.. Research laboratory.. Neonatal rat cardiac cells and C57BL/6 mice.. Cardiac cells were treated with recombinant mouse soluble fractalkine for 24 hrs or pretreated with 25 µM resveratrol. Cardiomyocytes were exposed to anoxia/reoxygenation, H2O2, or pretreatment with resveratrol. Ex vivo murine hearts were perfusioned with soluble fractalkine or pretreated with resveratrol after global ischemia. Mice were subjected to the left coronary artery ligation to induce myocardial infarction and randomized to treatment with resveratrol or vehicle alone for 42 days.. In a murine myocardial infarction model, we found that resveratrol increased survival and delayed the progression of cardiac remodeling evaluated by serial echocardiography. At 6 wks, the heart weight/body weight ratio, lung weight/body weight ratio, and old infarct size were significantly smaller in resveratrol-treated mice than in untreated myocardial infarction mice. In cultures of neonatal rat cells, exposure to soluble fractalkine increased the atrial natriuretic peptide expression by cardiomyocytes, matrix metalloproteinase-9 and procollagen expression by fibroblasts, and intercellular adhesion molecule-1 expression by microvascular endothelial cells, while it decreased autophagy in cardiomyocytes. All these effects were blocked by coculture with resveratrol. The methyl thiazolyl tetrazolium assay showed that soluble fractalkine reduced the viability of cultured cardiomyocytes during exposure to anoxia/reoxygenation or H2O2, while pretreatment with resveratrol blocked this effect. Perfusion of ex vivo murine hearts with soluble fractalkine after global ischemia led to an increase of infarct size, which was prevented by pretreatment with resveratrol.. Resveratrol alleviates the deleterious effects of fractalkine on myocardial ischemia and thus reduces subsequent cardiac remodeling. Topics: Animals; Animals, Newborn; Chemokine CX3CL1; Disease Models, Animal; Electrocardiography; Heart Failure; Male; Mice; Mice, Inbred C57BL; Myocardial Ischemia; Platelet Aggregation Inhibitors; Random Allocation; Rats; Resveratrol; Stilbenes; Ventricular Remodeling | 2012 |
Vodka and wine consumption in a swine model of metabolic syndrome alters insulin signaling pathways in the liver and skeletal muscle.
The purpose of this study was to examine the effects of alcohol in the context of metabolic syndrome on insulin signaling pathways in the liver and skeletal muscle.. Twenty-six Yorkshire swine were fed a hypercaloric, high-fat diet for 4 weeks then split into 3 groups: hypercholesterolemic diet alone (HCC, n = 9), hypercholesterolemic diet with vodka (HCVOD, n = 9), and hypercholesterolemic diet with wine (HCW, n = 8) for 7 weeks. Animals underwent intravenous dextrose challenge before euthanasia and tissue collection.. HCC, HCVOD, and HCW groups had similar blood fasting glucose levels, liver function test, and body mass index. Thirty and 60 minutes after dextrose infusion, HCVOD and HCW groups had significantly increased blood glucose levels compared with the HCC group. The HCW group had significantly increased levels of insulin compared with the HCC group. Immunoblotting in skeletal muscle demonstrated that alcohol up-regulates p-IRS1, IRS2, AKT, AMPKα, PPARα, Fox01, and GLUT4. In the liver, HCW had up-regulation of AKT, AMPKα, and GLUT4 compared with HCC. Skeletal muscle immunohistochemistry demonstrated increased sarcolemmal expression of GLUT4 in both alcohol groups compared with HCC.. Moderate alcohol consumption in a swine model of metabolic syndrome worsens glucose metabolism by altering activation of the insulin signaling pathway in the liver and skeletal muscle. Topics: Alcohol Drinking; Alcoholic Beverages; Animals; Blood Glucose; Disease Models, Animal; Dose-Response Relationship, Drug; Ethanol; Glucose Transporter Type 4; Immunohistochemistry; Insulin; Insulin Receptor Substrate Proteins; Insulin Resistance; Liver; Liver Function Tests; Male; Metabolic Syndrome; Muscle, Skeletal; PPAR alpha; Resveratrol; Stilbenes; Swine; Up-Regulation | 2012 |
Resveratrol upregulated heat shock proteins and extended the survival of G93A-SOD1 mice.
In the present study, we investigated whether resveratrol, a SIRT1 activator, can suppress the motor neuron degeneration in a transgenic mouse model of amyotrophic lateral sclerosis. Chronic intraperitoneal injection of resveratrol delayed the disease onset and extended survival of the transgenic mice overexpressing G93A-SOD1. The number of surviving motor neurons increased in the resveratrol-injected G93A mice. Importantly, the levels of Hsp25 and Hsp70 were elevated while the level of heat shock factor 1 (HSF1) acetylation decreased in the spinal cords of the resveratrol-injected G93A mice. Our data suggest that resveratrol may protect motor neurons from the mutant SOD1-induced neurotoxicity by promoting SIRT1-mediated deacetylation of HSF1 and subsequent upregulation of Hsps. Topics: Amyotrophic Lateral Sclerosis; Animals; Antioxidants; Disease Models, Animal; DNA-Binding Proteins; Glial Fibrillary Acidic Protein; Heat Shock Transcription Factors; Heat-Shock Proteins; HSP70 Heat-Shock Proteins; Humans; Macrophage-1 Antigen; Mice; Mice, Inbred C57BL; Mice, Transgenic; Molecular Chaperones; Motor Neurons; Neoplasm Proteins; Resveratrol; Spinal Cord; Stilbenes; Superoxide Dismutase; Survival Analysis; Transcription Factors; Up-Regulation | 2012 |
Combretastatin A-4 phosphate affects tumor vessel volume and size distribution as assessed using MRI-based vessel size imaging.
Combretastatin A-4 disodium phosphate (CA4P) is a promising vascular disrupting agent (VDA) in clinical trials. As CA4P acts on dividing endothelial cells, we hypothesize that CA4P affects vessels of certain sizes. The aim of this study was to evaluate the effect of CA4P by the MRI-based vessel size imaging (VSI).. C3H mammary carcinomas were grown to 200 mm(3) in the right rear foot of female CDF(1) mice. A control group of mice received no treatment, and a treatment group had CA4P administered intraperitoneally at a dose of 250 mg/kg. VSI was conducted on a 3 Tesla MR scanner to estimate the tumor blood volume (ζ(0)) and mean vessel radius (R). Vascularization was also estimated histologically by endothelial and Hoechst 33342 staining.. ζ(0) and R showed different spatial heterogeneity. Tumor median and quartile values of ζ(0) were all significantly reduced by about 35% in the CA4P-treated group as compared with the control group, and the median and upper quartile of R were significantly increased. Histograms of ζ(0) and R showed a general decrease in ζ(0) following treatment, and values of R in a certain range (≈20-30 μm) were decreased in the treatment group. The drug-induced change in ζ(0) was in agreement with histology and our previous dynamic contrast enhanced MRI (DCE-MRI) data.. Tumor blood volume and mean vessel radius showed a clear response following treatment with CA4P. VSI may prove valuable in estimation of tumor angiogenesis and prediction of response to VDAs. Topics: Animals; Antineoplastic Agents, Phytogenic; Blood Vessels; Disease Models, Animal; Female; Magnetic Resonance Imaging; Mice; Neoplasm Transplantation; Neoplasms; Neovascularization, Pathologic; Stilbenes | 2012 |
Resveratrol up-regulates hepatic uncoupling protein 2 and prevents development of nonalcoholic fatty liver disease in rats fed a high-fat diet.
Obesity is associated with a markedly increased risk of nonalcoholic fatty liver disease. The anti-inflammatory polyphenol resveratrol possess promising properties in preventing this metabolic condition by dampening the pathological inflammatory reaction in the hepatic tissue. However, in the current study, we hypothesize that the beneficial effect of resveratrol is not solely attributable to its anti-inflammatory potential. Eight-week-old male Wistar rats were randomly distributed into 3 groups of 12 animals each: control diet (C), high-fat diet (HF), and HF supplemented with 100 mg resveratrol daily (HFR). After 8 weeks of dietary treatment, the rats were euthanized and relevant tissues were prepared for subsequent analysis. Resveratrol prevented the high fat-induced steatosis assessed by semiquantitative grading, which furthermore corresponded with a complete normalization of the hepatic triglyceride content (P < .001), despite no change in total body fat. In HFR, the hepatic uncoupling protein 2 expression was significantly increased by 76% and 298% as compared with HF and C, respectively. Moreover, the hepatic mitochondria content in HFR was significantly higher as compared with both C and HF (P < .001 and P = .004, respectively). We found no signs of hepatic inflammation, hereby demonstrating that resveratrol protects against fatty liver disease independently of its proposed anti-inflammatory potential. Our data might indicate that an increased number of mitochondria and, particularly, an increase in hepatic uncoupling protein 2 expression are involved in normalizing the hepatic fat content due to resveratrol supplementation in rodents fed a high-fat diet. Topics: Adipose Tissue; Animals; Biomarkers; Blotting, Western; Diet, High-Fat; Dietary Supplements; Disease Models, Animal; Fatty Liver; Ion Channels; Liver; Male; Mitochondrial Proteins; Non-alcoholic Fatty Liver Disease; Rats, Wistar; Real-Time Polymerase Chain Reaction; Resveratrol; RNA, Messenger; RNA, Ribosomal, 18S; Stilbenes; Triglycerides; Uncoupling Protein 2; Up-Regulation | 2012 |
Protective effects of resveratrol on salivary gland damage induced by total body irradiation in rats.
One of the most common acute side effects of irradiation is xerostomia, which results from damage to the salivary gland cells by direct ionization. Resveratrol is a natural compound with profound anti-inflammatory and antioxidant properties. The purpose of the present study was to investigate the potential protective effects of resveratrol on injury to the salivary glands of rats that were exposed to total body irradiation.. An experimental study at the Inonu University School of Medicine.. Twenty-nine female rats were randomized into four groups: group 1, high-dose (100 mg/kg) resveratrol group (n = 7); group 2, low-dose (10 mg/kg) resveratrol group (n = 7); group 3, control (vehicle) rats (n = 7); and group 4, sham-irradiation group (n = 8). The medications were administered as single doses, and the rats were exposed to total body irradiation 24 hours after the treatment. The animals were sacrificed the following day, and the parotid and submandibular glands were excised. Salivary gland histology and the tissue levels of glutathione (GSH), nitric oxide (NO), and malondialdehyde (MDA) were investigated.. The rats in group 1 showed significantly decreased acinar loss and less ductal damage and cell necrosis than those of the control group (P < .05). Antioxidant GSH levels were significantly increased by high doses of resveratrol treatment. The tissue activities of MDA in both the parotid and submandibular glands were significantly reduced in group 1. Low-dose resveratrol treatment did not significantly alter the tissue levels of MDA.. Resveratrol at relatively high doses can reduce the irradiation-dependent salivary gland damage, suggesting that this natural antioxidant may be effectively used to lessen the side effects related to salivary gland dysfunction that is induced by irradiation. Topics: Angiogenesis Inhibitors; Animals; Antioxidants; Disease Models, Animal; Female; Glutathione; Malondialdehyde; Nitric Oxide; Oxidative Stress; Rats; Rats, Wistar; Resveratrol; Salivary Gland Diseases; Salivary Glands; Stilbenes; Treatment Outcome; Whole-Body Irradiation | 2012 |
Tetrahydroxystilbene glucoside improves the learning and memory of amyloid-β(₁₋₄₂)-injected rats and may be connected to synaptic changes in the hippocampus.
The aim of this study was to evaluate the protective effects of 2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucoside (TSG), an active component extracted from Polygonum multiflorum, on learning/memory deficits in Alzheimer's disease (AD). We randomly divided 24 male Sprague-Dawley rats among 4 groups: (i) the sham-operated group (control); (ii) sham-operated group also treated with TSG (sham+TSG); (iii) beta amyloid treated group (Aβ); and (iv) Aβ treatment group also treated with TSG (Aβ+TSG). Rats in the Aβ and Aβ+TSG groups were treated with Aβ₁₋₄₂ intracerebroventricularly, whereas the control and sham+TSG groups were given phosphate-buffered saline. Rats in the sham+TSG and Aβ+TSG groups were then treated intragastrically with TSG (50 mg·(kg body mass)⁻¹·day⁻¹) for 4 weeks, and rats in the Aβ and control groups were treated with saline. The results from Morris water maze tests, electron microscopy, real-time polymerase chain reaction, and Western blotting demonstrated that Aβ₁₋₄₂ induced impairment in learning and memory, degeneration in synaptic structures, and downregulation of Src and NR2B at the gene and protein level, respectively. These alterations were reversed by the administration of TSG, suggesting that TSG exerts anti-AD properties by protecting synaptic structure and function. TSG-induced upregulation of Src and NR2B may be responsible for this process. Topics: Alzheimer Disease; Amyloid beta-Peptides; Animals; Disease Models, Animal; Glucosides; Hippocampus; Learning Disabilities; Male; Memory Disorders; Nerve Tissue Proteins; Neurons; Neuroprotective Agents; Nootropic Agents; Peptide Fragments; Proto-Oncogene Proteins pp60(c-src); Random Allocation; Rats; Rats, Sprague-Dawley; Receptors, N-Methyl-D-Aspartate; Stilbenes; Synaptic Membranes; Up-Regulation | 2012 |
Chronic resveratrol treatment protects pancreatic islets against oxidative stress in db/db mice.
Resveratrol (RSV) has anti-inflammatory and anti-oxidant actions which may contribute to its cardiovascular protective effects. We examined whether RSV has any beneficial effects on pancreatic islets in db/db mice, an animal model of type 2 diabetes. The db/db and db/dm mice (non-diabetic control) were treated with (db-RSV) or without RSV (db-control) (20 mg/kg daily) for 12 weeks. After performing an intraperitoneal glucose tolerance test and insulin tolerance test, mice were sacrificed, the pancreas was weighed, pancreatic β-cell mass was quantified by point count method, and the amount of islet fibrosis was determined. 8-Hydroxydeoxyguanosine (8-OHdG), an oxidative stress marker, was determined in 24 h urine and pancreatic islets. RSV treatment significantly improved glucose tolerance at 2 hrs in db/db mice (P = 0.036), but not in db/dm mice (P = 0.623). This was associated with a significant increase in both pancreas weight (P = 0.011) and β-cell mass (P = 0.016). Islet fibrosis was much less in RSV-treated mice (P = 0.048). RSV treatment also decreased urinary 8-OHdG levels (P = 0.03) and the percentage of islet nuclei that were positive for 8-OHdG immunostaining (P = 0.019). We conclude that RSV treatment improves glucose tolerance, attenuates β-cell loss, and reduces oxidative stress in type 2 diabetes. These findings suggest that RSV may have a therapeutic implication in the prevention and management of diabetes. Topics: 8-Hydroxy-2'-Deoxyguanosine; Animals; Antioxidants; Blood Glucose; Deoxyguanosine; Diabetes Mellitus, Type 2; Disease Models, Animal; Fibrosis; Glucose Tolerance Test; Immunohistochemistry; Insulin; Insulin Resistance; Islets of Langerhans; Male; Mice; Organ Size; Oxidative Stress; Resveratrol; Stilbenes | 2012 |
Chemopreventive doses of resveratrol do not produce cardiotoxicity in a rodent model of hepatocellular carcinoma.
Hepatocellular carcinoma (HCC), one of the most lethal cancers, results in more than one million fatalities worldwide every year. In view of the limited therapeutic alternatives and poor prognosis of liver cancer, preventive control approaches, notably chemoprevention, have been considered to be the best strategy in lowering the present prevalence of the disease. Resveratrol, a naturally occurring antioxidant and antiinflammatory agent found in grapes and red wine, inhibits carcinogenesis with a pleiotropic mode of action. Recently, we have reported that dietary resveratrol significantly prevents chemically-induced liver tumorigenesis in rats. One of the mechanisms of resveratrol-mediated chemoprevention of hepatocarcinogenesis could be related to its antiinflammatory action through hepatic cyclooxygenase (COX-2) inhibition. Although several COX-2 inhibitors are known to exert chemopreventive efficacy, not all are considered ideal candidates for chemoprevention due to the risk of adverse cardiovascular events. Accordingly, the objective of the present study was to evaluate the role of resveratrol on cardiac performance during experimental hepatocarcinogenesis initiated with diethylnitrosamine and promoted by phenobarbital. Rats had free access to diet supplemented with resveratrol four weeks before the carcinogen injection and 14 weeks thereafter. The cardiotoxicity of resveratrol was assessed by monitoring the cardiac function using transthoracic echocardiography as well as Western blot analysis of cardiac tissue. Long-term dietary administration of resveratrol dose-dependently suppressed hepatic tumor multiplicity, the principal endpoint for evaluating the chemopreventive potential of a candidate agent. The chemopreventive effects of resveratrol were also reflected in histopathological assessment of hepatic tissues. Resveratrol did not exhibit any cardiotoxicity but rather improved the cardiac function in a dose-responsive fashion. Our results indicate that resveratrol-mediated chemoprevention of rat liver carcinogenesis is devoid of any adverse cardiovascular events. Resveratrol may be developed as a chemopreventive as well as therapeutic drug for human HCC. Topics: Animals; Behavior, Animal; Blotting, Western; Carcinoma, Hepatocellular; Cardiotoxins; Chemoprevention; Disease Models, Animal; Dose-Response Relationship, Drug; Echocardiography; Feeding Behavior; Female; Heart; Hepatocytes; Humans; Liver; Liver Neoplasms; Rats; Rats, Sprague-Dawley; Resveratrol; Stilbenes; Systole | 2011 |
ERK activation by the polyphenols fisetin and resveratrol provides neuroprotection in multiple models of Huntington's disease.
Huntington's disease (HD) is an inherited, progressive and ultimately fatal neurodegenerative disorder that is characterized by psychiatric, cognitive and motor symptoms. Among the pathways implicated in HD are those involving mitogen-activated protein kinase signaling and particularly the Ras-extracellular signal-regulated kinase (ERK) cascade. Studies in both cells and animal models suggest that ERK activation might provide a novel therapeutic target for the treatment of HD but compounds that specifically activate ERK are few. To test the hypothesis that pharmaceutical activation of ERK might be protective for HD, a polyphenol, fisetin, which was previously shown to activate the Ras-ERK cascade, was tested in three different models of HD: PC12 cells expressing mutant Httex1 under the control of an inducible promoter, Drosophila expressing mutant Httex1 and the R6/2 mouse model of HD. The results indicate that fisetin can reduce the impact of mutant huntingtin in each of these disease models. Prompted by this observation, we determined that the related polyphenol, resveratrol, also activates ERK and is protective in HD models. Notably, although more than a dozen small molecule inhibitors of ERK activation are in clinical trials, very few small molecule activators of ERK signaling are reported. Thus, fisetin, resveratrol and related compounds might be useful for the treatment of HD by virtue of their unique ability to activate ERK. Topics: Animals; Disease Models, Animal; Drosophila; Enzyme Activation; Extracellular Signal-Regulated MAP Kinases; Flavonoids; Flavonols; Gene Dosage; Gene Expression Regulation; Huntingtin Protein; Huntington Disease; JNK Mitogen-Activated Protein Kinases; Mice; Motor Activity; Nerve Tissue Proteins; Neuroprotective Agents; Nuclear Proteins; PC12 Cells; Rats; Resveratrol; Stilbenes; Survival Analysis | 2011 |
Resveratrol improves insulin resistance hyperglycemia and hepatosteatosis but not hypertriglyceridemia, inflammation, and life span in a mouse model for Werner syndrome.
Werner syndrome is a premature aging disorder caused by mutations in a RecQ-like DNA helicase. Mice lacking the helicase domain of the WRN homologue exhibit many features of Werner syndrome, including a pro-oxidant status and a shorter mean life span. Here, we show that resveratrol supplementation improved the hyperglycemia and the insulin resistance phenotype in these Wrn mutant mice. In addition, resveratrol reversed liver steatosis, lipid peroxidaton, and the defenestration phenotypes observed in such mice. Resveratrol, however, did not improve the hypertriglyceridemia, inflammatory stress, nor extend the mean life span of these mutant mice. Microarray and biologic pathway enrichment analyses on liver tissues revealed that resveratrol mainly decreased lipidogenesis and increased genes involved in the insulin signaling pathway and the glutathione metabolism in Wrn mutant mice. Finally, resveratrol-treated mutant mice exhibited an increase in the frequency of lymphoma and of several solid tumors. These results indicate that resveratrol supplementation might exert at least metabolic benefits for Werner syndrome patients. Topics: Animals; Anticarcinogenic Agents; Disease Models, Animal; Fatty Liver; Hyperglycemia; Hypertriglyceridemia; Inflammation; Insulin Resistance; Mice; Mice, Inbred C57BL; Resveratrol; Stilbenes; Werner Syndrome | 2011 |
Sirt1 inhibition promotes in vivo arterial thrombosis and tissue factor expression in stimulated cells.
The mammalian silent information regulator-two 1 (Sirt1) blunts the noxious effects of cardiovascular risk factors such as type 2 diabetes mellitus and obesity. Nevertheless, the role of Sirt1 in regulating the expression of tissue factor (TF), the key trigger of coagulation, and arterial thrombus formation remains unknown.. Human as well as mouse cell lines were used for in vitro experiments, and C57Bl/6 mice for in vivo procedures. Sirt1 inhibition by splitomicin or sirtinol enhanced cytokine-induced endothelial TF protein expression as well as surface activity, while TF pathway inhibitor protein expression did not change. Sirt1 inhibition further enhanced TF mRNA expression, TF promoter activity, and nuclear translocation as well as DNA binding of the p65 subunit of nuclear factor-kappa B (NFκB/p65). Sirt1 siRNA enhanced TF protein and mRNA expression, and this effect was reduced in NFκB/p65(-/-) mouse embryonic fibroblasts reconstituted with non-acetylatable Lys(310)-mutant NFκB/p65. Activation of the mitogen-activated protein kinases p38, c-Jun NH(2)-terminal kinase, and p44/42 (ERK) remained unaffected. In vivo, mice treated with the Sirt1 inhibitor splitomicin exhibited enhanced TF activity in the arterial vessel wall and accelerated carotid artery thrombus formation in a photochemical injury model.. We provide pharmacological and genetic evidence that Sirt1 inhibition enhances TF expression and activity by increasing NFκB/p65 activation in human endothelial cells. Furthermore, Sirt1 inhibition induces arterial thrombus formation in vivo. Hence, modulation of Sirt1 may offer novel therapeutic options for targeting thrombosis. Topics: Animals; Benzamides; Binding Sites; Cells, Cultured; Disease Models, Animal; Dose-Response Relationship, Drug; Endothelial Cells; Enzyme Activators; Genes, Reporter; Histone Deacetylase Inhibitors; Humans; Mice; Mice, Inbred C57BL; Mice, Knockout; Mitogen-Activated Protein Kinases; Naphthalenes; Naphthols; Promoter Regions, Genetic; Pyrones; Resveratrol; RNA Interference; RNA, Messenger; Sirtuin 1; Stilbenes; Thromboplastin; Thrombosis; Transcription Factor RelA; Transfection | 2011 |
Polydatin ameliorates DSS-induced colitis in mice through inhibition of nuclear factor-kappaB activation.
Nuclear factor- κB (NF- κB) plays a pivotal role in the regulation of immune and inflammatory responses. The real-time expression level of NF- κB reflects the development of ulcerative colitis (UC). Polydatin has vast pharmacological activities, including inhibiting the production of inflammatory mediators, inducing the production of antioxidants, regulating immune function, etc. The purpose of this study was to investigate the potential inhibitory effects of polydatin on NF- κB pathway activation in a mouse UC model. The results showed that polydatin treatment downregulated NF- κB p65 activity and expression, blocked the expression of TNF- α, IL-6 and IL-1 β at both mRNA and protein levels, decreased myeloperoxidase (MPO) activity, and alleviated inflammatory damage of colitis in mice with UC (p < 0.05), suggesting that the anti-inflammation effects of polydatin can be attributed, at least partially, to the blocking of the NF- κB pathway. Topics: Animals; Anti-Inflammatory Agents; Colitis, Ulcerative; Dextran Sulfate; Disease Models, Animal; Glucosides; Inflammation Mediators; Interleukin-1beta; Interleukin-6; Male; Mice; Mice, Inbred BALB C; NF-kappa B; Peroxidase; Pilot Projects; Resveratrol; RNA, Messenger; Signal Transduction; Stilbenes; Tumor Necrosis Factor-alpha | 2011 |
Histological assessment of SJL/J mice treated with the antioxidants coenzyme Q10 and resveratrol.
The muscular dystrophies (MDs) are genetic disorders of muscle degeneration due to mutations in genes that encode a wide variety of proteins. Dysferlinopathy are characterized by the absence of dysferlin in skeletal muscle and an autosomal recessive mode of inheritance. Both histological and ultrastructural pathology have been well established in dysferlinopathy patients and dysferlin-deficient animal models. To our knowledge the effect of antioxidant supplementation on this level has not been described previously. This article therefore focuses on the histopathology to reveal the effect of antioxidant supplementation. The study aimed to determine, at cellular level, the histopathological changes in the SJL/J mouse model following a 90 day trial with antioxidant supplementation. Markedly reduced inflammatory insult in the more affected quadriceps muscles of animals treated with high doses of CoQ10 and a combination of resveratrol/CoQ10 were observed. The outcome provides evidence that high doses of antioxidant supplementation resulted in decreased dystrophic markers and enhanced tissue integrity at cellular level. Topics: Animals; Antioxidants; Disease Models, Animal; Female; Mice; Muscle, Skeletal; Muscular Dystrophies; Resveratrol; Stilbenes; Ubiquinone | 2011 |
Reduction of blood cholesterol and ischemic injury in the hypercholesteromic rabbits with modified resveratrol, longevinex. [corrected]
The present study examined the efficacy of using longevinex, a commercially available resveratrol formulation, to lower blood cholesterol in hypercholesteromic rabbits. New Zealand white rabbits were randomly divided into two groups (n = 6 per group), one group was given high cholesterol diet for 3 months while the other group fed regular diet served as control. The high cholesterol diet fed group was further subdivided into two groups (n = 6 per group), one group was given longevinex resveratrol while the other group given vehicle only served as control. Longevinex was given by gavaging up to a period of 6 months. Longevinex-treated rabbits exhibited lowering of plasma cholesterol level. Inhibition of arterial plaque formation was noticed even after 1 month. Longevinex-treated hearts demonstrated improved ventricular recovery when isolated working hearts were subjected to 30 min of ischemia followed by 2 h of reperfusion. Aortic flow and developed pressure during post-ischemic reperfusion period were significantly higher for the longevinex-treated hearts compared to those in control group of hearts. Myocardial infarct size was also lower in the treated group compared to that for the untreated group. These results indicate cholesterol-lowering ability of longevinex, which appears to reflect in its ability to protect the hypercholesteromic hearts from ischemic reperfusion injury. Topics: Animals; Anticholesteremic Agents; Arteriosclerosis; Biomarkers; Cholesterol; Disease Models, Animal; Down-Regulation; Hemodynamics; Hypercholesterolemia; Male; Myocardial Infarction; Myocardial Ischemia; Myocardial Reperfusion Injury; Myocardium; Rabbits; Resveratrol; Stilbenes; Time Factors; Ventricular Function, Left; Ventricular Pressure | 2011 |
Resveratrol improves neuron protection and functional recovery in rat model of spinal cord injury.
Researches on the pathology of spinal cord injury (SCI) have been recently focused on oxidative radicals stress and inflammation associated neuronal apoptosis. Resveratrol, a natural phenolic compound, has been extensively studied and shown a wide variety of health beneficial effects, including prevention of cardiovascular diseases and cancer and neuroprotective activities. However, the study of its potential role in neuroprotection and underlying mechanism in SCI model has been limited. In this study, we investigated the effect of resveratrol on neurologic functions and histopathologic changes after SCI and the mechanism underlying its neuroprotective effects. First, neuronal function after SCI was evaluated with Basso Beattle Bresnahan locomotor rating scale (BBB) and the result showed that injured animals treated with resveratrol showed a significant increase in BBB scores. Further, histopathological alternations were evaluated with HE and Nissl staining, showing a restored neural morphology and an increase of the number of neurons after resveratrol administration. To explore the underlying mechanism, anti-oxidation effect of resveratrol was assessed by measuring superoxide dismutase (SOD) activity and malondialdehyde (MDA) level after SCI. Resveratrol treatment reversed the decrease of SOD activity and increase of MDA level caused by SCI, suggesting its anti-oxidation role in response to the injury. In addition, resveratrol treatment suppressed immunoreactivity and expression of inflammatory cytokines including IL-1β, IL-10, TNF-α, and myeloperoxidase (MPO) after SCI, suggesting an anti-inflammation effect of resveratrol. Finally, resveratrol treatment inhibited injury-induced apoptosis as assessed by electrical microscopy and TUNEL staining and affected the expression level of apoptosis-related gene Bax, Bcl-2 and caspase-3, which indicated its anti-apoptosis role after SCI. Our data suggest that resveratrol significantly promotes the recovery of rat dorsal neuronal function after SCI, and this effect is related to its characteristics of anti-oxidation, anti-inflammation and anti-apoptosis. Topics: Animals; Disease Models, Animal; Motor Activity; Neurons; Neuroprotective Agents; Random Allocation; Rats; Rats, Sprague-Dawley; Recovery of Function; Resveratrol; Spinal Cord Injuries; Stilbenes | 2011 |
The stilbenoid tyrosine kinase inhibitor, G6, suppresses Jak2-V617F-mediated human pathological cell growth in vitro and in vivo.
Using structure-based virtual screening, we previously identified a novel stilbenoid inhibitor of Jak2 tyrosine kinase named G6. Here, we hypothesized that G6 suppresses Jak2-V617F-mediated human pathological cell growth in vitro and in vivo. We found that G6 inhibited proliferation of the Jak2-V617F expressing human erythroleukemia (HEL) cell line by promoting marked cell cycle arrest and inducing apoptosis. The G6-dependent increase in apoptosis levels was concomitant with increased caspase 3/7 activity and cleavage of PARP. G6 also selectively inhibited phosphorylation of STAT5, a downstream signaling target of Jak2. Using a mouse model of Jak2-V617F-mediated hyperplasia, we found that G6 significantly decreased the percentage of blast cells in the peripheral blood, reduced splenomegaly, and corrected a pathologically low myeloid to erythroid ratio in the bone marrow by eliminating HEL cell engraftment in this tissue. In addition, drug efficacy correlated with the presence of G6 in the plasma, marrow, and spleen. Collectively, these data demonstrate that the stilbenoid compound, G6, suppresses Jak2-V617F-mediated aberrant cell growth. As such, G6 may be a potential therapeutic lead candidate against Jak2-mediated, human disease. Topics: Amino Acid Substitution; Animals; Apoptosis; Cell Cycle; Cell Line, Tumor; Disease Models, Animal; Humans; Janus Kinase 2; Leukemia, Erythroblastic, Acute; Mice; Mice, Mutant Strains; Mutation, Missense; Protein Kinase Inhibitors; Signal Transduction; STAT5 Transcription Factor; Stilbenes | 2011 |
Resveratrol inhibits pathologic retinal neovascularization in Vldlr(-/-) mice.
Macular telangiectasia (MacTel) is a vision-threatening retinal disease with unknown pathogenesis and no approved treatment. Very low-density lipoprotein receptor mutant mice (Vldlr(-/-)) exhibit critical features of MacTel such as retinal neovascularization and photoreceptor degeneration. In this study, the authors evaluate the therapeutic potential of resveratrol, a plant polyphenol, in Vldlr(-/-) mice as a model for MacTel.. Vldlr(-/-) and wild-type mice at postnatal day (P) 21 to P60 or P10 to P30 were treated orally with resveratrol. The number of neovascular lesions was evaluated on retinal flatmounts, and resveratrol effects on endothelial cells were assessed by Western blot for phosphorylated ERK1/2, aortic ring, and migration assays. Vegf and Gfap expression was evaluated in laser-capture microdissected retinal layers of angiogenic lesions and nonlesion areas from Vldlr(-/-) and wild-type retinas.. From P15 onward, Vldlr(-/-) retinas develop vascular lesions associated with the local upregulation of Vegf in photoreceptors and Gfap in the inner retina. Oral resveratrol reduces lesion formation when administered either before or after disease onset. The reduction of vascular lesions in resveratrol-treated Vldlr(-/-) mice is associated with the suppression of retinal Vegf transcription. Resveratrol also reduces endothelial ERK1/2 signaling as well as the migration and proliferation of endothelial cells. Furthermore, a trend toward increased rhodopsin mRNA in Vldlr(-/-) retinas is observed.. Oral administration of resveratrol is protective against retinal neovascular lesions in Vldlr(-/-) mice by inhibiting Vegf expression and angiogenic activation of retinal endothelial cells. These results suggest that resveratrol might be a safe and effective intervention for treating patients with MacTel. Topics: Administration, Oral; Angiogenesis Inhibitors; Animals; Antioxidants; Blotting, Western; Disease Models, Animal; Endothelium, Vascular; Female; Fluorescent Antibody Technique, Indirect; Glial Fibrillary Acidic Protein; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Nerve Tissue Proteins; Receptors, LDL; Resveratrol; Retina; Retinal Neovascularization; Retinal Telangiectasis; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Stilbenes; Vascular Endothelial Growth Factor A | 2011 |
Protective effect of resveratrol on acute lung injury induced by lipopolysaccharide in mice.
Resveratrol, a phytoalexin found in a range of plant products, may exert a variety of pharmacological activities. In this study, we investigated the effect of resveratrol on acute lung injury (ALI) induced by lipopolysaccharide (LPS) in vivo, and we found that the pretreatment with resveratrol can effectively protect mice against LPS-induced ALI. Mice were pretreated with 1 mg/kg resveratrol for 3 days before challenging with a dose of 15 mg/kg LPS. The histological result showed that resveratrol can suppress the edema, inflammatory cell infiltration, and alveolar structure damage of lungs in ALI mice, and a decrease in the lung W/D ratio was also observed in mice with resveratrol pretreatment. Additionally, resveratrol markedly decreased the production of inflammatory cytokines, including IL-1β and MIP-1α and prevented the release of nitric oxide (NO) through inhibiting the expression of inducible NO synthase in lung tissues. Furthermore, the pretreatment with resveratrol suppressed the nuclear translocation of NF-κB in lung tissues, which may be partly responsible for its effect on the ALI. In conclusion, the results presented here may suggest resveratrol as a potential therapeutic agent for treating ALI in the future. Topics: Acute Lung Injury; Animals; Anti-Inflammatory Agents, Non-Steroidal; Blotting, Western; Chemokine CCL3; Disease Models, Animal; Interleukin-1beta; Lipopolysaccharides; Male; Mice; Mice, Inbred ICR; Nitric Oxide; Nitric Oxide Synthase Type II; Resveratrol; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Stilbenes | 2011 |
Resveratrol ameliorates early diabetic nephropathy associated with suppression of augmented TGF-β/smad and ERK1/2 signaling in streptozotocin-induced diabetic rats.
Diabetic nephropathy (DN) is the major cause of end-stage renal disease. The early changes in DN are characterized by an increased in kidney size, glomerular volume, and kidney function, followed by the accumulation of glomerular extracellular matrix, increased urinary albumin excretion (UAE), glomerular sclerosis, and tubular fibrosis. Resveratrol (RSV) has been shown to ameliorate hyperglycemia and hyperlipidemia in streptozotocin-induced diabetic rats. In the present study, we examined the beneficial effects of RSV on DN and explored the possible mechanism of RSV action. Male Sprague-Dawley rats were injected with streptozotocin at 65mg/kg body weight. The induction of diabetes mellitus (DM) was confirmed by a fasting plasma glucose level ≥300mg/dL and symptoms of polyphagia and polydipsia. The DM rats were treated with or without RSV at 0.75mg/kg body weight 3 times a day for 8 weeks. Animals were sacrificed and kidney histology was examined by microscopy. Urinary albumin excretion, glomerular hypertrophy and expressions of fibronectin, collagen IV, and TGF-β in the glomeruli were alleviated in RSV-treated DM rats, but not in untreated DM rats. In addition, RSV treatment reduced the thickness of the glomerular basement membrane (GBM) to the original thickness and increased nephrin expressions to normal levels in DM rats. Moreover, RSV inhibited phosphorylation of smad2, smad3 and ERK1/2 in diabetic rat kidneys. This is the first report showing that RSV alleviates early glomerulosclerosis in DN through TGF-β/smad and ERK1/2 inhibition. In addition, podocyte injuries of diabetic kidneys are lessened by RSV. Topics: Animals; Collagen Type IV; Diabetes Mellitus, Experimental; Diabetic Nephropathies; Disease Models, Animal; Fibronectins; Hypoglycemic Agents; Kidney; Male; Membrane Proteins; Mitogen-Activated Protein Kinase 1; Mitogen-Activated Protein Kinase 3; Phosphorylation; Rats; Rats, Sprague-Dawley; Resveratrol; Signal Transduction; Smad Proteins; Stilbenes; Transforming Growth Factor beta | 2011 |
Cardioprotective effect of resveratrol on lipopolysaccharide-induced oxidative stress in rat.
Lipopolysaccharide (LPS) is a glycolipid component of the cell wall of Gram-negative bacteria, which induces a deleterious effect on several organs, including the heart, eventually leading to septic shock and death. Endotoxemia-induced cardiotoxicity is characterized by disturbed intracellular redox balance, excessive reactive oxygen species (ROS) accumulation, inducing DNA, protein, and membrane lipid damage. Resveratrol (trans-3,5,4' trihydroxystilbene; RVT) is a phytoalexin polyphenol that exhibits antioxidant and -inflammatory properties. We investigated the putative effect of a subacute treatment with this natural compound on LPS-induced cardiotoxicity in the rat. We found that resveratrol counteracted LPS-induced lipoperoxidation and decreased superoxide dismutase (SOD) activity, but had no effect on the LPS-induced decrease in catalase (CAT) nor on the increase in peroxidase (POD) activity. Resveratrol also reversed LPS-induced myocardial nitric oxide (NO) elevation. More important, LPS-induced iron depletion from plasma to the myocardial compartment was abolished upon resveratrol treatment. All these data suggest that resveratrol is capable of alleviating LPS-induced cardiotoxicity, and that its mode of action may involve iron-shuttling proteins. Topics: Animals; Antioxidants; Catalase; Disease Models, Animal; Endotoxemia; Heart; Heart Diseases; Lipid Peroxidation; Lipopolysaccharides; Male; Myocardium; Nitric Oxide; Oxidative Stress; Peroxidase; Rats; Reactive Oxygen Species; Resveratrol; Stilbenes; Superoxide Dismutase | 2011 |
Resveratrol prevention of oxidative stress damage to lens epithelial cell cultures is mediated by forkhead box O activity.
To evaluate the potential role that FoxO transcription factors play in modulating resveratrol's protective effects against oxidative stress in lens epithelial cells.. Primary human or porcine lens epithelial cells (LECs) were treated with resveratrol (RES) 25 μM and incubated under either physiologic (5%) or chronic hyperoxic (40%) oxygen conditions. Acute oxidative stress was applied using 600 μM H(2)O(2). Changes in expression of FoxO1A, FoxO3A, and FoxO4 were analyzed. The production of intracellular reactive oxygen species (iROS), SA-β-galactosidase (SA-β-gal) activity, and autofluorescence (AF) was assessed by flow cytometry. SiRNAs of FoxO1A, FoxO3A, and FoxO4 were used to study the roles that these transcription factors play in resveratrol's protective effects against cell death induced by oxidative stress.. RES incubation under 40% oxygen increased the expression of FoxO1A, FoxO3A, and FoxO4. RES also increases mitochondrial membrane potential under 5% and/or 40% O(2) conditions and significantly decreased iROS, SA-β-gal, and AF normally induced by hyperoxic conditions. While RES had a mild pro-apoptotic effect in nonstressed cells, it significantly prevented apoptosis induced by H(2)O(2) stress. SiRNA inhibition of FoxO1A, FoxO3A, and FoxO4 not only led to loss of the anti-apoptotic effects of RES in stressed cells but actually exhibited a mild pro-apoptotic effect.. RES exerts a protective effect against oxidative damage in LEC cultures. The levels of expression of FoxO1A, FoxO3A, and FoxO4 appear to play a central role in determining the pro- or anti-apoptotic effects of RES. This has implications for future studies on oxidative stress-related lenticular disorders such as cataract formation. Topics: Angiogenesis Inhibitors; Animals; Antioxidants; Apoptosis; Blotting, Western; Cataract; Cells, Cultured; Disease Models, Animal; Epithelial Cells; Flow Cytometry; Forkhead Transcription Factors; Gene Expression Regulation; Humans; Lens, Crystalline; Membrane Potential, Mitochondrial; Oxidative Stress; Polymerase Chain Reaction; Resveratrol; RNA; Stilbenes; Swine | 2011 |
Pterostilbene is more potent than resveratrol in preventing azoxymethane (AOM)-induced colon tumorigenesis via activation of the NF-E2-related factor 2 (Nrf2)-mediated antioxidant signaling pathway.
Inflammatory bowel diseases have been a risk factor of colorectal cancer (CRC). The reactive oxygen species (ROS) generated by inflammatory cells create oxidative stress and contribute to neoplastic transformation, proliferation, and even metastasis. Previously, resveratrol (RS) and pterostilbene (PS) had been reported to prevent chemical-induced colon carcinogenesis by anti-inflammatory and pro-apoptotic properties. In this study, we investigated whether RS and PS could prevent the azoxymethane (AOM)-induced colon tumorigenesis via antioxidant action and to explore possible molecular mechanisms. Male BALB/c mice were injected with AOM (5 mg/kg of body weight) with or without RS or PS, and at the end of the protocol, all of the mice were euthanized and colons were analyzed. Administrations of PS can be more effective than RS in reducing AOM-induced formation of aberrant crypt foci (ACF), lymphoid nodules (LNs), and tumors. We also find that PS is functioning more effectively than RS to reduce nuclear factor-κB (NF-κB) activation by inhibiting the phosphorylation of protein kinase C-β2 (PKC-β2) and decreasing downstream target gene expression, including inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and aldose reductase (AR) in mouse colon stimulated by AOM. Moreover, administration of RS and PS for 6 weeks significantly enhanced expression of antioxidant enzymes, such as heme oxygenase-1 (HO-1) and glutathione reductase (GR), via activation of NF-E2-related factor 2 (Nrf2) signaling. When the above findings are taken together, they suggest that both stilbenes block cellular inflammation and oxidative stress through induction of HO-1 and GR, thereby preventing AOM-induced colon carcinogenesis. In comparison, PS was a more potent chemopreventive agent than RS for the prevention of colon cancer. This is also the first study to demonstrate that PS is a Nrf2 inducer and AR inhibitor in the AOM-treated colon carcinogenesis model. Topics: Animals; Antioxidants; Azoxymethane; Colonic Neoplasms; Disease Models, Animal; Gene Expression Regulation, Neoplastic; Humans; Male; Mice; Mice, Inbred BALB C; NF-E2-Related Factor 2; Resveratrol; Signal Transduction; Stilbenes | 2011 |
Resveratrol improves hippocampal atrophy in chronic fatigue mice by enhancing neurogenesis and inhibiting apoptosis of granular cells.
Neuroimaging evidence showed structural and/or functional abnormalities existing in the central nervous system, especially the hippocampus, in chronic fatigue syndrome (CFS) patients. However, its pathophysiologic mechanisms are unclear in part due to the lack of an applicable animal model. We established a chronic fatigue murine model by six repeated injections of Brucella abortus antigen to mice, which was manifested as reduced daily running activity and hippocampal atrophy. Thereafter, resveratrol, a polyphenolic activator of sirtuin 1, was used for treatment in this model. Daily running activity was increased by more than 20%, and the hippocampus was enlarged after 4-week resveratrol therapy. Furthermore, resveratrol inhibited neuronal apoptosis and expression of hippocampal acetylated p53 in the fatigue mice. Resveratrol also improved neurogenesis and expression of brain-derived neurotrophic factor mRNA in the hippocampus. We concluded that repeated injection of B. abortus antigen could induce hypoactivity and hippocampal atrophy in mice. Resveratrol may be effective for improving fatigue symptoms and enlarging the atrophic hippocampus by repressing apoptosis and promoting neurogenesis. Topics: Animals; Apoptosis; Atrophy; Brain-Derived Neurotrophic Factor; Brucella abortus; Disease Models, Animal; Fatigue Syndrome, Chronic; Female; Hippocampus; Mice; Mice, Inbred BALB C; Neurogenesis; Neurons; Neuroprotective Agents; Phytotherapy; Plant Extracts; Resveratrol; RNA, Messenger; Stilbenes | 2011 |
Protective effect of resveratrol derived from Polygonum cuspidatum and its liposomal form on nigral cells in parkinsonian rats.
Oxidative stress which is an important factor in the pathogenesis of Parkinson's disease (PD) leads to the selective loss of nigral dopaminergic neurons in PD. Resveratrol is a well known antioxidant that exerts extensive pharmacological effects. This study aimed to investigate the protective effect of resveratrol derived from Polygonum cuspidatum and its liposomal form on nigral cells of PD rats.. A rat PD model was established by unilateral microinjection of 6-hydroxy dopamine in the striatum. Then, P. cuspidatum and its liposomal form were intragastrically administered once daily for 2 consecutive weeks. The behaviors, tyrosine hydroxylase positive cells, apoptotic cells, ROS level and total antioxidant capacity were determined.. Our results showed after 14 days of oral treatment with resveratrol or resveratrol liposome (20 mg/kg per day), the abnormal rotational behavior, the loss and apoptosis of nigral cells, and the levels of total reactive oxygen species were markedly decreased and the total antioxidant capability of nigral tissues significantly improved. Furthermore, resveratrol liposome showed more profound effects than free resveratrol.. Resveratrol derived from P. cuspidatum and its liposomal form could protect the dopaminergic neurons in PD rats, to which their radical scavenging ability and antioxidant properties may attribute. Presumably due to the increased bioavailability, resveratrol liposome exerts more potent protection and may become a promising agent for the treatment of PD than free resveratrol. Topics: Animals; Disease Models, Animal; Drugs, Chinese Herbal; Fallopia japonica; Liposomes; Male; Neuroprotective Agents; Oxidative Stress; Rats; Rats, Wistar; Resveratrol; Stilbenes; Substantia Nigra | 2011 |
Chronic estradiol-17β exposure increases superoxide production in the rostral ventrolateral medulla and causes hypertension: reversal by resveratrol.
Women are exposed to estrogen in several forms, such as oral contraceptive pills and hormone replacement therapy. Although estrogen was believed to be cardioprotective, lately, its beneficial effects are being questioned. Recent studies indicate that oxidative stress in the rostral ventrolateral medulla (RVLM) may play a role in the development of hypertension. Therefore, we hypothesized that chronic exposure to low levels of estradiol-17β (E(2)) leads to hypertension in adult-cycling female Sprague Dawley (SD) rats potentially through generation of superoxide in the RVLM. To test this hypothesis, young adult (3 or 4 mo old) female SD rats were either sham-implanted or implanted (subcutaneously) with slow-release E(2) pellets (20 ng/day) for 90 days. A group of control and E(2)-treated animals were fed lab chow or chow containing resveratrol (0.84 g/kg of chow), an antioxidant. Rats were implanted with telemeters to continuously monitor blood pressure (BP) and heart rate (HR). At the end of treatment, the RVLM was isolated for measurements of superoxide. E(2) treatment significantly increased mean arterial pressure (mmHg) and HR (beats/min) compared with sham rats (119.6 ± 0.8 vs. 105.1 ± 0.7 mmHg and 371.7 ± 1.5 vs. 354.4 ± 1.3 beats/min, respectively; P < 0.0001). Diastolic and systolic BP were significantly increased in E(2)-treated rats compared with control animals. Superoxide levels in the RVLM increased significantly in the E(2)-treated group (0.833 ± 0.11 nmol/min·mg) compared with control (0.532 ± 0.04 nmol/min·mg; P < 0.05). Treatment with resveratrol reversed the E(2)-induced increases in BP and superoxide levels in the RVLM. In conclusion, these findings support the hypothesis that chronic exposure to low levels of E(2) induces hypertension and increases superoxide levels in the RVLM and that this effect can be reversed by resveratrol treatment. Topics: Animals; Antioxidants; Blood Pressure; Body Weight; Disease Models, Animal; Dose-Response Relationship, Drug; Eating; Estradiol; Estrogens; Heart Rate; Hypertension; Male; Medulla Oblongata; Oxidative Stress; Rats; Rats, Sprague-Dawley; Resveratrol; Stilbenes; Superoxides | 2011 |
Long-term supplementation with resveratrol alleviates oxidative stress but does not attenuate sarcopenia in aged mice.
This study analyzed the capacity of resveratrol, a naturally occurring polyphenol, to reduce aging-induced oxidative stress and protect against sarcopenia. Middle-aged (18 months) C57/BL6 mice were randomly assigned to receive either a control diet or a diet supplemented with 0.05% trans-resveratrol for 10 months. Young (6 months) and middle-aged (18 months) mice were used as controls. Resveratrol supplementation did not reduce the aging-associated loss of muscle mass or improve maximal isometric force production, but it appeared to preserve fast-twitch fiber contractile function. Resveratrol supplementation did not improve mitochondrial content, the subcellular localization of cytochrome c protein content, or PGC1 protein content. Resveratrol increased manganese superoxide dismutase (MnSOD), reduced hydrogen peroxide(,) and lipid peroxidation levels in muscle samples, but it was unable to significantly reduce protein carbonyl levels. The data suggest that resveratrol has a protective effect against aging-induced oxidative stress in skeletal muscle, likely through the upregulation of MnSOD activity, but sarcopenia was not attenuated by resveratrol. Topics: Aging; Animals; Antioxidants; Dietary Supplements; Disease Models, Animal; Follow-Up Studies; Immunoblotting; Isometric Contraction; Mice; Mice, Inbred C57BL; Mitochondria, Muscle; Muscle, Skeletal; Oxidative Stress; Resveratrol; Ribonucleotide Reductases; Sarcopenia; Stilbenes; Time Factors | 2011 |
The role of calcium channel blockers and resveratrol in the prevention of paraquat-induced parkinsonism in Drosophila melanogaster: a locomotor analysis.
Studies have suggested that neuronal loss in Parkinson's disease (PD) could be related to the pacemaker activity of the substantia nigra pars compacta generated by L-type Ca(v) 1.3 calcium channels, which progressively substitute voltage-dependent sodium channels in this region during aging. Besides this mechanism, which leads to increases in intracellular calcium, other factors are also known to play a role in dopaminergic cell death due to overproduction of reactive oxygen species. Thus, dihydropyridines, a class of calcium channel blockers, and resveratrol, a polyphenol that presents antioxidant properties, may represent therapeutic alternatives for the prevention of PD. In the present study, we tested the effects of the dihydropyridines, isradipine, nifedipine, and nimodipine and of resveratrol upon locomotor behavior in Drosophila melanogaster. As previously described, paraquat induced parkinsonian-like motor deficits. Moreover, none of the drugs tested were able to prevent the motor deficits produced by paraquat. Additionally, isradipine, nifedipine, resveratrol, and ethanol (vehicle), when used in isolation, induced motor deficits in flies. This study is the first demonstration that dyhidropyridines and resveratrol are unable to reverse the locomotor impairments induced by paraquat in Drosophila melanogaster. Topics: Animals; Antioxidants; Calcium Channel Blockers; Calcium Channels; Dihydropyridines; Disease Models, Animal; Dopamine; Drosophila melanogaster; Nerve Degeneration; Paraquat; Parkinsonian Disorders; Resveratrol; Stilbenes; Substantia Nigra | 2011 |
Resveratrol prevents the development of abdominal aortic aneurysm through attenuation of inflammation, oxidative stress, and neovascularization.
We sought to examine the effect of resveratrol (3,4',5-trihydroxy-trans-stilbene), a plant-derived polyphenolic compound, on the development of abdominal aortic aneurysm (AAA).. AAA was induced in mice by periaortic application of CaCl(2). NaCl (0.9%)-applied mice were used as a sham group. Mice were treated with intraperitoneal injection of PBS (Sham/CON, AAA/CON, n=30 for each) or resveratrol (100 mg/kg/day) (AAA/RSVT, n=30). Six weeks after the operation, aortic tissue was excised for further examinations.. Aortic diameter was enlarged in AAA/CON compared with Sham/CON. Resveratrol treatment reduced the aneurysm size and inflammatory cell infiltration in the aortic wall compared with AAA/CON. Elastica Van Gieson staining showed destruction of the wavy morphology of the elastic lamellae in AAA/CON, while it was preserved in AAA/RSVT. The increased mRNA expression of monocyte chemotactic protein-1, tumor necrosis factor-α, intercellular adhesion molecule-1, CD68, vascular endothelial growth factor-A, p47, glutathione peroxidase (GPX)1 and GPX3 were attenuated by resveratrol treatment (all p<0.05). Administration of resveratrol decreased protein expression of phospho-p65 in AAA. The increased 8-hydroxy-2'-deoxyguanosine-positive cell count and 4-hydroxy-2-nonenal-positive cell count in AAA were also reduced by resveratrol treatment. Zymographic activity of matrix metalloproteinase (MMP)-9 and MMP-2 was lower in AAA/RSVT compared with AAA/CON (both p<0.05). Compared with AAA/CON, Mac-2(+) macrophages and CD31(+) vessels in the aortic wall were decreased in AAA/RSVT (both p<0.05).. Treatment with resveratrol in mice prevented the development of CaCl(2)-induced AAA, in association with reduced inflammation, oxidative stress, neoangiogenesis, and extracellular matrix disruption. These findings suggest therapeutic potential of resveratrol for AAA. Topics: Angiogenesis Inhibitors; Animals; Anti-Inflammatory Agents; Antioxidants; Aorta, Abdominal; Aortic Aneurysm, Abdominal; Calcium Chloride; Disease Models, Animal; Extracellular Matrix; Inflammation; Inflammation Mediators; Macrophages; Matrix Metalloproteinase 2; Matrix Metalloproteinase 9; Mice; Mice, Inbred C57BL; Neovascularization, Physiologic; Oxidative Stress; Phosphorylation; Reactive Oxygen Species; Resveratrol; Stilbenes; Transcription Factor RelA | 2011 |
The red wine polyphenol resveratrol shows promising potential for the treatment of nucleus pulposus-mediated pain in vitro and in vivo.
Descriptive and mechanistic investigation of the anti-inflammatory and anticatabolic effect of resveratrol in intervertebral discs (IVDs) in vitro and of the analgetic effect in vivo.. To determine whether resveratrol may be useful in treating nucleus pulposus (NP)-mediated pain.. Proinflammatory cytokines seem to be key mediators in the development of NP-mediated pain. Patients with discogenic or radiculopathic pain may substantially benefit from anti-inflammatory substances that could be used in a minimal-invasive treatment approach. Resveratrol, a polyphenolic phytoalexin found in red wine exhibits anti-inflammatory effects in various cell types and tissues, but no data exists so far with regards to the IVD in the context of low back and leg pain.. In part 1, the anti-inflammatory and anticatabolic effect of resveratrol was investigated in a cell culture model on interleukin 1β (IL-1β) prestimulated human IVD cells on the gene and protein expression level. In part 2, the molecular mechanisms underlying the effects observed upon resveratrol treatment were investigated (toll-like receptors, nuclear factor κB, sirtuin 1 (SIRT1), mitogen-activated protein (MAP) kinases p38/ERK/JNK). In part 3, the analgetic effects of resveratrol were investigated in vivo using a rodent model of radiculopathy and von Frey filament testing. All quantitative data were statistically evaluated either by Mann-Whitney U test or by one-way analysis of variance and Bonferroni post hoc testing (P < 0.05).. In vitro, resveratrol exhibited an anti-inflammatory and anticatabolic effect on the messenger RNA and protein level for IL-6, IL-8, MMP1, MMP3 and MMP13. This effect does not seem to be mediated via the MAP kinase pathways (p38, ERK, JNK) or via the NF-κB/SIRT1 pathway, although toll-like receptor 2 was regulated to a minor extent. In vivo, resveratrol significantly reduced pain behavior triggered by application of NP tissue on the dorsal root ganglion for up to 14 days.. Resveratrol was able to reduce levels of proinflammatory cytokines in vitro and showed analgetic potential in vivo. A decrease in proinflammatory cytokines may possibly be the underlying mechanism of pain reduction observed in vivo. Resveratrol seems to have considerable potential for the treatment of NP-mediated pain and may thus be an alternative to other currently discussed (biological) treatment options. Topics: Adult; Aged; Analgesics; Animals; Anti-Inflammatory Agents; Cells, Cultured; Disease Models, Animal; Dose-Response Relationship, Drug; Extracellular Signal-Regulated MAP Kinases; Female; Gene Expression Regulation; Humans; Inflammation Mediators; Interleukin-1beta; Interleukin-6; Interleukin-8; Intervertebral Disc; JNK Mitogen-Activated Protein Kinases; Male; Matrix Metalloproteinase 1; Matrix Metalloproteinase 13; Matrix Metalloproteinase 3; Middle Aged; NF-kappa B; p38 Mitogen-Activated Protein Kinases; Pain; Pain Measurement; Radiculopathy; Rats; Rats, Sprague-Dawley; Resveratrol; RNA, Messenger; Signal Transduction; Sirtuin 1; Stilbenes; Time Factors; Toll-Like Receptor 2; Wine; Young Adult | 2011 |
Resveratrol restores Nrf2 level and prevents ethanol-induced toxic effects in the cerebellum of a rodent model of fetal alcohol spectrum disorders.
In humans, ethanol exposure during pregnancy produces a wide range of abnormalities in infants collectively known as fetal alcohol spectrum disorders (FASD). Neuronal malformations in FASD manifest as postnatal behavioral and functional disturbances. The cerebellum is particularly sensitive to ethanol during development. In a rodent model of FASD, high doses of ethanol (blood ethanol concentration 80 mM) induces neuronal cell death in the cerebellum. However, information on potential agent(s) that may protect the cerebellum against the toxic effects of ethanol is lacking. Growing evidence suggests that a polyphenolic compound, resveratrol, has antioxidant and neuroprotective properties. Here we studied whether resveratrol (3,5,4'-trihydroxy-trans-stilbene), a phytoalexin found in red grapes and blueberries, protects the cerebellar granule neurons against ethanol-induced cell death. In the present study, we showed that administration of resveratrol (100 mg/kg) to postnatal day 7 rat pups prevents ethanol-induced apoptosis by scavenging reactive oxygen species in the external granule layer of the cerebellum and increases the survival of cerebellar granule cells. It restores ethanol-induced changes in the level of transcription factor nuclear factor-erythroid derived 2-like 2 (nfe2l2, also known as Nrf2) in the nucleus. This in turn retains the expression and activity of its downstream gene targets such as NADPH quinine oxidoreductase 1 and superoxide dismutase in cerebellum of ethanol-exposed pups. These studies indicate that resveratrol exhibits neuroprotective effects in cerebellum by acting at redox regulating proteins in a rodent model of FASD. Topics: Animals; Apoptosis; Cells, Cultured; Cerebellum; Disease Models, Animal; Dose-Response Relationship, Drug; Ethanol; Female; Fetal Alcohol Spectrum Disorders; In Situ Nick-End Labeling; NF-E2-Related Factor 2; Pregnancy; Rats; Rats, Long-Evans; Reactive Oxygen Species; Resveratrol; Stilbenes | 2011 |
Caloric restriction primes mitochondria for ischemic stress by deacetylating specific mitochondrial proteins of the electron transport chain.
Caloric restriction (CR) confers cardioprotection against ischemia/reperfusion injury. However, the exact mechanism(s) underlying CR-induced cardioprotection remain(s) unknown. Recent evidence indicates that Sirtuins, NAD(+)-dependent deacetylases, regulate various favorable aspects of the CR response. Thus, we hypothesized that deacetylation of specific mitochondrial proteins during CR preserves mitochondrial function and attenuates production of reactive oxygen species during ischemia/reperfusion.. The objectives of the present study were (1) to investigate the effect of CR on mitochondrial function and mitochondrial proteome and (2) to investigate what molecular mechanisms mediate CR-induced cardioprotection.. Male 26-week-old Fischer344 rats were randomly divided into ad libitum-fed and CR (40% reduction) groups for 6 months. No change was observed in basal mitochondrial function, but CR preserved postischemic mitochondrial respiration and attenuated postischemic mitochondrial H(2)O(2) production. CR decreased the level of acetylated mitochondrial proteins that were associated with enhanced Sirtuin activity in the mitochondrial fraction. We confirmed a significant decrease in the acetylated forms of NDUFS1 and cytochrome bc1 complex Rieske subunit in the CR heart. Low-dose resveratrol treatment mimicked the effect of CR on deacetylating them and attenuated reactive oxygen species production during anoxia/reoxygenation in cultured cardiomyocytes without changing the expression levels of manganese superoxide dismutase. Treatment with nicotinamide completely abrogated the effect of low-dose resveratrol.. These results strongly suggest that CR primes mitochondria for stress resistance by deacetylating specific mitochondrial proteins of the electron transport chain. Targeted deacetylation of NDUFS1 and/or Rieske subunit might have potential as a novel therapeutic approach for cardioprotection against ischemia/reperfusion. Topics: Acetylation; Animals; Antioxidants; Blotting, Western; Caloric Restriction; Cells, Cultured; Disease Models, Animal; Electron Transport Chain Complex Proteins; Electron Transport Complex III; Humans; Hydrogen Peroxide; Mitochondria, Heart; Mitochondrial Membrane Transport Proteins; Mitochondrial Permeability Transition Pore; Myocardial Reperfusion Injury; Myocytes, Cardiac; NAD; NADH Dehydrogenase; Niacinamide; Oxidative Stress; Proteomics; Rats; Rats, Inbred F344; Resveratrol; Sirtuins; Stilbenes | 2011 |
Stilbenes and tyrosol as target compounds in the assessment of antioxidant and hypolipidemic activity of Vitis vinifera red wines from southern Brazil.
The contents of stilbene monomers, cis-resveratrol, trans-resveratrol, cis-piceid, trans-piceid, and tyrosol, were quantified in Vitis vinifera red wines, cvs. Cabernet Franc, Merlot, Sangiovese, and Syrah, 2006 and 2007 vintages, from the São Joaquim region, a new grape-growing region at southern Brazil. Moreover, the effect of chronic consumption of these wines on the antioxidant and hypolipidemic activities was monitored in C57BL6 LDL receptor knockout mice and treated with a hypercholesterolemic diet. Red wines from this region had substantial levels of resveratrols (the predominant forms were glycoside and trans) and tyrosol. Biomonitoring of antioxidant and hypolipidemic activities in vivo revealed that consumption of these wines increased the antioxidant capacity and reduced the hypercholesterolemia and hypertriglyceridemia promoted by the hypercholesterolemic diet. Significant correlations were found between the increase of antioxidant capacity markers, the decrease of lipid levels promoted by wine consumption, and the contents of stilbenes and tyrosol, supporting the important biological activity of these compounds. Topics: Animals; Antioxidants; Brazil; Disease Models, Animal; Humans; Hyperlipidemias; Hypolipidemic Agents; Mice; Mice, Inbred C57BL; Mice, Knockout; Phenylethyl Alcohol; Stilbenes; Vitis; Wine | 2011 |
Resveratrol supplementation abrogates pro-arteriogenic effects of intramyocardial vascular endothelial growth factor in a hypercholesterolemic swine model of chronic ischemia.
Clinical trials of therapeutic angiogenesis with vascular endothelial growth factor (VEGF) have been disappointing, owing likely to endothelial dysfunction. We used a swine model of chronic ischemia and endothelial dysfunction to determine whether resveratrol coadministration would improve the angiogenic response to VEGF therapy.. Yorkshire swine fed a high-cholesterol diet underwent left circumflex ameroid constrictor placement, and were given either no drug (high cholesterol control [HCC], n = 8), perivascular VEGF (2 μg sustained release [high cholesterol VEGF-treated; HCV], n = 8), or VEGF plus oral resveratrol (10 mg/kg, [high cholesterol VEGF- and resveratrol-treated; HCVR], n = 8). After 7 weeks, myocardial contractility, perfusion, and microvessel reactivity in the ischemic territory were assessed. Tissue was analyzed for vessel density, oxidative stress, and protein expression.. Myocardial perfusion was significantly improved in the HCV group compared with the HCC group; resveratrol coadministration abrogated this improvement. There were no differences in regional myocardial contractility between groups. Endothelium-dependent microvessel relaxation was improved in the HCVR group, and endothelium-independent relaxation response was similar between groups. Arteriolar density was greatest in the HCV group, whereas capillary density was similar between groups. Expression of Akt and phospho-endothelial nitric oxide synthase were increased in the HCVR group. Total protein oxidative stress and myeloperoxidase expression were reduced in the HCVR group, but so was the oxidative-stress dependent phosphorylation of vascular endothelial cadherin (VE-cadherin) and β-catenin.. Although resveratrol coadministration decreases oxidative stress and improves endothelial function, it abolishes improvements in myocardial perfusion and arteriolar density afforded by VEGF treatment alone. This effect is due likely to inhibition of the oxidative stress-dependent phosphorylation of VE-cadherin, an essential step in the initiation of arteriogenesis. Topics: Administration, Oral; Animals; Blood Chemical Analysis; Coronary Angiography; Coronary Circulation; Disease Models, Animal; Drug Therapy, Combination; Hypercholesterolemia; Immunoblotting; Immunohistochemistry; Male; Myocardial Ischemia; Neovascularization, Physiologic; Oxidative Stress; Phosphorylation; Random Allocation; Reference Values; Resveratrol; Risk Factors; Sensitivity and Specificity; Stilbenes; Swine; Vascular Endothelial Growth Factor A | 2011 |
Cardioprotective effect of polydatin against ischemia/reperfusion injury: roles of protein kinase C and mito K(ATP) activation.
Polydatin preconditioning (PPC) has been reported to be protective against brain and intestine ischemia/reperfusion injury (I/R injury), but whether polydatin exerts cardioprotective effect against myocardial ischemia/reperfusion and the underlying mechanisms remain unclear. Previous studies have demonstrated that oxidative stress plays an important role in the process of I/R. Elevation of oxidative agents and decline in anti-oxidant substance would promote I/R. Meanwhile, the activation of PKC signaling seems to mediate the cardioprotective effects of many drugs by alleviating Ca(2+) influx. In the present study, we reported for the first time that intravenous administration of polydatin before I/R significantly limited the infarct size, creatine phosphokinase (CPK) and lactate dehydrogenase (LDH) leakage from the damaged myocardium after I/R. The activity of SOD and the content of MDA remarkably changed in the presence of polydatin as well. However, the cardiac function-preserving and myocardial enzymes leakage-limiting effects of polydatin vanished in the presence of PKC inhibitors and mito K(ATP) channel blockers. But there was not a significant change in the activity of SOD and MDA content. We therefore conclude that PPC exerts cardioprotective effect by the activation of PKC-K(ATP)-dependent signaling and the direct anti-oxidative stress mechanisms. Topics: Animals; Antioxidants; Cardiotonic Agents; Creatine Kinase; Disease Models, Animal; Drugs, Chinese Herbal; Enzyme Inhibitors; Fallopia japonica; Glucosides; Injections, Intravenous; KATP Channels; L-Lactate Dehydrogenase; Male; Malondialdehyde; Mitochondria; Myocardial Reperfusion Injury; Oxidative Stress; Phytotherapy; Protein Kinase C; Random Allocation; Rats; Rats, Sprague-Dawley; Signal Transduction; Stilbenes; Superoxide Dismutase | 2011 |
[Resveratrol derived from rhizoma et radix polygoni cuspidati and its liposomal form protect nigral cells of Parkinsonian rats].
Oxidative stress is a hallmark in the pathogenesis of Parkinson disease (PD), which involves the selective loss of nigral dopaminergic neurons in PD. Resveratrol (3,5,4'-trihydroxy-trans-stilbene) is well known for its powerful antioxidant property and a wide range of other biological effects. In this study, we investigated the protective effect of resveratrol derived from Rhizoma Et Radix Polygoni Cuspidati and its liposomal form on the nigral cells of PD rats induced by unilateral microinjection of 6-hydroxy dopamine in the striatum. The results showed that after 14 days gavage of resveratrol and resveratrol liposome respectively (20 mg x kg(-1) WB per day), the abnormal rotational behavior of PD rats were deceased evidently, the numbers of total nigral cells, total nigral neurons and TH immuno-positive neurons were more than that of PD rats without given resveratrol or resveratrol liposome, simultaneously, the number of apoptotic nigral cells were decreased obviously. The results also showed that resveratrol and resveratrol liposome could decrease the total ROS activity, increase the total antioxidant capability of the nigral tissues. All the data indicated that resveratrol liposome performed stronger effects than resveratrol except for behavioral improvement. Our study confirmed that resveratrol derived from Rhizoma Et Radix Polygoni Cuspidati and its liposomal form could inhibit the loss of dopaminergic neurons of PD rats, the underlying mechanism may be attributed to their radical scavenging effect and antioxidant property. Due to presumably increased bioavailability, resveratrol liposome possesses the stronger therapeutic effect and may become a better clinical agent for the treatment of PD than free resveratrol. Topics: Animals; Antioxidants; Behavior; Cell Death; Disease Models, Animal; Drugs, Chinese Herbal; Liposomes; Neurons; Neuroprotective Agents; Oxidative Stress; Parkinson Disease; Rats; Rats, Wistar; Reactive Oxygen Species; Resveratrol; Stilbenes; Substantia Nigra | 2011 |
Neuroprotective and metabolic effects of resveratrol: therapeutic implications for Huntington's disease and other neurodegenerative disorders.
Resveratrol is a naturally occurring polyphenolic compound associated with beneficial effects on aging, metabolic disorders, inflammation and cancer in animal models and resveratrol is currently being tested in numerous clinical trials. Resveratrol may exert these effects by targeting several key metabolic sensor/effector proteins, such as AMPK, SIRT1, and PGC-1α. Resveratrol has also received considerable attention recently for its potential neuroprotective effects in neurodegenerative disorders where AMPK, SIRT1 or PGC-1α may represent promising therapeutic targets. A recent study published in Experimental Neurology (Ho et al., 2010) examined the therapeutic potential of a micronised proprietary resveratrol formulation, SRT501 in the N171-82Q transgenic mouse model of Huntington's disease (HD). HD is a progressive and devastating genetic neurodegenerative disorder that is associated with downregulation of PGC-1α activity. The Ho et al. study found that SRT501 treatment did not lead to significant improvement in weight loss, motor performance, survival and striatal atrophy. However, other studies have reported neuroprotective effects of resveratrol and a distantly related polyphenol, fisetin, in HD models. HD has been associated with diabetes mellitus. Interestingly, evidence from the Ho et al. study suggests a resveratrol formulation induced beneficial anti-diabetic effect in N171-82Q mice. This commentary summarizes the pertinent outcomes from the Ho et al. study and discusses the further prospects of resveratrol and other polyphenols, including novel grape-derived polyphenols, in the treatment of HD and other neurodegenerative disorders. Topics: Animals; Disease Models, Animal; Huntington Disease; Stilbenes | 2011 |
A novel fluorinated stilbene exerts hepatoprotective properties in CCl(4)-induced acute liver damage.
There has been a recently increase in the development of novel stilbene-based compounds with in vitro anti-inflamatory properties. For this study, we synthesized and evaluated the anti-inflammatory properties of 2 fluorinated stilbenes on carbon tetrachloride (CCl₄)-induced acute liver damage. To achieve this, CCl₄ (4 g·kg(-1), per os) was administered to male Wistar rats, followed by either 2-fluoro-4'-methoxystilbene (FME) or 2,3-difluoro-4'-methoxystilbene (DFME) (10 mg·kg(-1), per os). We found that although both of the latter compounds prevented cholestatic damage (γ-glutamyl transpeptidase activity), only DFME showed partial but consistent results in the prevention of necrosis, as assessed by both alanine aminotransferase activity and histological analysis. Since inflammatory responses are mediated by cytokines, mainly tumour necrosis factor α (TNF-α), we used the Western blot technique to determine the action of FME and DFME on the expression level of this cytokine. The observed increase in the level of TNF-α caused by CCl₄ administration was only prevented by treatment with DFME, in agreement with our biochemical findings. This result was confirmed by measuring interleukin-6 (IL-6) levels, since the expression of this protein depends on the level of TNF-α. In this case, DFME completely blocked the CCl₄-induced increase of IL-6. Our results suggest that DFME possesses greater anti-inflammatory properties in vivo than FME. DFME constitutes a possible therapeutic agent for liver disease and could serve as a template for structure optimization. Topics: Animals; Anti-Inflammatory Agents; Carbon Tetrachloride; Chemical and Drug Induced Liver Injury; Cholestasis; Disease Models, Animal; Drug Evaluation, Preclinical; Humans; Hydrocarbons, Fluorinated; Interleukin-6; Male; Necrosis; Rats; Rats, Wistar; Stilbenes; Tumor Necrosis Factor-alpha | 2011 |
Resveratrol counteracts systemic and local inflammation involved in early abdominal aortic aneurysm development.
Monocyte activation, macrophage infiltration, vascular oxidative stress and matrix proteolysis are inflammatory key steps contributing to abdominal aortic aneurysm (AAA) development. A phenotypical and functional heterogeneity is recognizable in monocytes by the differential expression of surface molecules: CD62L- subset corresponds to activated monocytes, while CD143/ACE surface expression increases during their differentiation into macrophages. In this work, Resveratrol, which is an antioxidant polyphenol with vasoprotective properties, has been evaluated for its potential to limit aneurysm development and monocyte-dependent inflammatory response in a model of elastase-induced AAA.. Male Sprague-Dawley rats received Resveratrol (10 mg/kg/die) (Rsv group, n=15) or vehicle (ethanol) alone (Et-OH group, n=15) continuously from 7 d before until 14 d after the AAA induction with elastase; five littermates were used as untreated control group (Ctr group, n=5). At the end of treatment, CD143 and CD62L monocyte expression was analyzed by flow cytometry, serum antioxidant capacity was evaluated using the TRAP method and circulating TNFα, and MMP-9 were measured with ELISA and gel zymography, respectively. Aortas were subjected to histology and immunohistochemistry for morphological analysis, macrophage infiltration, and MMP-9, TNFα, and VEGF expression.. Resveratrol counteracted the CD62L-monocyte subset expansion, CD143 monocyte expression, and circulating levels of MMP-9 activity and TNFα associated to AAA induction. Similarly, treatment with Resveratrol significantly attenuated AAA expansion, vessel wall macrophage infiltration and MMP-9, VEGF, and TNFα expression, compared with AAA from Et-OH group.. Resveratrol limited the monocyte-dependent inflammatory response, macrophage differentiation and aortic lumen enlargement in elastase-induced AAA. These data suggest that Resveratrol might be tested in selected patients with small AAA to modulate the early systemic and local inflammatory response associated to AAA progression. Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Antioxidants; Aortic Aneurysm, Abdominal; Disease Models, Animal; Disease Progression; L-Selectin; Macrophages, Peritoneal; Male; Matrix Metalloproteinase 9; Monocytes; Pancreatic Elastase; Peptidyl-Dipeptidase A; Rats; Rats, Sprague-Dawley; Resveratrol; Stilbenes; Tumor Necrosis Factor-alpha; Vascular Endothelial Growth Factor A; Vasculitis | 2011 |
Resveratrol regulates antioxidant status, inhibits cytokine expression and restricts apoptosis in carbon tetrachloride induced rat hepatic injury.
Recent studies indicate the chemopreventive role of resveratrol in many animal models like ischemia, rheumatoid arthritis, human cancer, and diabetes. The present study was designed to investigate the chemopreventive potential of resveratrol in rat hepatic injury model by carbon tetrachloride. Male Wistar rats were treated with carbon tetrachloride (0.4 g/kg body weight) intraperitoneally daily for 8 weeks. Resveratrol (100 mg/kg, 200 mg/kg body weight) was given orally from first day until the last day of experiment. The investigation assesses the effect of resveratrol on morphological, oxidative status, histopathological, immunohistochemical, and apoptotic analysis in carbon tetrachloride-challenged liver tissue. The study indicated that the inflammatory cytokines TNF-α and IL-6 were profoundly expressed in experimental rats, whereas resveratrol decreases the immunopositivity of TNF-α and IL-6 and restored the altered architectural structure of challenged hepatic tissue. Resveratrol also protects liver cells by suppressing oxidative stress and apoptosis. Topics: Administration, Oral; Animals; Anti-Inflammatory Agents, Non-Steroidal; Apoptosis; Carbon Tetrachloride; Chemical and Drug Induced Liver Injury; Disease Models, Animal; Gene Expression Regulation; Immunohistochemistry; Interleukin-6; Lipid Peroxidation; Male; Rats; Rats, Wistar; Resveratrol; Stilbenes; Tumor Necrosis Factor-alpha | 2011 |
Resveratrol improves survival, hemodynamics and energetics in a rat model of hypertension leading to heart failure.
Heart failure (HF) is characterized by contractile dysfunction associated with altered energy metabolism. This study was aimed at determining whether resveratrol, a polyphenol known to activate energy metabolism, could be beneficial as a metabolic therapy of HF. Survival, ventricular and vascular function as well as cardiac and skeletal muscle energy metabolism were assessed in a hypertensive model of HF, the Dahl salt-sensitive rat fed with a high-salt diet (HS-NT). Resveratrol (18 mg/kg/day; HS-RSV) was given for 8 weeks after hypertension and cardiac hypertrophy were established (which occurred 3 weeks after salt addition). Resveratrol treatment improved survival (64% in HS-RSV versus 15% in HS-NT, p<0.001), and prevented the 25% reduction in body weight in HS-NT (P<0.001). Moreover, RSV counteracted the development of cardiac dysfunction (fractional shortening -34% in HS-NT) as evaluated by echocardiography, which occurred without regression of hypertension or hypertrophy. Moreover, aortic endothelial dysfunction present in HS-NT was prevented in resveratrol-treated rats. Resveratrol treatment tended to preserve mitochondrial mass and biogenesis and completely protected mitochondrial fatty acid oxidation and PPARα (peroxisome proliferator-activated receptor α) expression. We conclude that resveratrol treatment exerts beneficial protective effects on survival, endothelium-dependent smooth muscle relaxation and cardiac contractile and mitochondrial function, suggesting that resveratrol or metabolic activators could be a relevant therapy in hypertension-induced HF. Topics: Animals; Body Weight; Disease Models, Animal; Endothelium, Vascular; Energy Metabolism; Heart; Heart Failure; Hemodynamics; Hypertension; Male; Mitochondria; Rats; Rats, Inbred Dahl; Resveratrol; Signal Transduction; Stilbenes; Survival Analysis | 2011 |
The effects of resveratrol on cyclooxygenase-1 and -2, nuclear factor kappa beta, matrix metalloproteinase-9, and sirtuin 1 mRNA expression in hearts of streptozotocin-induced diabetic rats.
Resveratrol (RSV) has a beneficial role in the prevention of diabetes and alleviates some diabetic complications, such as cardiomyopathy. We investigated cyclooxygenase-1 (COX-1), COX-2, nuclear factor κB (NF-κB), matrix metalloproteinase-9 (MMP-9), and sirtuin 1 (SIRT1) mRNA expression levels in heart tissue after RSV treatment in streptozotocin (STZ)-induced diabetic rats. After induction of chronic diabetes with STZ, 10 mg RSV/kg per day was administered to DM and DM+RSV groups for four weeks. At the end of the experiment, all rats were sacrificed and heart tissues were stored at -80°C; mRNA expression levels of COX-1, COX-2, NF-κB, MMP-9, and SIRT1 genes were analyzed with quantitative real-time PCR. We did not find any significant effect of RSV on MMP-9, COX-1, COX-2, or NF-κB mRNA levels among the groups. However, SIRT1 mRNA levels decreased in the DM group compared to controls and increased in the DM+RSV group when compared to the DM group. SIRT1 is activated by RSV treatment in diabetic heart tissue. Activation of SIRT1 by RSV may lead to a new therapeutic approach for diabetic heart tissue. We conclude that RSV treatment can alleviate heart dysfunction by inhibiton of inflammatory gene expression such as SIRT1. Topics: Animals; Antioxidants; Cardiomyopathies; Cyclooxygenase 1; Cyclooxygenase 2; Diabetes Mellitus, Experimental; Disease Models, Animal; Gene Expression Regulation; Heart; Male; Matrix Metalloproteinase 9; NF-kappa B; Rats; Rats, Wistar; Real-Time Polymerase Chain Reaction; Resveratrol; RNA, Messenger; Signal Transduction; Sirtuin 1; Stilbenes | 2011 |
Resveratrol protects left ventricle by increasing adenylate kinase and isocitrate dehydrogenase activities in rats with myocardial infarction.
Our prior study had shown that resveratrol was a potent cardioprotective agent in rats with myocardial infarction (MI). In this study, we further evaluated the mechanism of cardioprotection of resveratrol by proteomic analysis. After permanent ligation of the left anterior descending artery under isoflurane anesthesia, surviving rats were randomly allocated to three groups and treated with resveratrol at 1 mg/kg/day (MI/R group), or vehicles (sham group and MI group) once daily for four weeks. In proteomic analysis, the MI group showed decreased expression of adenylate kinase 1 (AK1) and mitochondrial NADP⁺-dependent isocitrate dehydrogenase (IDPm) after MI compared with the sham group. These variations were reversed by resveratrol in the MI/R group. Validation with Western blot and immunohistochemical analyses showed similar trends in protein expression profiling. Our studies suggest that the beneficial effects of resveratrol on ventricular modeling may be due to increased expression of AK1 and IDPm, which have been known to increase myocardial energetic efficiency and reduce reactive oxygen species-mediated damage, respectively. Topics: Adenylate Kinase; Animals; Antioxidants; Blotting, Western; Cardiotonic Agents; Disease Models, Animal; Electrophoresis, Gel, Two-Dimensional; Energy Metabolism; Enzyme Activation; Immunohistochemistry; Isocitrate Dehydrogenase; Male; Myocardial Infarction; Myocardium; Rats; Rats, Sprague-Dawley; Resveratrol; Stilbenes; Ventricular Remodeling | 2011 |
[Resveratrol improves coronary collateral circulation in pigs with experimental acute coronary occlusion].
To evaluate the impact of resveratrol on coronary collateral circulation in pigs suffered from experimental acute coronary occlusion.. Eighteen healthy pigs were randomly divided into 3 groups: resveratrol group, nitroglycerin group and control group. Animal model of acute coronary occlusion was established through PTCA method, and the blood flow spectrum in the left circumflex artery (LCX) was detected using intracoronary Doppler ultrasound.. The average peak velocity (APV) in infarction correlation artery (IRA) was significantly decreased immediately after coronary occlusion [(0.85 ± 0.25) cm/s vs. (24.83 ± 3.43) cm/s, P < 0.05]. The APV remained unchanged during 0, 30 and 60 minutes after the occlusion. Reversed or bidirectional blood flow was observed and the APV increased significantly [(9.22 ± 0.80) cm/s vs. (0.84 ± 0.21) cm/s, (8.93 ± 1.28) cm/s vs. (0.86 ± 0.26) cm/s respectively, P < 0.05] after the coronary injection of resveratrol (2 mg) or nitroglycerin (0.3 mg). There was no significant difference in peak APV between the resveratrol and nitroglycerin groups. The duration of increased APV was significantly longer in resveratrol group than that in nitroglycerin group [(58.83 ± 6.15) min vs. (21.80 ± 5.79) min, P < 0.05].. The collateral circulation after acute coronary occlusion was obviously insufficient in pigs. Resveratrol could significantly improve the blood flow in coronary collateral circulation after acute occlusion in this model. Topics: Animals; Antioxidants; Collateral Circulation; Coronary Circulation; Coronary Occlusion; Coronary Vessels; Disease Models, Animal; Heart; Hemodynamics; Nitroglycerin; Resveratrol; Stilbenes; Swine | 2011 |
3,3',4,4',5,5'-hexahydroxystilbene impairs melanoma progression in a metastatic mouse model.
Stilbenes comprise a group of polyphenolic compounds, which exert inhibitory effects on various malignancies. The aim of this study was to evaluate the antitumor effects of a previously unreported stilbene derivative-3,3',4,4',5,5'-hexahydroxystilbene, termed M8-on human melanoma cells. Cell-cycle analysis of the metastatic melanoma cell line M24met showed that M8 treatment induces G(2)/M arrest accompanied with a dose- and time-dependent upregulation of p21 and downregulation of CDK-2 and leads to apoptosis. M8 induces the expression of phosphorylated p53, proteins involved in the mismatch repair machinery (MSH6, MSH2, and MLH1) and a robust tail moment in a comet assay. In addition, M8 inhibited cell migration in Matrigel assays. Shotgun proteomics and western analysis showed the regulation among others of paxillin, integrin-linked protein kinase, p21-activated kinase, and ROCK-1 indicating that M8 inhibits mesenchymal and amoeboid cell migration. These in vitro data were confirmed in vivo in a metastatic human melanoma severe combined immunodeficient (SCID) mouse model. We showed that M8 significantly impairs tumor growth. M8 also interfered with the metastatic process, as M8 treatment prevented the metastatic spread of melanoma cells to distant lymph nodes in vivo. In summary, M8 exerts strong antitumor effects with the potential to become a new drug for the treatment of metastatic melanoma. Topics: Animals; Antineoplastic Agents; Apoptosis; Cell Cycle; Cell Line, Tumor; Cell Proliferation; Cyclin-Dependent Kinase 2; Cyclin-Dependent Kinase Inhibitor p21; Disease Models, Animal; Disease Progression; DNA Damage; Dose-Response Relationship, Drug; Female; Humans; Melanoma; Mice; Mice, SCID; Paxillin; Pyrogallol; Skin Neoplasms; Stilbenes; Tumor Suppressor Protein p53; Xenograft Model Antitumor Assays | 2010 |
Resveratrol, an activator of SIRT1, upregulates sarcoplasmic calcium ATPase and improves cardiac function in diabetic cardiomyopathy.
Reduced sarcoplasmic calcium ATPase (SERCA2a) expression has been shown to play a significant role in the cardiac dysfunction in diabetic cardiomyopathy. The mechanism of SERCA2a repression is, however, not known. This study was designed to examine the effect of resveratrol (RSV), a potent activator of SIRT1, on cardiac function and SERCA2a expression in chronic type 1 diabetes. Adult male mice were injected with streptozotocin (STZ) and fed with either a regular diet or a diet enriched with RSV. STZ administration produced progressive decline in cardiac function, associated with markedly reduced SERCA2a and SIRT1 protein levels and increased collagen deposition; RSV treatment to these mice had a tremendous beneficial effect both in terms of improving SERCA2a expression and on cardiac function. In cultured cardiomyocytes, RSV restored SERCA2 promoter activity, which was otherwise highly repressed in high-glucose media. Protective effects of RSV were found to be dependent on its ability to activate Silent information regulator (SIRT) 1. In cardiomyocytes, overexpression of SIRT1 was found sufficient to activate SERCA2 promoter in a dose-dependent manner. In contrast, pretreatment of cardiomyocytes with SIRT1 antagonist, splitomycin, blocked these beneficial effects of RSV. In addition, SIRT1 knockout (+/-) mice were also found to be more sensitive to STZ-induced decline in SERCA2a mRNA. The data demonstrate that, in chronic diabetes, 1) the enzymatic activity of cardiac SIRT1 is reduced, which contributes to reduced expression of SERCA2a and 2) through activation of SIRT1, RSV enhances expression of SERCA2a and improves cardiac function. Topics: Animals; Antioxidants; Cardiomyopathies; Diabetes Mellitus, Experimental; Disease Models, Animal; Male; Mice; Mice, Inbred Strains; Mice, Knockout; Myocardium; Myocytes, Cardiac; Resveratrol; Sarcoplasmic Reticulum Calcium-Transporting ATPases; Sirtuin 1; Stilbenes; Streptozocin; Up-Regulation | 2010 |
Neuroprotective effects of resveratrol on ischemic injury mediated by modulating the release of neurotransmitter and neuromodulator in rats.
The present study was carried out to elucidate the neuroprotective effect and influence of resveratrol on the extracellular levels of neurotransmitter and neuromodulator during ischemia/reperfusion in rats. Male rats were divided into three groups: sham operation, ischemia treatment, and ischemia combined with resveratrol treatment (resveratrol-treated group, 30 mg/kg intraperitoneally for 7 days). Cerebral ischemia was induced by using the model of middle cerebral artery occlusion. The dialysates in hypothalamus were obtained by brain microdialysis technique. The levels of sixteen amino acids and amines in microdialysate were monitored by capillary electrophoresis analysis. This study shows that the ischemic infarcts were significantly reduced and neurological functions were improved in resveratrol-treated group compared to ischemia group. The analysis results demonstrate that chronic treatment with resveratrol remarkably reduced the release of excitatory neurotransmitter glutamate, aspartate and neuromodulator d-Serine during ischemia and reperfusion; and significantly increased the basal extracellular levels of inhibitory neurotransmitter gamma-amino-n-butyric acid, glycine and taurine. Chronic treatment with resveratrol also ameliorated O-phosphoethanolamine levels and excitotoxic index during ischemia and reperfusion. This study provides the first in vivo evidence that resveratrol could exert neuroprotective effect against ischemia injury by modulating the release of multiple neurotransmitters and neuromodulators during ischemia/reperfusion. Topics: Animals; Antioxidants; Brain; Brain Infarction; Disease Models, Animal; Ethanolamines; Excitatory Postsynaptic Potentials; Extracellular Fluid; gamma-Aminobutyric Acid; Glutamic Acid; Glycine; Hypothalamus; Hypoxia-Ischemia, Brain; Infarction, Middle Cerebral Artery; Inhibitory Postsynaptic Potentials; Male; Neuroprotective Agents; Neurotransmitter Agents; Rats; Rats, Sprague-Dawley; Resveratrol; Stilbenes; Treatment Outcome | 2010 |
Induction of manganese superoxide dismutase by nuclear translocation and activation of SIRT1 promotes cell survival in chronic heart failure.
Oxidative stress plays a pivotal role in chronic heart failure. SIRT1, an NAD(+)-dependent histone/protein deacetylase, promotes cell survival under oxidative stress when it is expressed in the nucleus. However, adult cardiomyocytes predominantly express SIRT1 in the cytoplasm, and its function has not been elucidated. The purpose of this study was to investigate the functional role of SIRT1 in the heart and the potential use of SIRT1 in therapy for heart failure. We investigated the subcellular localization of SIRT1 in cardiomyocytes and its impact on cell survival. SIRT1 accumulated in the nucleus of cardiomyocytes in the failing hearts of TO-2 hamsters, postmyocardial infarction rats, and a dilated cardiomyopathy patient but not in control healthy hearts. Nuclear but not cytoplasmic SIRT1-induced manganese superoxide dismutase (Mn-SOD), which was further enhanced by resveratrol, and increased the resistance of C2C12 myoblasts to oxidative stress. Resveratrol's enhancement of Mn-SOD levels depended on the level of nuclear SIRT1, and it suppressed the cell death induced by antimycin A or angiotensin II. The cell-protective effects of nuclear SIRT1 or resveratrol were canceled by the Mn-SOD small interfering RNA or SIRT1 small interfering RNA. The oral administration of resveratrol to TO-2 hamsters increased Mn-SOD levels in cardiomyocytes, suppressed fibrosis, preserved cardiac function, and significantly improved survival. Thus, Mn-SOD induced by resveratrol via nuclear SIRT1 reduced oxidative stress and participated in cardiomyocyte protection. SIRT1 activators such as resveratrol could be novel therapeutic tools for the treatment of chronic heart failure. Topics: Adult; Animals; Cardiomyopathy, Dilated; Cell Nucleus; Cell Survival; Cells, Cultured; Chronic Disease; Cricetinae; Disease Models, Animal; Enzyme Activation; Heart Failure; Humans; Male; Mesocricetus; Mice; Muscle Fibers, Skeletal; Myocardial Infarction; Myocytes, Cardiac; Oxidative Stress; Phenols; Plant Extracts; Rats; Resveratrol; Sirtuin 1; Stilbenes; Superoxide Dismutase | 2010 |
Synergistic effects of combined phytochemicals and skin cancer prevention in SENCAR mice.
The purpose of our study was to determine the inhibitory effect of combined phytochemicals on chemically induced murine skin tumorigenesis. Our hypothesis was that concurrent topical and dietary treatment with selected compounds would lead to more efficient prevention of skin cancer. We tested ellagic acid and calcium D-glucarate as components of diets, while resveratrol was applied topically; grape seed extract was applied topically or in the diet. The 4-week inflammatory-hyperplasia assay based on the 7,12-dimethylbenz[a]anthracene (DMBA)-induced skin carcinogenesis model in SENCAR mice was used. We have found that all the selected combinations caused a marked decrease of epidermal thickness compared with the DMBA-treated group and also with groups treated with a single compound and DMBA. All combinations of resveratrol with other compounds showed a synergistic effect on hyperplasia and Ha-ras mutations. Skin tissue of mice receiving the combinations showed decreased cell proliferation and Bcl2 expression; decreased p21, a regulator of cell cycle; and decreased marker of inflammation cyclooxygenase-2. All the selected combinations diminished the DMBA-induced mRNA expression of the CYP1B1 level, and also caused a marked decrease of proto-oncogenes c-jun and c-fos, components of transcription factor activator protein. In conclusion, all combinations showed either additive or synergistic effects and their joint actions allowed for decreasing the doses of the compounds. Especially, resveratrol combinations with ellagic acid, grape seed extract, and other phytochemicals are very potent inhibitors of skin tumorgenesis, based on the suppression of epidermal hyperplasia as well as on the modulation of intermediate biomarkers of cell proliferation, cell survival, inflammation, oncogene mutation, and apoptosis. Topics: Administration, Topical; Animals; Anticarcinogenic Agents; Antineoplastic Agents, Phytogenic; Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Cell Proliferation; Chemoprevention; Diet; Disease Models, Animal; Drug Synergism; Ellagic Acid; Female; Genes, ras; Glucaric Acid; Grape Seed Extract; Mice; Mice, Inbred SENCAR; Mutation; Phytotherapy; Resveratrol; Reverse Transcriptase Polymerase Chain Reaction; Skin Neoplasms; Stilbenes | 2010 |
Dietary supplementation of resveratrol attenuates chronic colonic inflammation in mice.
Ulcerative colitis is a nonspecific inflammatory disorder characterized by oxidative and nitrosative stress, leucocyte infiltration and upregulation of inflammatory mediators. Resveratrol is a polyphenolic compound found in grapes and wine, with multiple pharmacological actions, mainly anti-inflammatory, antioxidant, antitumour and immunomodulatory activities. The aim of this study was to investigate the effect of dietary resveratrol on chronic dextran sulphate sodium (DSS)-induced colitis. Six-week-old mice were randomized into two dietary groups: one standard diet and the other enriched with resveratrol at 20mg/kg of diet. After 30days, mice were exposed to 3% DSS for 5days developing acute colitis that progressed to severe chronic inflammation after 21days of water. Our results demonstrated that resveratrol group significantly attenuated the clinical signs such as loss of body weight, diarrhea and rectal bleeding improving results from disease activity index and inflammatory score. Moreover, the totality of resveratrol-fed animals survived and finished the treatment while animals fed with standard diet showed a mortality of 40%. Three weeks after DSS removal, the polyphenol caused substantial reductions of the rise of pro-inflammatory cytokines, TNF-alpha and IL-1beta and an increase of the anti-inflammatory cytokine IL-10. Also resveratrol reduced prostaglandin E synthase-1 (PGES-1), cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) proteins expression, via downregulation of p38, a mitogen-activated protein kinases (MAPK) signal pathway. We conclude that resveratrol diet represents a novel approach to the treatment of chronic intestinal inflammation. Topics: Administration, Oral; Animals; Anti-Inflammatory Agents, Non-Steroidal; Chronic Disease; Colitis, Ulcerative; Colon; Cyclooxygenase 2; Cytokines; Dextran Sulfate; Dietary Supplements; Disease Models, Animal; Female; Intramolecular Oxidoreductases; Mice; Mice, Inbred C57BL; Nitric Oxide Synthase Type II; Organ Size; p38 Mitogen-Activated Protein Kinases; Prostaglandin-E Synthases; Random Allocation; Resveratrol; Signal Transduction; Stilbenes | 2010 |
Resveratrol attenuates 6-hydroxydopamine-induced oxidative damage and dopamine depletion in rat model of Parkinson's disease.
The present study was undertaken to investigate the neuroprotective effects of resveratrol (RES) on 6-hydroxydopamine (6-OHDA)-induced Parkinson's disease (PD) in rats. PD is an age-related neurodegenerative disorder in which the role of reactive oxygen species (ROS) is strongly implicated. RES, a polyphenolic antioxidant compound enriched in grapes, has been shown to have antioxidant and anti-inflammatory actions and thus was tested for its beneficial effects using 6-OHDA-induced PD rat model. Male Wistar rats were pretreated with RES (20mg/kg body weight i.p.) once daily for 15 days and subjected to unilateral intrastriatal injection of 6-OHDA (10 microg in 0.1% ascorbic acid in normal saline). Three weeks after 6-OHDA infusion, rats were tested for neurobehavioral activity and were killed after 4 weeks of 6-OHDA infusion for the estimation of lipid peroxidation, glutathione content, and activity of antioxidant enzymes (glutathione peroxidase [GPx], glutathione reductase [GR], catalase [CAT], and superoxide dismutase [SOD]. RES was found to be successful in upregulating the antioxidant status and lowering the dopamine loss. Conversely, the elevated level of thiobarbituric acid reactive substances (TBARS), protein carbonyl (PC), and activity of phospholipase A2 in 6-OHDA group was attenuated significantly in RES-pretreated group when compared with 6-OHDA-lesioned group. These results were supported by the immunohistochemical findings in the substantia nigra that has shown the protection of neurons by RES from deleterious effects of 6-OHDA. Thus, RES may be used to reduce the deterioration caused by free radicals thereby preventing subsequent behavioral, biochemical, and histopathological changes that occur during PD. Topics: Animals; Antioxidants; Disease Models, Animal; Dopamine; Enzymes; Free Radicals; Glutathione; Lipid Peroxidation; Male; Nerve Degeneration; Neurotoxins; Oxidative Stress; Oxidopamine; Parkinsonian Disorders; Phospholipases A2; Rats; Rats, Wistar; Resveratrol; Stilbenes; Substantia Nigra; Thiobarbituric Acid Reactive Substances; Treatment Outcome | 2010 |
Screening agents for preventive efficacy in a bladder cancer model: study design, end points, and gefitinib and naproxen efficacy.
We optimized agent testing in an in vivo bladder cancer model and determined the most sensitive, relevant protocol to test efficacy in clinical prevention trials.. Female Fischer-344 rats (Harlan) were treated with the bladder carcinogen OH-BBN (TCI America, Portland, Oregon) for 8 weeks. Rats were treated with naproxen (400 mg/kg diet), aspirin (Sigma(R)) (300 or 3,000 mg/kg diet), Iressa(R) (10 mg/kg gefitinib body weight daily) or resveratrol (1,000 mg/kg diet) using 1 of 3 protocols, including treatment beginning 1) 1 week after OH-BBN and continuing for 7 months, 2) 3 months after OH-BBN after microscopic lesions already existed and continuing for 3 months, and 3) 1 week after OH-BBN and continuing for 4 months. In protocols 1 and 2 bladder lesion weight and large tumors were primary end points, and in protocol 3 microscopic cancer was the end point.. Using protocol 1 naproxen, Iressa, resveratrol, and low and high dose aspirin altered the formation of large bladder tumors by 87% (decreased), 90% (decreased), 3% (increased), 6% (decreased) and 60% (decreased), respectively. Using protocol 2 Iressa and naproxen were also highly effective. Protocol 3 evaluation revealed that only Iressa caused a significant decrease in microscopic bladder cancers (63%).. Initiating treatment after OH-BBN or when bladder lesions already existed showed naproxen and Iressa to be effective in preventing formation of large cancers. Low dose aspirin and resveratrol were ineffective. In protocol 3, in which microscopic lesions were the end point, only Iressa was effective. Thus, an established cancer end point appears preferable. Naproxen, which has an excellent cardiovascular profile, or epidermal growth factor receptor inhibitors may be effective in an adjuvant setting. Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Antineoplastic Agents; Aspirin; Cyclooxygenase Inhibitors; Disease Models, Animal; Drug Screening Assays, Antitumor; Female; Gefitinib; Naproxen; Quinazolines; Rats; Rats, Inbred F344; Research Design; Resveratrol; Stilbenes; Urinary Bladder Neoplasms | 2010 |
Involvement of breast cancer resistance protein (BCRP1/ABCG2) in the bioavailability and tissue distribution of trans-resveratrol in knockout mice.
trans-Resveratrol undergoes extensive metabolism in the intestinal cells, which leads to the formation of glucuronide and sulfate conjugates. Given the important role of the breast cancer resistance protein (ABCG2/BCRP) in the efflux of conjugated forms, the present study investigates the bioavailability and tissue distribution of trans-resveratrol and its metabolites after the oral administration of 60 mg/kg in Bcrp1(-/-) mice. trans-Resveratrol and its metabolites were measured in intestinal content, plasma and tissues by HPLC. At 30 min after administration, intestinal content showed decreases of 71% and 97% of resveratrol glucuronide and sulfate, respectively, in Bcrp1(-/-), indicating a lower efflux from the enterocytes. Furthermore, the area under plasma concentration curves (AUC) of these metabolites increased by 34% and 392%, respectively, whereas a decrease in the AUC of trans-resveratrol was found. In conclusion, Bcrp1 plays an important role in the efflux of resveratrol conjugates, contributing to their bioavailability, tissue distribution and elimination. Topics: Animals; ATP Binding Cassette Transporter, Subfamily G, Member 2; ATP-Binding Cassette Transporters; Biological Availability; Breast Neoplasms; Disease Models, Animal; Female; Humans; Mice; Mice, Knockout; Resveratrol; Stilbenes; Tissue Distribution | 2010 |
Resveratrol arrests and regresses the development of pressure overload- but not volume overload-induced cardiac hypertrophy in rats.
Cardiac hypertrophy is a compensatory enlargement of the heart due to either volume overload (VO) and/or pressure overload (PO) that develops into heart failure if left untreated. The polyphenol resveratrol has been reported to regress PO-induced cardiac hypertrophy in rats. Our aim in this study was to assess the effectiveness of resveratrol on VO-induced cardiac hypertrophy. Sprague Dawley rats were subjected to aortocaval shunt and abdominal aortic banding surgeries to create VO and PO, respectively; sham-operated rats served as controls. To arrest the development of cardiac hypertrophy, daily resveratrol treatment (2.5 mg/kg body weight) was started 2 d postsurgery for 26 d and assessed by echocardiography at 2, 14, and 28 d postsurgery. Similarly, to regress cardiac hypertrophy resveratrol treatment was started after structural and functional abnormalities developed (14 d postsurgery) for 14 d and assessed by echocardiography at 14 and 28 d postsurgery. VO surgeries induced eccentric hypertrophy characterized by increased left ventricle internal dimensions (LVID) without wall thickening. Conversely, PO induced concentric hypertrophy with increased wall thickness without change in LVID. Lipid peroxidation, a marker for oxidative stress, was significantly elevated in both PO and VO rats. Resveratrol treatment arrested the development and regressed abnormalities in cardiac structure and function in PO but not VO rats. Treatment with resveratrol also significantly reduced oxidative stress in cardiac tissue of PO and VO rats. The results on cardiac structure and function demonstrate a potential for resveratrol in the treatment of cardiac hypertrophy due to PO but not VO. Topics: Animals; Antioxidants; Cardiomegaly; Disease Models, Animal; Heart; Lipid Peroxidation; Male; Myocardium; Oxidative Stress; Phytotherapy; Plant Extracts; Rats; Rats, Sprague-Dawley; Resveratrol; Stilbenes; Ventricular Pressure | 2010 |
Retinal protective effects of resveratrol via modulation of nitric oxide synthase on oxygen-induced retinopathy.
Retinopathy of prematurity (ROP) is one of the leading causes of blindness, with retinal detachment occurring due to oxygen toxicity in preterm infants. Recently, advances in neonatal care have led to improved survival rates for preterm infants, and ROP has increased in incidence. In the present study, we aimed to determine whether or not resveratrol exhibits protective effects in an animal model of ROP and in primary retinal cell cultures of neonatal rat via nitric oxide (NO)-modulating actions using western blotting and real-time PCR with inducible nitric oxide synthase (iNOS), endothelial NOS (eNOS) and neuronal NOS (nNOS) antibodies and mRNAs.. In an in vivo oxygen-induced retinopathy (OIR) model, cyclic hyperoxia was induced with 80% O(2) for one day and 21% O(2) for one day from P1 to P14 in newborn Sprague-Dawley (SD) rats. Resveratrol was injected intravitreally for seven days and rats were sacrificed at P21. In vitro OIR primary retinal cell culture was performed using P0-2 SD rats. Hyperoxia injuries were induced through 100% O(2) exposure for six hours. Western blotting and real-time PCR using iNOS, eNOS, nNOS antibodies and primers were performed in the rat model of ROP and the dispersed retinal cell culture.. In both in vivo and in vitro OIR, the expression of iNOS antibody and mRNA was increased and of eNOS and nNOS were reduced in the resveratrol-treated group.. In conclusion, resveratrol appeared to exert retinal protective effects via modulation of NO-mediated mechanism in in vivo and in vitro OIR models. Topics: Analysis of Variance; Animals; Animals, Newborn; Blotting, Western; Disease Models, Animal; Electrophoresis, Polyacrylamide Gel; Humans; Infant, Newborn; Nitric Oxide Synthase; Oxygen; Rats; Rats, Sprague-Dawley; Resveratrol; Retina; Retinopathy of Prematurity; Reverse Transcriptase Polymerase Chain Reaction; RNA; RNA, Messenger; Stilbenes | 2010 |
Resveratrol confers endothelial protection via activation of the antioxidant transcription factor Nrf2.
Epidemiological studies suggest that Mediterranean diets rich in resveratrol are associated with reduced risk of coronary artery disease. Resveratrol was also shown to confer vasoprotection in animal models of type 2 diabetes and aging. However, the mechanisms by which resveratrol exerts its antioxidative vasculoprotective effects are not completely understood. Using a nuclear factor-E(2)-related factor-2 (Nrf2)/antioxidant response element-driven luciferase reporter gene assay, we found that in cultured coronary arterial endothelial cells, resveratrol, in a dose-dependent manner, significantly increases transcriptional activity of Nrf2. Accordingly, resveratrol significantly upregulates the expression of the Nrf2 target genes NAD(P)H:quinone oxidoreductase 1, gamma-glutamylcysteine synthetase, and heme oxygenase-1. Resveratrol treatment also significantly attenuated high glucose (30 mM)-induced mitochondrial and cellular oxidative stress (assessed by flow cytometry using MitoSox and dihydroethidine staining). The aforementioned effects of resveratrol were significantly attenuated by the small interfering RNA downregulation of Nrf2 or the overexpression of Kelch-like erythroid cell-derived protein 1, which inactivates Nrf2. To test the effects of resveratrol in vivo, we used mice fed a high-fat diet (HFD), which exhibit increased vascular oxidative stress associated with an impaired endothelial function. In HFD-fed Nrf2(+/+) mice, resveratrol treatment attenuates oxidative stress (assessed by the Amplex red assay), improves acetylcholine-induced vasodilation, and inhibits apoptosis (assessed by measuring caspase-3 activity and DNA fragmentation) in branches of the femoral artery. In contrast, the aforementioned endothelial protective effects of resveratrol were diminished in HFD-fed Nrf2(-/-) mice. Taken together, our results indicate that resveratrol both in vitro and in vivo confers endothelial protective effects which are mediated by the activation of Nrf2. Topics: Animals; Antioxidants; Apoptosis; Cardiovascular Diseases; Cells, Cultured; Coronary Vessels; Cytoprotection; Dietary Fats; Disease Models, Animal; Dose-Response Relationship, Drug; Endothelial Cells; Femoral Artery; Genes, Reporter; Glucose; Glutathione Synthase; Heme Oxygenase-1; Humans; Intracellular Signaling Peptides and Proteins; Kelch-Like ECH-Associated Protein 1; Male; Mice; Mice, Inbred ICR; Mice, Knockout; NAD(P)H Dehydrogenase (Quinone); NF-E2-Related Factor 2; Oxidative Stress; Response Elements; Resveratrol; RNA Interference; Stilbenes; Transcriptional Activation; Transfection; Vasodilation | 2010 |
Therapeutic effect of (Z)-3-(2,5-dimethoxyphenyl)-2-(4-methoxyphenyl) acrylonitrile (DMMA) against Staphylococcus aureus infection in a murine model.
Sortase enzymes belong to a family of transpeptidases found in Gram-positive bacteria. Sortase is responsible for the reaction that anchors surface protein virulence factors to the peptidoglycan cell wall of the bacteria. The compound (Z)-3-(2,5-dimethoxyphenyl)-2-(4-methoxyphenyl) acrylonitrile (DMMA) has previously been reported as a novel sortase inhibitor in vitro, but the in vivo effects of DMMA have not been studied. Here, we evaluated the in vivo effects of DMMA against infection by wild-type and sortase A- and/or sortase B-deficient Staphylococcus aureus in Balb/c mice. With DMMA treatment, survival rates increased and kidney and joint infection rates decreased (p<0.01) in a dose-dependent manner. The rate of kidney infection was significantly reduced in the mice treated with sortase A knock-out S. aureus (p<0.01). These results indicate that by acting as a potent inhibitor of sortase A and moderate inhibitor of sortase B, DMMA can decrease kidney and joint infection rates and reduce mortality in mice infected with S. aureus. These findings suggest that DMMA is a promising therapeutic compound against Gram-positive bacteria. Topics: Acrylonitrile; Aminoacyltransferases; Animals; Anti-Bacterial Agents; Bacterial Proteins; Cysteine Endopeptidases; Disease Models, Animal; Enzyme Inhibitors; Female; Joints; Kidney; Mice; Mice, Inbred BALB C; Staphylococcal Infections; Staphylococcus aureus; Stilbenes | 2010 |
Protective effects of trans-2, 4-dimethoxystibene on cognitive, impairments induced by Abeta(25-35) in, hypercholesterolemic rats.
Trans-2, 4-dimethoxystibene (S3) is a synthetic stilbenes. In the present study, S3 was investigated to assess its neuroprotective effect against the toxicity induced by Abeta(25-35) in hypercholesterolemic rats. Rats were fed with hypercholesterolemic chow for six weeks, and then received a single intracerebroventricular (i.c.v.) injection of Abeta(25-35) and a treatment with S3 or estradiol (E2). Behavioral changes and neuron apoptosis in rats were evaluated using Morris water maze, step-down test and TUNEL tests. To further explore the mechanism of S3, the activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), choline acetyl transferase (ChAT), acetylcholine esterase (AchE) and the contents of malondialdehyde (MDA) in hippocampus were analyzed by spectrophotometric method. At the same time, the releases of cytochrome C were analyzed by Western Blot, and the contents of acetylcholine (Ach) were analyzed by Elisa. The data showed that consumption of S3 (50mg/kg/d) significantly ameliorated the cognitive deficits and neuron apoptosis caused by i.c.v. injection of Abeta(25-35). Meanwhile, S3 reversed the decreased activity of ChAT, SOD, GSH-Px and contents of Ach, as well as the increased activity of AchE, MDA contents and the release of cytochrome C in hippocampus. These findings suggest that S3 may be a potential candidate for development as therapeutic agent to treat AD through regulating cholinergic nerve system and anti-oxidative mechanism. Topics: Acetylcholine; Acetylcholinesterase; Amyloid beta-Peptides; Analysis of Variance; Animals; Apoptosis; Choline O-Acetyltransferase; Cognition Disorders; Cytochromes c; Disease Models, Animal; Female; Glutathione Peroxidase; GPI-Linked Proteins; Hippocampus; Hypercholesterolemia; Injections, Intraventricular; Malondialdehyde; Maze Learning; Neurons; Neuroprotective Agents; Peptide Fragments; Psychomotor Performance; Rats; Rats, Wistar; Reaction Time; Stilbenes; Superoxide Dismutase; Time Factors | 2010 |
Increased plasma membrane cholesterol in cystic fibrosis cells correlates with CFTR genotype and depends on de novo cholesterol synthesis.
Previous observations demonstrate that Cftr-null cells and tissues exhibit alterations in cholesterol processing including perinuclear cholesterol accumulation, increased de novo synthesis, and an increase in plasma membrane cholesterol accessibility compared to wild type controls. The hypothesis of this study is that membrane cholesterol accessibility correlates with CFTR genotype and is in part influenced by de novo cholesterol synthesis.. Electrochemical detection of cholesterol at the plasma membrane is achieved with capillary microelectrodes with a modified platinum coil that accepts covalent attachment of cholesterol oxidase. Modified electrodes absent cholesterol oxidase serves as a baseline control. Cholesterol synthesis is determined by deuterium incorporation into lipids over time. Incorporation into cholesterol specifically is determined by mass spectrometry analysis. All mice used in the study are on a C57Bl/6 background and are between 6 and 8 weeks of age.. Membrane cholesterol measurements are elevated in both R117H and DeltaF508 mouse nasal epithelium compared to age-matched sibling wt controls demonstrating a genotype correlation to membrane cholesterol detection. Expression of wt CFTR in CF epithelial cells reverts membrane cholesterol to WT levels further demonstrating the impact of CFTR on these processes. In wt epithelial cell, the addition of the CFTR inhibitors, Gly H101 or CFTRinh-172, for 24 h surprisingly results in an initial drop in membrane cholesterol measurement followed by a rebound at 72 h suggesting a feedback mechanism may be driving the increase in membrane cholesterol. De novo cholesterol synthesis contributes to membrane cholesterol accessibility.. The data in this study suggest that CFTR influences cholesterol trafficking to the plasma membrane, which when depleted, leads to an increase in de novo cholesterol synthesis to restore membrane content. Topics: Animals; Benzoates; Binding Sites; Cell Line; Cell Membrane; Cholesterol; Cholesterol Oxidase; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Disease Models, Animal; Electrochemical Techniques; Epithelial Cells; Genotype; Humans; Hydroxymethylglutaryl-CoA Synthase; Kinetics; Mass Spectrometry; Mice; Mice, Inbred CFTR; Microelectrodes; Mutation; Nasal Mucosa; Phenotype; Promoter Regions, Genetic; Respiratory Mucosa; Resveratrol; Stilbenes; Thiazolidines; Transfection | 2010 |
trans-Resveratrol reduces precancerous colonic lesions in dimethylhydrazine-treated rats.
trans-Resveratrol, a natural occurring polyphenol, has been described as an antiproliferative and proapoptotic agent in vitro. Here, we studied the effect of trans-resveratrol administered orally at a dose of 60 mg/kg for 49 days on early preneoplastic markers induced by the intraperitoneal injection of 1,2-dimethylhydrazine (20 mg/kg). We measured trans-resveratrol and its derivates by liquid-liquid extraction followed by high-performance liquid chromatography diode array detection analysis in colon contents. Dihydroresveratrol was the most abundant compound in the colon, followed by trans-resveratrol glucuronide and small amounts of trans-resveratrol and its sulfate. The administration of trans-resveratrol decreased aberrant crypt foci by 52%, and mucin depleted foci by 45% in colon. In conclusion, the correlation between the reduction of precancerous colonic lesions and the availability of trans-resveratrol in the colon provides a new insight into the therapeutical potential of this polyphenol and its metabolites. Topics: 1,2-Dimethylhydrazine; Animals; Colon; Colonic Neoplasms; Disease Models, Animal; Humans; Male; Precancerous Conditions; Rats; Rats, Sprague-Dawley; Resveratrol; Stilbenes | 2010 |
The role of the DDAH-ADMA pathway in the protective effect of resveratrol analog BTM-0512 on gastric mucosal injury.
A recent study showed that resveratrol, a polyphenol found in many plant species, exerts dual effects on gastric mucosal injury. By using the model of ethanol-induced gastric mucosal injury in the present study, we explored the effect of trans-3,5,4'-trimethoxystilbene (BTM-0512), a novel analog of resveratrol, on gastric mucosal injury and the possible underlying mechanisms. Gastric mucosal injury in the rat was induced by oral administration of acidified ethanol. The gastric tissues were collected for determination of the gastric ulcer index, asymmetric dimethylarginine (ADMA) and nitric oxide (NO) contents, the activity of dimethylarginine dimethylaminohydrolase (DDAH) and superoxide anion (O2(-)) or hydroxyl radical (OH*) formation. The results showed that acute administration of ethanol significantly increased the gastric ulcer index concomitantly with the decrease in DDAH activity and NO content as well as the increase in ADMA content, effects that were reversed by pretreatment with BTM-0512 (100 mg/kg) or L-arginine (300 mg/kg). Administration of BTM-0512 did not show a significant effect on O2(-) or OH. formation. The results suggest that BTM-0512 could protect the gastric mucosa against ethanol-induced injury, which is mainly related to an increase in DDAH activity and subsequent decrease in ADMA content. Topics: Amidohydrolases; Animals; Anti-Ulcer Agents; Arginine; Disease Models, Animal; Ethanol; Hydroxyl Radical; Male; Molecular Structure; Nitric Oxide; Rats; Rats, Sprague-Dawley; Resveratrol; Stilbenes; Stomach Ulcer; Superoxides | 2010 |
Resveratrol protects against peripheral deficits in a mouse model of Huntington's disease.
Sirtuins are NAD-dependent deacetylases that regulate important biologic processes including transcription, cell survival and metabolism. Activation of SIRT1, a mammalian sirtuin, extends longevity and increases neuronal survival. An important substrate of SIRT1 is peroxisome proliferator-activated receptor gamma co-activator-1alpha (PGC-1alpha), a principal regulator of energy metabolism, whose function is significantly impaired in Huntington's disease (HD). We studied the effects of a pharmacological preparation of the SIRT1 activator resveratrol (SRT501-M), in the N171-82Q transgenic mouse model of HD. We analyzed motor performance, survival, central and peripheral pathology and levels of PGC-1alpha expression. Administration of SRT501-M increased expression of PGC-1alpha, as well as its downstream targets, nuclear respiratory factor-1 (NRF-1) and uncoupling protein-1 (UCP-1) in brown adipose tissue (BAT), but there was no effect on PGC-1alpha, NRF-1 or the mitochondrial transcription factor (Tfam) in the striatum. SRT501-M administration also reduced BAT vacuolation and decreased elevated blood glucose levels. However, there was no significant improvement in weight loss, motor performance, survival and striatal atrophy. Activation of the PGC-1alpha signaling pathway via resveratrol-induced activation of SIRT1, therefore, is an effective therapy in BAT, but not in the central nervous system of HD transgenic mice. Topics: Adipose Tissue, Brown; Animals; Antioxidants; Disease Models, Animal; Down-Regulation; Huntington Disease; Mice; Mice, Inbred C3H; Mice, Inbred C57BL; Mice, Transgenic; Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha; Resveratrol; Sirtuin 1; Stilbenes; Trans-Activators; Transcription Factors; Treatment Outcome | 2010 |
Anti-angiogenic effect of high-dose resveratrol in a swine model of metabolic syndrome.
Resveratrol has been reported to induce angiogenesis in ischemic tissue. We hypothesized that high-dose resveratrol would improve native angiogenesis in a swine model of metabolic syndrome and chronic myocardial ischemia.. Yorkshire swine were fed a normal diet (Control, n = 7), hypercholesterolemic diet (HCD, n = 7), or hypercholesterolemic diet with supplemental resveratrol (100 mg/kg/day orally, HCD-R; n = 7) beginning 1 month prior to surgery. Chronic ischemia was created by placing an ameroid constrictor on the left circumflex coronary artery. After 7 weeks, swine underwent functional MRI, coronary angiography, and serum and heart tissue harvest for analysis.. HCD-R animals had lower body mass index (P < .001), total cholesterol (P < .001), low-density lipoprotein (LDL; P < .001), blood glucose levels (P < .001), and systolic blood pressure (P = .03) than HCD animals. There was no difference in regional myocardial function at 7 weeks (P = .25). Coronary angiograms revealed no difference in Rentrop collateral scores (P = .68). Staining for platelet endothelial cell adhesion molecule-1 demonstrated higher capillary density in the Control group (versus HCD and HCD-R; P = .02). Immunoblotting demonstrated decreased expression of the pro-angiogenic protein vascular endothelial (VE)-cadherin (P = .002) and an increase in anti-angiogenic proteins angiostatin (P = .001) and thrombospondin (P = .02) in the HCD and HCD-R groups. Matrix metalloprotease 2 (MMP 2; P = .47) and MMP 9 (P = .12) were not different among groups.. Supplemental resveratrol positively modified cardiovascular risk factors including body mass index, cholesterol, glucose tolerance, and systolic blood pressure. However, it did not increase native collateral formation in the ischemic myocardium. This may be a result of increased angiostatin and thrombospondin leading to decreased expression of VE-cadherin and other pro-angiogenic factors. Topics: Angiogenesis Inhibitors; Angiostatins; Animals; Antigens, CD; Cadherins; Cholesterol, Dietary; Collateral Circulation; Coronary Angiography; Disease Models, Animal; Magnetic Resonance Imaging; Male; Metabolic Syndrome; Myocardial Ischemia; Neovascularization, Physiologic; Resveratrol; Stilbenes; Swine; Swine, Miniature | 2010 |
2,3',4,4',5'-Pentamethoxy-trans-stilbene, a resveratrol derivative, inhibits colitis-associated colorectal carcinogenesis in mice.
Resveratrol, a naturally occurring polyphenolic antioxidant, has been shown to exhibit chemoprophylactic effects on cancer development. Previously, we reported that 2,3',4,4',5'-pentamethoxy-trans-stilbene (PMS), a methoxylated resveratrol derivative, exerted a highly potent anti-proliferative effect on human colon cancer cells as compared with its parent compound. In the present study, the chemopreventive effect of PMS was evaluated in a mouse model of colitis-associated colon carcinogenesis.. Seven-week-old Balb/c mice were injected i.p. with 10 mg.kg(-1) azoxymethane (AOM). After 1 week, 3% dextran sodium sulphate (DSS) was administered in the drinking water for 7 days followed by 14 days of tap water for recovery, and this cycle was repeated twice.. Intragastric administration of PMS (25, 50 mg.kg(-1) body weight) for 16 weeks significantly reduced the multiplicity of colonic neoplasms by 15% and 35% (P < 0.01) respectively. Moreover, PMS at 50 mg.kg(-1) inhibited colon cancer cell proliferation and promoted apoptosis. Such changes were accompanied by reduction of Akt (protein kinase B) phosphorylation, inactivation of beta-catenin and down-regulation of inducible nitric oxide synthase. In parallel, in vitro studies also demonstrated that PMS inhibited proliferation and induced apoptosis in the murine colon adenocarcinoma cell line Colon26 with concomitant inhibition of Akt phosphorylation and inactivation of beta-catenin.. PMS effectively suppressed colon carcinogenesis in an AOM/DSS animal model and may merit further clinical investigation as a chemoprophylactic agent against colitis-associated colon cancer in humans. Topics: Adenocarcinoma; Animals; Apoptosis; Azoxymethane; Cell Line, Tumor; Cell Proliferation; Colitis; Colonic Neoplasms; Colorectal Neoplasms; Dextran Sulfate; Disease Models, Animal; Dose-Response Relationship, Drug; Male; Mice; Mice, Inbred BALB C; Stilbenes | 2010 |
A single-dose resveratrol treatment in a mouse model of amyotrophic lateral sclerosis.
The underlying causes of denervation of the neuromuscular junction and eventual motor neuron death in amyotrophic lateral sclerosis (ALS) have not been resolved. The superoxide dismutase 1 (SOD1)(G93A) mutant mouse is a frequently used animal model of ALS. We hypothesized that resveratrol (RSV), a polyphenolic molecule that enhances mammalian NAD(+)-dependent SIRT1 deacetylases and may increase life span, would improve motor function and survival in the SOD1 mouse model via modulation of p53 acetylation. Data were collected for mean survival times, neuromuscular performance on the ROTOR-ROD™ (San Diego Instruments, San Diego, CA, USA), body weight, and p53 acetylation. Mean survival times were not statistically different (P=.23) between control and experimental (RSV-fed) groups (mean +/- SD, control [n=11] 138 +/- 6 days vs. experimental [n=10] 135 +/- 8 days). Performance was not significantly different between groups at time points corresponding to 50%, 80%, and 90% mean life span (P=.46), nor did RSV treatment attenuate body weight loss. Thus although manipulation of SIRT1 deacetylase activity has effects at the protein level in healthy aging organisms, we conclude that RSV treatment does not lead to functional improvement or increased longevity in a mouse model of ALS. We speculate that RSV-mediated modulation of p53 acetylation is either incapable of increasing or insufficient to increase motor performance and longevity in this model of ALS. Topics: Acetylation; Amyotrophic Lateral Sclerosis; Animals; Body Weight; Diet; Disease Models, Animal; Longevity; Mice; Mice, Mutant Strains; Mutation; Psychomotor Performance; Resveratrol; Sirtuin 1; Stilbenes; Superoxide Dismutase; Superoxide Dismutase-1; Tumor Suppressor Protein p53 | 2010 |
Therapeutic effects of resveratrol during acute periods following experimental ischemic stroke.
We defined whether resveratrol administration during the acute phase of ischemic stroke reduces brain injury in mice. Infarct volumes were decreased significantly in both sexes with different doses of resveratrol (5mg/kg for males and 1mg/kg for females) administered 3h after ischemic stroke. Administration of resveratrol 6h after insult was also effective to decrease infarct volumes. Resveratrol suppressed expressions of IL-1β and TNF-α, microglial activation, and ROS production in the ischemic cortex. The findings suggest that the suppression of inflammation is partly associated with the neuroprotective effects of resveratrol, and resveratrol can be developed as a therapeutic drug for acute ischemic stroke. Topics: Acute Disease; Animals; Brain Infarction; Brain Ischemia; Disease Models, Animal; Dose-Response Relationship, Immunologic; Female; Inflammation Mediators; Male; Mice; Mice, Inbred C57BL; Neuroprotective Agents; Reactive Oxygen Species; Resveratrol; Stilbenes; Stroke | 2010 |
Resveratrol improves left ventricular diastolic relaxation in type 2 diabetes by inhibiting oxidative/nitrative stress: in vivo demonstration with magnetic resonance imaging.
Resveratrol is a natural phytophenol that exhibits cardioprotective effects. This study was designed to elucidate the mechanisms by which resveratrol protects against diabetes-induced cardiac dysfunction. Normal control (m-Lepr(db)) mice and type 2 diabetic (Lepr(db)) mice were treated with resveratrol orally for 4 wk. In vivo MRI showed that resveratrol improved cardiac function by increasing the left ventricular diastolic peak filling rate in Lepr(db) mice. This protective role is partially explained by resveratrol's effects in improving nitric oxide (NO) production and inhibiting oxidative/nitrative stress in cardiac tissue. Resveratrol increased NO production by enhancing endothelial NO synthase (eNOS) expression and reduced O(2)(·-) production by inhibiting NAD(P)H oxidase activity and gp91(phox) mRNA and protein expression. The increased nitrotyrosine (N-Tyr) protein expression in Lepr(db) mice was prevented by the inducible NO synthase (iNOS) inhibitor 1400W. Resveratrol reduced both N-Tyr and iNOS expression in Lepr(db) mice. Furthermore, TNF-α mRNA and protein expression, as well as NF-κB activation, were reduced in resveratrol-treated Lepr(db) mice. Both Lepr(db) mice null for TNF-α (db(TNF-)/db(TNF-) mice) and Lepr(db) mice treated with the NF-κB inhibitor MG-132 showed decreased NAD(P)H oxidase activity and iNOS expression as well as elevated eNOS expression, whereas m-Lepr(db) mice treated with TNF-α showed the opposite effects. Thus, resveratrol protects against cardiac dysfunction by inhibiting oxidative/nitrative stress and improving NO availability. This improvement is due to the role of resveratrol in inhibiting TNF-α-induced NF-κB activation, therefore subsequently inhibiting the expression and activation of NAD(P)H oxidase and iNOS as well as increasing eNOS expression in type 2 diabetes. Topics: Animals; Antioxidants; Diabetes Mellitus, Type 2; Disease Models, Animal; Female; Magnetic Resonance Imaging; Male; Membrane Glycoproteins; Mice; Mice, Inbred C57BL; Mice, Knockout; Mice, Mutant Strains; NADPH Oxidase 2; NADPH Oxidases; NF-kappa B; Nitrates; Nitric Oxide; Nitric Oxide Synthase Type III; Oxidative Stress; Oxygen; Reactive Oxygen Species; Resveratrol; Stilbenes; Tumor Necrosis Factor-alpha; Ventricular Dysfunction, Left | 2010 |
Pterostilbene inhibits colorectal aberrant crypt foci (ACF) and colon carcinogenesis via suppression of multiple signal transduction pathways in azoxymethane-treated mice.
Pterostilbene (PS), a natural dimethylated analogue of resveratrol, is known to have diverse pharmacologic activities including anticancer, anti-inflammation, antioxidant, apoptosis, antiproliferation, and analgesic potential. This paper reports the inhibitory effect of dietary administration of pterostilbene against the formation of azoxymethane (AOM)-induced colonic aberrant crypt foci (ACF) preneoplastic lesions and adenomas in male ICR mice and delineates its possible molecular mechanisms. ICR mice were given two AOM injections intraperitoneal and continuously fed a 50 or 250 ppm pterostilbene diet for 6 or 23 weeks. It was found that the dietary administration of pterostilbene effectively reduced AOM-induced formation of ACF and adenomas and inhibited the transcriptional activation of iNOS and COX-2 mRNA and proteins in mouse colon stimulated by AOM. Treatment with pterostilbene resulted in the induction of apoptosis in mouse colon. Moreover, administration of pterostilbene for 23 weeks significantly suppressed AOM-induced GSK3beta phosphorylation and Wnt/beta-catenin signaling. It was also found that pterostilbene significantly inhibited AOM-induced expression of VEGF, cyclin D1, and MMPs in mouse colon. Furthermore, pterostilbene markedly inhibited AOM-induced activation of Ras, phosphatidylinositol 3 kinase/Akt, and EGFR signaling pathways. All of these results revealed that pterostilbene is an effective antitumor agent as well as its inhibitory effect through the down-regulation of inflammatory iNOS and COX-2 gene expression and up-regulation of apoptosis in mouse colon, suggesting that pterostilbene is a novel functional agent capable of preventing inflammation-associated colon tumorigenesis. Topics: Animals; Azoxymethane; Colon; Colonic Neoplasms; Disease Models, Animal; Down-Regulation; Humans; Male; Mice; Mice, Inbred ICR; Signal Transduction; Stilbenes | 2010 |
Resveratrol prevents light-induced retinal degeneration via suppressing activator protein-1 activation.
Light damage to the retina accelerates retinal degeneration in human diseases and rodent models. Recently, the polyphenolic phytoalexin resveratrol has been shown to exert various bioactivities in addition to its classical antioxidant property. In the present study, we investigated the effect of resveratrol on light-induced retinal degeneration together with its underlying molecular mechanisms. BALB/c mice with light exposure (5000-lux white light for 3 hours) were orally pretreated with resveratrol at a dose of 50 mg/kg for 5 days. Retinal damage was evaluated by TdT-mediated dUTP nick-end labeling, outer nuclear layer morphometry, and electroretinography. Administration of resveratrol to mice with light exposure led to a significant suppression of light-induced pathological parameters, including TdT-mediated dUTP nick-end labeling-positive retinal cells, outer nuclear layer thinning, and electroretinography changes. To clarify the underlying molecular mechanisms, the nuclear translocation of activator protein-1 subunit c-fos was evaluated by enzyme-linked immunosorbent assay, and the retinal activity of sirtuin 1 was measured by deacetylase fluorometric assay. Retinal activator protein-1 activation, up-regulated following light exposure, was significantly reduced by application of resveratrol. In parallel, retinal sirtuin 1 activity, reduced in animals with light damage, was significantly augmented by resveratrol treatment. Our data suggest the potential use of resveratrol as a therapeutic agent to prevent retinal degeneration related to light damage. Topics: Animals; Antioxidants; Apoptosis; Blotting, Western; Cells, Cultured; Disease Models, Animal; Electroretinography; Enzyme Activation; Enzyme-Linked Immunosorbent Assay; Light; Male; Mice; Mice, Inbred BALB C; Photoreceptor Cells, Vertebrate; Radiation Injuries, Experimental; Resveratrol; Retina; Retinal Degeneration; Sirtuin 1; Stilbenes; Transcription Factor AP-1 | 2010 |
Essential role of ER-alpha-dependent NO production in resveratrol-mediated inhibition of restenosis.
Resveratrol (Resv), a red wine polyphenol, is known to exhibit vascular protective effects and reduce vascular smooth muscle cell mitogenesis. Vascular smooth muscle cell proliferation is a critical factor in the pathogenesis of restenosis, the renarrowing of vessels that often occurs after angioplasty and/or stent implantation. Although Resv has been shown to be an estrogen receptor (ER) modulator, the role of the ER in Resv-mediated protection against restenosis has not yet been elucidated in vivo. Therefore, with the use of a mouse carotid artery injury model, our objective was to determine the role of ER in modulating Resv-mediated effects on neointimal hyperplasia. Female wild-type and ER-α(-/-) mice were administered a high-fat diet ± Resv for 2 wk. A carotid artery endothelial denudation procedure was conducted, and the mice were administered a high-fat diet ± Resv for an additional 2 wk. Resv-treated wild-type mice exhibited a dramatic decrease in restenosis, with an increased arterial nitric oxide (NO) synthase (NOS) activity and NO production. However, in the ER-α(-/-) mice, Resv failed to afford protection and failed to increase NO production, apparently because of a decreased availability of the NOS cofactor tetrahydrobiopterin. To verify the role of NO in Resv-mediated effects, mice were coadministered Resv plus a nonselective NOS inhibitor, N(G)-nitro-l-arginine methyl ester (l-NAME). Cotreatment with l-NAME significantly attenuated the antirestenotic properties of Resv. These data thus suggest that Resv inhibits vascular proliferative responses after injury, predominately through an ER-α-dependent increase in NO production. Topics: Animals; Carotid Arteries; Carotid Stenosis; Cell Proliferation; Disease Models, Animal; Enzyme Inhibitors; Estrogen Receptor alpha; Female; Mice; Mice, Knockout; NG-Nitroarginine Methyl Ester; Nitric Oxide; Nitric Oxide Synthase; Resveratrol; Secondary Prevention; Stilbenes | 2010 |
Trans- but not cis-resveratrol impairs angiotensin-II-mediated vascular inflammation through inhibition of NF-κB activation and peroxisome proliferator-activated receptor-gamma upregulation.
Angiotensin II (Ang-II) displays inflammatory activity and is implicated in several cardiovascular disorders. This study evaluates the effect of cis- and trans (t)-resveratrol (RESV) in two in vivo models of vascular inflammation and identifies the cardioprotective mechanisms that underlie them. In vivo, Ang-II-induced arteriolar leukocyte adhesion was inhibited by 71% by t-RESV (2.1 mg/kg, i.v.), but was not affected by cis-RESV. Because estrogens influence the rennin-angiotensin system, chronic treatment with t-RESV (15 mg/kg/day, orally) inhibited ovariectomy-induced arteriolar leukocyte adhesion by 81%, partly through a reduction of cell adhesion molecule (CAM) expression and circulating levels of cytokine-induced neutrophil chemoattractant, MCP-1, and MIP-1alpha. In an in vitro flow chamber system, t-RESV (1-10 microM) undermined the adhesion of human leukocytes under physiological flow to Ang-II-activated human endothelial cells. These effects were accompanied by reductions in monocyte and endothelial CAM expression, chemokine release, phosphorylation of p38 MAPK, and phosphorylation of the p65 subunit of NF-kappaB. Interestingly, t-RESV increased the expression of peroxisome proliferator-activated receptor-gamma in human endothelial and mononuclear cells. These results demonstrate for the first time that the in vivo anti-inflammatory activity of RESV is produced by its t-RESV, which possibly interferes with signaling pathways that cause the upregulation of CAMs and chemokine release. Upregulation of proliferator-activated receptor-gamma also appears to be involved in the cardioprotective effects of t-RESV. In this way, chronic administration of t-RESV may reduce the systemic inflammatory response associated with the activation of the rennin-angiotensin system, thereby decreasing the risk of further cardiovascular disease. Topics: Angiogenesis Inhibitors; Angiotensin II; Animals; Cardiovascular Diseases; Cell Communication; Cells, Cultured; Disease Models, Animal; Endothelium, Vascular; Female; Humans; Inflammation Mediators; Male; NF-kappa B; Ovariectomy; PPAR gamma; Rats; Rats, Sprague-Dawley; Resveratrol; Stereoisomerism; Stilbenes; Up-Regulation | 2010 |
Non-invasive imaging of combretastatin activity in two tumor models: Association with invasive estimates.
The efficacy of the vascular disrupting agent combretastatin A-4 phosphate (CA4P) depends on several factors including tumor size, nitric oxide level, interstitial fluid pressure, and vascular permeability. These factors vary among tumor types. The aim of this study was to investigate all these factors in two tumor models that respond differently to CA4P.. Mice bearing C3H mammary carcinomas or KHT sarcomas (200 to 800 mm(3)) were intraperitoneally injected with CA4P (100 mg/kg). Tumor size and the effect of a nitric oxide inhibitor nitro-L-arginine (NLA) administered intravenously were evaluated by necrotic fraction histologically assessed at 24 hours. Interstitial fluid pressure (IFP) was measured using the wick-in-needle technique, and vascular characteristics were assessed with dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI).. Initial necrotic fraction was about 10% in both tumor models at 200 mm(3), but only increased significantly with tumor size in the C3H mammary carcinoma. In this tumor, CA4P significantly induced further necrosis by about 15% at all sizes, but in the KHT tumor, the induced necrotic fraction depended on tumor size. For both tumor types, NLA with CA4P significantly increased necrotic fraction above that for each drug alone. CA4P significantly decreased IFP in all tumors except in the 800 mm(3) C3H tumor, which had an initially non-significant lower value. Interstitial volume estimated by DCE-MRI increased in all groups, except the 800 mm(3) C3H tumors. DCE-MRI vascular parameters showed different initial characteristics and general significant reductions following CA4P treatment.. Both tumor models showed differences in all factors before treatment, and in their response to CA4P. Perfusion and permeability as estimated by DCE-MRI play a central role in the CA4P response, and interstitial volume and IFP seemed related. These factors may be of clinical value in the planning of CA4P treatments. Topics: Animals; Antineoplastic Agents, Phytogenic; Carcinoma; Cell Line, Tumor; Contrast Media; Diagnostic Imaging; Disease Models, Animal; Female; Magnetic Resonance Imaging; Mammary Neoplasms, Experimental; Mice; Mice, Inbred C3H; Nitric Oxide; Sarcoma; Statistics as Topic; Stilbenes; Treatment Outcome; Tumor Burden | 2010 |
Resveratrol improves myocardial perfusion in a swine model of hypercholesterolemia and chronic myocardial ischemia.
Resveratrol may provide protection against coronary artery disease. We hypothesized that supplemental resveratrol will improve cardiac perfusion in the ischemic territory of swine with hypercholesterolemia and chronic myocardial ischemia.. Yorkshire swine were fed either a normal diet (control, n=7), a hypercholesterolemic diet (HCC, n=7), or a hypercholesterolemic diet with supplemental resveratrol (100 mg/kg/d orally, HCRV, n=7). Four weeks later, an ameroid constrictor was placed on the left circumflex artery. Animals underwent cardiac MRI and coronary angiography 7 weeks later before euthanasia and tissue harvest. Total cholesterol was lowered about 30% in HCRV animals (P<0.001). Regional wall motion analysis demonstrated a significant decrease in inferolateral function from baseline to 7 weeks in HCC swine (P=0.04). There was no significant change in regional function in HCRV swine from baseline to 7 weeks (P=0.32). Tissue blood flow during stress was 2.8-fold greater in HCRV swine when compared with HCC swine (P=0.04). Endothelium-dependent microvascular relaxation response to Substance P was diminished in HCC swine, which was rescued by resveratrol treatment (P=0.004). Capillary density (PECAM-1 staining) demonstrated fewer capillaries in both HCC and HCRV swine versus control swine (P=0.02). Immunoblot analysis demonstrated significantly greater expression in HCRV versus HCC swine of the following markers of angiogenesis: VEGF (P=0.002), peNOS (ser1177) (P=0.04), NFkB (P=0.004), and pAkt (thr308) (P=0.001).. Supplemental resveratrol attenuates regional wall motion abnormalities, improves myocardial perfusion in the collateral dependent region, preserves endothelium-dependent coronary vessel function, and upregulates markers of angiogenesis associated with the VEGF signaling pathway. Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Capillaries; Chronic Disease; Coronary Circulation; Coronary Disease; Disease Models, Animal; Female; Humans; Hypercholesterolemia; Male; Microcirculation; Myocardial Ischemia; Myocardium; Neovascularization, Physiologic; Perfusion; Resveratrol; Signal Transduction; Stilbenes; Swine; Vascular Endothelial Growth Factor A | 2010 |
2,3',4,5'-Tetramethoxystilbene prevents deoxycorticosterone-salt-induced hypertension: contribution of cytochrome P-450 1B1.
Reactive oxygen species (ROS) contribute to various models of hypertension, including deoxycorticosterone acetate (DOCA)-salt-induced hypertension. Recently, we have shown that ROS, generated by cytochrome P-450 1B1 (CYP1B1) from arachidonic acid, mediate vascular smooth muscle cell growth caused by angiotensin II. This study was conducted to determine the contribution of CYP1B1 to hypertension and associated pathophysiological changes produced by DOCA (30 mg/kg) given subcutaneously per week with 1% NaCl + 0.1% KCl in drinking water to uninephrectomized rats for 6 wk. DOCA-salt treatment increased systolic blood pressure (SBP). Injections of the selective inhibitor of CYP1B1, 2,3',4,5'-tetramethoxystilbene (TMS; 300 μg/kg ip every 3rd day) initiated at the 4th week of DOCA-salt treatment normalized SBP and decreased CYP1B1 activity but not its expression in the aorta, heart, and kidney. TMS also inhibited cardiovascular and kidney hypertrophy, prevented the increase in vascular reactivity and endothelial dysfunction, and minimized the increase in urinary protein and K(+) output and the decrease in urine osmolality, Na(+) output, and creatinine clearance associated with DOCA-salt treatment. These pathophysiological changes caused by DOCA-salt treatment and associated increase in vascular superoxide production, NADPH oxidase activity, and expression of NOX-1, and ERK1/2 and p38 MAPK activities in the aorta, heart, and kidney were inhibited by TMS. These data suggest that CYP1B1 contributes to DOCA-salt-induced hypertension and associated pathophysiological changes, most likely as a result of increased ROS production and ERK1/2 and p38 MAPK activity, and could serve as a novel target for the development of agents like TMS to treat hypertension. Topics: 12-Hydroxy-5,8,10,14-eicosatetraenoic Acid; Animals; Antihypertensive Agents; Aorta; Aryl Hydrocarbon Hydroxylases; Blood Pressure; Cardiomegaly; Cytochrome P-450 CYP1B1; Desoxycorticosterone; Disease Models, Animal; Diuresis; Endothelium, Vascular; Enzyme Inhibitors; Hydroxyeicosatetraenoic Acids; Hypertension; Kidney; Male; Mitogen-Activated Protein Kinase 1; Mitogen-Activated Protein Kinase 3; Muscle, Smooth, Vascular; Myocardium; NADH, NADPH Oxidoreductases; NADPH Oxidase 1; p38 Mitogen-Activated Protein Kinases; Proteinuria; Rats; Rats, Sprague-Dawley; Sodium Chloride, Dietary; Stilbenes; Superoxides; Time Factors; Vasoconstriction; Vasodilation | 2010 |
Pan-PPAR agonists based on the resveratrol scaffold: biological evaluation and docking studies.
Topics: Animals; Binding Sites; Cell Line, Tumor; Computer Simulation; Diabetes Mellitus, Experimental; Dietary Fats; Disease Models, Animal; Humans; Mice; Pentanoic Acids; PPAR alpha; PPAR delta; PPAR gamma; Protein Structure, Tertiary; Resveratrol; Stilbenes | 2010 |
Oral resveratrol reduces neuronal damage in a model of multiple sclerosis.
Neuronal loss in multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE), correlates with permanent neurological dysfunction. Current MS therapies have limited the ability to prevent neuronal damage.. We examined whether oral therapy with SRT501, a pharmaceutical grade formulation of resveratrol, reduces neuronal loss during relapsing-remitting EAE. Resveratrol activates SIRT1, an NAD+-dependent deacetylase that promotes mitochondrial function.. Oral SRT501 prevented neuronal loss during optic neuritis, an inflammatory optic nerve lesion in MS and EAE. SRT501 also suppressed neurological dysfunction during EAE remission, and spinal cords from SRT501-treated mice had significantly higher axonal density than vehicle-treated mice. Similar neuroprotection was mediated by SRT1720, another SIRT1-activating compound; and sirtinol, an SIRT1 inhibitor, attenuated SRT501 neuroprotective effects. SIRT1 activators did not prevent inflammation.. These studies demonstrate that SRT501 attenuates neuronal damage and neurological dysfunction in EAE by a mechanism involving SIRT1 activation. SIRT1 activators are a potential oral therapy in MS. Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Disease Models, Animal; Encephalomyelitis, Autoimmune, Experimental; Female; Mice; Multiple Sclerosis; Nerve Degeneration; Resveratrol; Stilbenes | 2010 |
[Effects of tetrahydroxystilbene glucoside on nerve growth factor and growth associated protein in rats after cerebral ischemia-reperfusion].
To investigate the effects of terahydroxy stilbene glucoside (TSG) on neurological deficits, the expressions of nerve growth factor (NGF) and growth associated protein43 (GAP43) in rats after Cerebral Ischemia-reperfusion.. 96 Sprague-Dawley male rats were divided into four groups (n = 24): control group, ischemia-reperfusion (I/R) model group, low dose TSG (60 mg/kg) group and high dose TSG (120 mg/kg) group. After 6 days' administration of TSG or natural saline (model group), reversible middle cerebral artery occlusion (MCAO) model was established by intraluminal suture technique. Rats in control group were operated while middle cerebral artery were not blocked. At 6, 24, 48 h and 7 d after reperfusion, behavior test was used to evaluate the neurological deficiency of each group. The expressions of NGF and GAP-43 in the cortex were measured by immunohistochemical method.. Compared with model group, both dose of TSG could decrease the grade of the rat neurological defects except at 6 h of ter reperfusion and increase the protein expressions of NGF and GAP-43 after reperfusion.. TSG can improve the neurological function through increasing the expressions of NGF and GAP-43 of cerebral ischemia-reperfusion rats. Topics: Animals; Brain Ischemia; Cerebral Cortex; Disease Models, Animal; GAP-43 Protein; Glucosides; Immunohistochemistry; Infarction, Middle Cerebral Artery; Male; Nerve Growth Factor; Neuroprotective Agents; Polygonaceae; Random Allocation; Rats; Rats, Sprague-Dawley; Reperfusion Injury; Stilbenes | 2010 |
Anti-inflammatory effects of resveratrol, curcumin and simvastatin in acute small intestinal inflammation.
The health beneficial effects of Resveratrol, Curcumin and Simvastatin have been demonstrated in various experimental models of inflammation. We investigated the potential anti-inflammatory and immunomodulatory mechanisms of the above mentioned compounds in a murine model of hyper-acute Th1-type ileitis following peroral infection with Toxoplasma gondii.. Here we show that after peroral administration of Resveratrol, Curcumin or Simvastatin, mice were protected from ileitis development and survived the acute phase of inflammation whereas all Placebo treated controls died. In particular, Resveratrol treatment resulted in longer-term survival. Resveratrol, Curcumin or Simvastatin treated animals displayed significantly increased numbers of regulatory T cells and augmented intestinal epithelial cell proliferation/regeneration in the ileum mucosa compared to placebo control animals. In contrast, mucosal T lymphocyte and neutrophilic granulocyte numbers in treated mice were reduced. In addition, levels of the anti-inflammatory cytokine IL-10 in ileum, mesenteric lymph nodes and spleen were increased whereas pro-inflammatory cytokine expression (IL-23p19, IFN-γ, TNF-α, IL-6, MCP-1) was found to be significantly lower in the ileum of treated animals as compared to Placebo controls. Furthermore, treated animals displayed not only fewer pro-inflammatory enterobacteria and enterococci but also higher anti-inflammatory lactobacilli and bifidobacteria loads. Most importantly, treatment with all three compounds preserved intestinal barrier functions as indicated by reduced bacterial translocation rates into spleen, liver, kidney and blood.. Oral treatment with Resveratrol, Curcumin or Simvastatin ameliorates acute small intestinal inflammation by down-regulating Th1-type immune responses and prevents bacterial translocation by maintaining gut barrier function. These findings provide novel and potential prophylaxis and treatment options of patients with inflammatory bowel diseases. Topics: Administration, Oral; Animals; Anti-Inflammatory Agents; Anti-Inflammatory Agents, Non-Steroidal; Curcumin; Disease Models, Animal; Hydroxymethylglutaryl-CoA Reductase Inhibitors; Ileitis; Inflammation; Intestine, Small; Mice; Mice, Inbred C57BL; Resveratrol; Simvastatin; Stilbenes; Th1 Cells; Toxoplasma | 2010 |
In vivo effect of pinosylvin and pterostilbene in the animal model of adjuvant arthritis.
The aim of this study was to evaluate the effects of pinosylvin (PIN) and pterostilbene (PTE), natural substances from the stilbenoid group, on the development of adjuvant arthritis in rats.. Adjuvant arthritis (AA) was induced by a single intradermal injection of Mycobacterium butyricum in incomplete Freund's adjuvant in male Lewis rats. Our experiments included healthy intact animals as reference controls, arthritic animals without any drug administration, and arthritic animals with administration of PIN and PTE in the oral daily dose of 30 mg/kg b.w. The treatment involved administration of the substances tested from day 0, i.e. the day of immunization, to the experimental day 28. The following parameters were monitored: change of the hind paw volume (HPV) on day 14, 21 and 28, luminol-enhanced chemiluminescence (CL) of the joint and myeloperoxidase (MPO) activity in hind paw joint homogenates (day 28).. Arthritic animals treated with PIN showed a decrease in HPV, significantly on days 14 and 28. PIN decreased CL of the joint as well as MPO activity of the joint homogenate, in comparison with untreated animals. PTE had no effect on HPV and MPO activity in hind paw joint homogenates and exerted only a partial effect on luminol-enhanced CL.. On the basis of our results we conclude that the effect of PTE on CL was only partial. PIN, on the other hand, had a beneficial anti-inflammatory and antioxidant effect on oxidative stress induced biochemical changes occurring in AA, as determined by all three functional parameters. Topics: Animals; Anti-Inflammatory Agents; Antioxidants; Arthritis, Experimental; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Therapy, Combination; Male; Oxidative Stress; Peroxidase; Rats; Rats, Inbred Lew; Reactive Oxygen Species; Stilbenes | 2010 |
Formation of reactive oxygen and nitrogen species in the presence of pinosylvin - an analogue of resveratrol.
Formation of reactive oxygen species in neutrophils of rats with adjuvant arthritis and generation of nitric oxide in RAW 264.7 macrophages were analysed in the presence of pinosylvin.. The method of chemiluminescence was used for the detection of reactive oxygen species in blood of rats with adjuvant arthritis. Pinosylvin (50 mg/kg, daily, p.o.) and methotrexate (0.4 mg/kg, twice a week, p.o.) were applied separately or in a combination over a period of 28 days from the day of immunisation. Adjuvant arthritis was accompanied by a significantly increased number of neutrophils, by elevated concentration of oxidants in blood and by excessive responsiveness of neutrophils to stimulation with PMA. In rats treated with methotrexate, all these changes were significantly reduced and the inhibition became more pronounced when methotrexate was applied in the combination with pinosylvin; the monotherapy with pinosylvin did not induce any detectable changes in the parameters tested. Under in vitro conditions, pinosylvin inhibited formation of nitric oxide (NO) in macrophages, as demonstrated by the decreased concentration of nitrite - the end-product of NO metabolism (assessed by Griess' method), by the reduced expression of inducible NO synthase (detected by Western blot), and by the failure of pinosylvin to scavenge nitric oxide (measured amperometrically in cell-free system).. The observed ability of pinosylvin to decrease concentration of reactive oxygen and nitrogen species, along with its capacity to enhance the efficacy of methotrexate in arthritis treatment may shed more light into the pharmacological potential of this prospective natural substance. Topics: Animals; Antioxidants; Antirheumatic Agents; Arthritis, Experimental; Cell Line; Disease Models, Animal; Drug Therapy, Combination; Macrophages; Male; Methotrexate; Neutrophils; Nitric Oxide; Rats; Rats, Inbred Lew; Reactive Oxygen Species; Resveratrol; Stilbenes | 2010 |
Central antalgic activity of resveratrol.
A single dose of resveratrol (25 μg/10μl) was injected directly into the right lateral cerebral ventricle (icv) of Wistar rats via an implanted cannula in order to study the analgesic properties of the compound. A control group of rats received 10 μl NaCl 0.9%. The lengthening of the time to reaction to painful stimuli was assessed in the radiant heat tail-flick latency time test. In this study, the response to painful stimuli of the animals treated with resveratrol had a bimodal profile with hypoalgesia or hyperalgesia. In the selected experimental conditions, resveratrol had a definite analgesic effect; the increase in time to reaction ranged from 100-120% (8 rats) to 600-700% (9 rats). In this experiment resveratrol exerts evident central antalgic effects in the majority of rats, which are related to the individual level of excitation and vigilance at baseline. Antinociceptive induced by resveratrol icv injection was maximal at 4-10 min and lasted no longer than 15 min. The effect of resveratrol to produce analgesia after a single icv injection may be interesting for preventing chronic pain. Topics: Analgesics; Animals; Disease Models, Animal; Hyperalgesia; Injections, Intraventricular; Male; Motor Activity; Pain Measurement; Physical Stimulation; Rats; Rats, Wistar; Reaction Time; Resveratrol; Stilbenes | 2010 |
[Effect of polydatin on dynamic changes of excitatory amino acids in cerebrospinal fluid of cerebral hemorrhage rats].
To observe the effects of polydatin on dynamic changes of excitatory amino acids in cerebrospinal fluid and water content of brain tissue of cerebral hemorrhage rats. And to discuss the therapeutic action and mechanisms of polydatin on brain hemorrhagic injured rats.. A quantitative determination method of Asp and Glu was established by microdialysis-HPLC. The cerebral hemorrhage model in rats was induced by local injection of type VII collagenase. The dynamic changes of Asp and Glu in cerebrospinal fluid were observed on 0, 6, 12, 24, 36, 48, 60, 72, 84, 96, 108 h of cerebral hemorrhage rats, and then the water content of brain tissue was detected.. The content of Asp and Glu increased rapidly within 24 h after cerebral hemorrhage, and to the highest in 24 h, then decreased gradually. Compared with the cerebral hemorrhage model group, the content of Asp and Glu increased slowly in polydatin group, and there were significant differences in 12-72 h and 6-84 h (P < 0.01, P < 0.05), but there was no significant difference after 84 h and 96 h. Compared with sham group, water content of brain tissue significantly higher in model group, while significantly lower (P < 0.01) in polydatin group.. Polydatin can inhibit increasing content of Asp and Glu in cerebrospinal fluid dynamics, and significantly inhibit cerebral edema of cerebral hemorrhage rats. It shows that the mechanisms of anti-cerebral hemorrhage injury of polydatin may be related to increasing of excitatory amino acids after cerebral hemorrhage. Topics: Animals; Aspartic Acid; Cerebral Hemorrhage; Disease Models, Animal; Drugs, Chinese Herbal; Excitatory Amino Acids; Glucosides; Glutamic Acid; Humans; Male; Rats; Rats, Sprague-Dawley; Stilbenes | 2010 |
Protective effect of resveratrol in endotoxemia-induced acute phase response in rats.
Lipopolysaccharide (LPS), a glycolipid component of the cell wall of gram-negative bacteria can elicit a systemic inflammatory process leading to septic shock and death. Acute phase response is characterized by fever, leucocytosis, thrombocytopenia, altered metabolic responses and redox balance by inducing excessive reactive oxygen species (ROS) generation. Resveratrol (trans-3,5,4' trihydroxystilbene) is a natural polyphenol exhibiting antioxidant and anti-inflammatory properties. We investigated the protective effect of resveratrol on endotoxemia-induced acute phase response in rats. When acutely administered by i.p. route, resveratrol (40 mg/kg b.w.) counteracted the effect of a single injection of LPS (4 mg/kg b.w.) which induced fever, a decrease in white blood cells (WBC) and platelets (PLT) counts. When i.p. administered during 7 days at 20 mg/kg per day (subacute treatment), resveratrol abrogated LPS-induced erythrocytes lipoperoxidation and catalase (CAT) activity depression to control levels. In the plasma compartment, LPS increased malondialdehyde (MDA) via nitric monoxide (NO) elevation and decreased iron level. All these deleterious LPS effects were reversed by a subacute resveratrol pre-treatment via a NO independent way. Resveratrol exhibited potent protective effect on LPS-induced acute phase response in rats. Topics: Acute-Phase Reaction; Animals; Antioxidants; Blood Platelets; Body Temperature; Catalase; Disease Models, Animal; Drug Antagonism; Endotoxemia; Erythrocytes; Fever; Injections, Intraperitoneal; Iron; Leukocytes; Lipid Peroxidation; Lipopolysaccharides; Male; Malondialdehyde; Nitric Oxide; Oxidative Stress; Rats; Rats, Wistar; Reactive Oxygen Species; Resveratrol; Stilbenes | 2009 |
Dietary trans-resveratrol bioavailability and effect on CCl4-induced liver lipid peroxidation.
Several in vitro studies have demonstrated the ability of pure trans-resveratrol (t-Res) to act as an anti-oxidant, but the scientific literature is lacking in in vivo studies dealing with dietary t-Res bioavailability in oxidative stress models. Our aim was to investigate the bioavailability of t-Res from dietary sources and its effect on an animal model of carbon tetrachloride (CCl4)-induced liver lipid peroxidation.. Ten rats were intragastrically administered for 14 days with a grape-stalk extract determining a daily t-Res dosage of 3 mg/kg. The control group (10 rats) was daily injected with the vehicle solvent without the t-Res extract. After 1 week, the induction of liver lipid peroxidation by CCl4 injection was carried out. Serum and liver samples, at different time intervals, were collected to evaluate t-Res content, by high-performance liquid chromatography (HPLC) and liquid chromatography-mass spectometry-mass spectometry (LC-MS-MS). Liver malondialdehyde (MDA) as marker of oxidative stress was measured.. t-Res accumulates in the liver reaching 49.8 +/- 10.2 ng/g after 7 days and 191.8 +/- 15.3 ng/g after 14 days. No t-Res was detected in serum. The increase of MDA liver concentration due to CCl4 injection after 24 h and 1 week was reduced by 38% and a 63%, respectively, by the treatment with the t-Res extract.. A moderate consumption of t-Res from a dietary source resulted in a time-dose-dependent liver accumulation. It was able to counteract in vivo CCl4-induced liver lipid peroxidation thus demonstrating the hepatoprotective property of t-Res. Topics: Animals; Antioxidants; Biological Availability; Carbon Tetrachloride; Chemical and Drug Induced Liver Injury; Cytoprotection; Diet; Disease Models, Animal; Intubation, Gastrointestinal; Lipid Peroxidation; Liver; Liver Diseases; Male; Malondialdehyde; Plant Stems; Rats; Rats, Sprague-Dawley; Resveratrol; Stilbenes; Vitis | 2009 |
Modulatory effects of resveratrol on attenuating the key enzymes activities of carbohydrate metabolism in streptozotocin-nicotinamide-induced diabetic rats.
Resveratrol, a ubiquitous stress-induced phytoalexin, has demonstrated a wide variety of biological activities which make it a good candidate for the treatment of diabetes mellitus. The present study was aimed to evaluate its therapeutic potential by assaying the activities of key enzymes of carbohydrate metabolism in streptozotocin-nicotinamide-induced diabetic rats. The daily oral treatment of resveratrol (5 mg/kg body weight) to diabetic rats for 30 days demonstrated a significant (p<0.05) decline in blood glucose and glycosylated hemoglobin levels and a significant (p<0.05) increase in plasma insulin level. The altered activities of the key enzymes of carbohydrate metabolism such as hexokinase, pyruvate kinase, lactate dehydrogenase, glucose-6-phosphatase, fructose-1,6-bisphosphatase, glucose-6-phosphate dehydrogenase, glycogen synthase and glycogen phosphorylase in liver and kidney tissues of diabetic rats were significantly (p<0.05) reverted to near normal levels by the administration of resveratrol. Further, resveratrol administration to diabetic rats improved hepatic glycogen content suggesting the antihyperglycemic potential of resveratrol in diabetic rats. The obtained results were compared with glyclazide, a standard oral hypoglycemic drug. Thus, the modulatory effects of resveratrol on attenuating these enzymes activities afford a promise for widespread use for treatment of diabetes in the future. Topics: Administration, Oral; Animals; Carbohydrate Metabolism; Diabetes Mellitus, Experimental; Disease Models, Animal; Drug Evaluation, Preclinical; Fructose-Bisphosphatase; Gliclazide; Glucose-6-Phosphatase; Glucosephosphate Dehydrogenase; Glycogen Phosphorylase; Glycogen Synthase; Hexokinase; Hypoglycemic Agents; Kidney; L-Lactate Dehydrogenase; Liver; Male; Niacinamide; Pyruvate Kinase; Rats; Rats, Wistar; Resveratrol; Stilbenes; Streptozocin | 2009 |
Aldose reductase mediates myocardial ischemia-reperfusion injury in part by opening mitochondrial permeability transition pore.
Aldose reductase (AR), a member of the aldo-keto reductase family, has been demonstrated to play a central role in mediating myocardial ischemia-reperfusion (I/R) injury. Recently, using transgenic mice broadly overexpressing human AR (ARTg), we demonstrated that AR is an important component of myocardial I/R injury and that inhibition of this enzyme protects heart from I/R injury (20-22, 48, 49, 56). To rigorously delineate mechanisms by which AR pathway influences myocardial ischemic injury, we investigated the role played by reactive oxygen species (ROS), antioxidant enzymes, and mitochondrial permeability transition (MPT) pore opening in hearts from ARTg or littermates [wild type (WT)] subjected to I/R. MPT pore opening after I/R was determined using mitochondrial uptake of 2-deoxyglucose ratio, while H2O2 was measured as a key indicator of ROS. Myocardial 2-deoxyglucose uptake ratio and calcium-induced swelling were significantly greater in mitochondria from ARTg mice than in WT mice. Blockade of MPT pore with cyclosphorin A during I/R reduced ischemic injury significantly in ARTg mice hearts. H2O2 measurements indicated mitochondrial ROS generation after I/R was significantly greater in ARTg mitochondria than in WT mice hearts. Furthermore, the levels of antioxidant GSH were significantly reduced in ARTg mitochondria than in WT. Resveratrol treatment or pharmacological blockade of AR significantly reduced ROS generation and MPT pore opening in mitochondria of ARTg mice hearts exposed to I/R stress. This study demonstrates that MPT pore opening is a key event by which AR pathway mediates myocardial I/R injury, and that the MPT pore opening after I/R is triggered, in part, by increases in ROS generation in ARTg mice hearts. Therefore, inhibition of AR pathway protects mitochondria and hence may be a useful adjunct for salvaging ischemic myocardium. Topics: Aldehyde Reductase; Animals; Antioxidants; Calcium; Cyclosporine; Deoxyglucose; Disease Models, Animal; Glutathione; Humans; Hydrogen Peroxide; Mice; Mice, Inbred C57BL; Mice, Transgenic; Mitochondria, Heart; Mitochondrial Membrane Transport Proteins; Mitochondrial Permeability Transition Pore; Mitochondrial Swelling; Myocardial Reperfusion Injury; Myocardium; Reactive Oxygen Species; Resveratrol; Stilbenes | 2009 |
Resveratrol-mediated chemoprevention of diethylnitrosamine-initiated hepatocarcinogenesis: inhibition of cell proliferation and induction of apoptosis.
Hepatocellular carcinoma (HCC) is one of the most common cancers and lethal diseases. In view of the limited treatment and a grave prognosis of liver cancer, preventive control has been emphasized. Resveratrol, a polyphenol found in grape skins, peanuts, berries and red wine, has been shown to possess potent growth inhibitory effects against various human cancer cells. Although resveratrol has been found to exhibit chemopreventive actions in experimentally induced skin, breast, colon and esophagus rodent tumors, chemopreventive potential of this dietary constituent has not been explored well against experimental liver cancer. We evaluated the inhibitory effect of resveratrol using a two-stage model of rat hepatocarcinogenesis in Sprague-Dawley rats. Initiation was performed by a single intraperitoneal injection of diethylnitrosamine (DENA, 200 mg/kg), followed by promotion with phenobarbital (0.05%) in drinking water. The rats had free access to food supplemented with resveratrol equivalent to 50, 100 or 300 mg/kg body weight/day. Resveratrol treatment was started 4 weeks prior to the initiation and continued for 20 weeks. Resveratrol dose-dependently reduced the incidence, total number and multiplicity of visible hepatocyte nodules. Mean nodular volume and nodular volume as percentage of liver volume were also inhibited upon resveratrol treatment. Histopathological examination of liver tissue confirmed the protective effect of resveratrol. Immunohistochemical detection of cell proliferation and assay of apoptosis indicated a decrease in cell proliferation and increase of apoptotic cells in the livers of resveratrol-supplemented rats. Resveratrol also induced the expression of pro-apoptotic protein Bax, reduced anti-apoptotic Bcl-2 expression, with a concurrent increase in Bax/Bcl-2 ratio with respect to DENA control. The present study provides evidence, for the first time, that resveratrol exerts a significant chemopreventive effect on DENA-initiated hepatocarcinogenesis through inhibition of cell proliferation and induction of apoptosis. Resveratrol-induced apoptogenic signal during rat liver carcinogenesis may be mediated through the downregulation of Bcl-2 and upregulation of Bax expression. Due to a favorable toxicity profile, resveratrol can potentially be developed as a chemopreventive drug against human HCC. Topics: Animals; Anticarcinogenic Agents; Apoptosis; Body Weight; Cell Proliferation; Diethylnitrosamine; Disease Models, Animal; Dose-Response Relationship, Drug; Drinking; Drug Screening Assays, Antitumor; Eating; Female; Immunohistochemistry; Liver Neoplasms, Experimental; Organ Size; Phenobarbital; Proto-Oncogene Proteins c-bcl-2; Rats; Rats, Sprague-Dawley; Resveratrol; Stilbenes | 2009 |
Long-term resveratrol administration reduces metabolic disturbances and lowers blood pressure in obese Zucker rats.
Resveratrol is a natural polyphenolic stilbene derivative found in several human diet components that possess important and wide-ranging effects in biological systems including anticancer, anti-inflammatory, antioxidant, cardio-protective, and anti-ageing actions and beneficial properties against metabolic diseases. This study addresses the effects of long-term administration of resveratrol on several functional alterations arising from the metabolic syndrome experimental model of obese Zucker rats, and the possible mechanisms involved. The high plasma concentrations of triglycerides, total cholesterol, free fatty acids, insulin and leptin found in obese Zucker rats were reduced in obese rats that received resveratrol. Furthermore, the elevated hepatic lipid content was significantly lower in obese rats treated with resveratrol, an effect which was related to the increased phosphorylation of 5'-AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) in the liver of these animals. Resveratrol treatment also improved the inflammatory status peculiar to this model, as it increased the concentration of adiponectin and lowered tumor necrosis factor-alpha production in the visceral adipose tissue (VAT) of obese Zucker rats. Moreover, chronic intake of resveratrol enhanced VAT eNOS expression among obese Zucker rats. These effects parallel the activation of AMPK and inhibition by phosphorylation of ACC in this tissue. The raised systolic blood pressure and reduced aortic eNOS expression found in obese Zucker rats were significantly improved in the resveratrol-treated obese rats. In conclusion, resveratrol improved dyslipidemia, hyperinsulinemia, hyperleptinemia and hypertension in obese Zucker rats, and produced anti-inflammatory effects in VAT, effects that seem to be mediated by AMPK activation. Topics: Adipose Tissue; Animals; Blood Pressure; Disease Models, Animal; Drug Administration Schedule; Humans; Hypertension; Lipid Metabolism; Male; Metabolic Syndrome; Obesity; Random Allocation; Rats; Rats, Zucker; Resveratrol; Stilbenes | 2009 |
Preclinical evaluation of vascular-disrupting agents in Ewing's sarcoma family of tumours.
The effects of the tubulin-binding vascular-disrupting agents (VDAs), combretastatin A4 phosphate (CA4P), OXi4503/CA1P and OXi8007, in subcutaneous mouse models of the Ewing's sarcoma family of tumours (ESFTs) have been investigated alone and in combination with doxorubicin. Delay in subcutaneous tumour growth was observed following treatment of mice with multiple doses of OXi4503/CA1P but not with CA4P or OXi8007. A single dose of OXi4503/CA1P caused complete shutdown of vasculature by 24h and extensive haemorrhagic necrosis by 48h. However, a viable rim of proliferating cells remained, which repopulated the tumour within 10 days following the withdrawal of treatment. Combined treatment with doxorubicin 1h prior to administration of OXi4503/CA1P enhanced the effects of OXi4503/CA1P causing a synergistic delay in tumour growth (p<0.001). This study demonstrates that OXi4503/CA1P is a potent VDA in ESFT and in combination with conventional cytotoxic agents represents a promising treatment strategy for this tumour group. Topics: Angiogenesis Inhibitors; Animals; Antineoplastic Agents, Phytogenic; Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Bibenzyls; Bone Neoplasms; Cell Proliferation; Diphosphates; Disease Models, Animal; Doxorubicin; Drug Evaluation, Preclinical; Mice; Mice, Nude; Necrosis; Neoplasm Transplantation; Neovascularization, Pathologic; Sarcoma, Ewing; Stilbenes | 2009 |
Resveratrol attenuates 1,2-dimethylhydrazine (DMH) induced glycoconjugate abnormalities during various stages of colon carcinogenesis.
Although a myriad of health promoting effects has been attributed to resveratrol (Res) (3,5,4'-trihydroxy-trans-stilbene), a phytoalexin, the most interesting is its anticancer property. The aim of this work was to elucidate the effectiveness of Res against cellular transformation (glycoconjugate alterations) initiated by 1,2-dimethylhydrazine (DMH), a colon specific carcinogen. Group 1 were control rats, group 2 were control rats that received Res (8 mg/kg body weight orally every day), rats in groups 3-6 were treated weekly with DMH (20 mg/kg body weight, subcutaneously x 15 times). In addition, groups 4-6 received Res (as in group 2) in three dietary regimens: initiation (I), post-initiation (PI) and entire period (EP). At the end of the 30 week experimental period in DMH alone exposed rats, altered levels of glycoconjugates (total hexoses, fucose, hexosamine and sialic acid) were observed in liver, intestine and colon tissues. Of the three dietary regimens of Res, the entire period supplementation significantly (p < 0.01) modulated the levels of glycoconjugates and reduced the incidence of adenoma and adenocarcinoma. These findings suggest that Res may extend its chemopreventive effect by restoring the alteration in glycoconjugates that are thought to be involved in the colonic malignant transformation process in this experimental model. Topics: 1,2-Dimethylhydrazine; Animals; Antineoplastic Agents, Phytogenic; Colonic Neoplasms; Disease Models, Animal; Fucose; Glycoconjugates; Hexosamines; Male; Rats; Rats, Wistar; Resveratrol; Sialic Acids; Stilbenes | 2009 |
Anti-inflammatory and anti-asthmatic effects of resveratrol, a polyphenolic stilbene, in a mouse model of allergic asthma.
Asthma is an inflammatory disease of the airways, and the current focus in managing asthma is the control of inflammation. Resveratrol (3,4,5-trihydroxystilbene) is a polyphenolic stilbene found in the skins of red fruits, including grapes, that may be responsible for some of the health benefits ascribed to consumption of red wine. We investigated the suppressive effects of resveratrol on asthmatic parameters such as cytokine release, eosinophilia, airway hyperresponsiveness, and mucus hypersecretion, in an OVA-induced allergic mouse model of asthma. Resveratrol significantly inhibited increases in T-helper-2-type cytokines such as IL-4 and IL-5 in plasma and bronchoalveolar lavage fluid (BALF), and also effectively suppressed airway hyperresponsiveness, eosinophilia, and mucus hypersecretion, in the asthmatic mouse model. The efficacy of resveratrol was similar to that of dexamethasone, a glucocorticoid used as a positive control. These results suggest that resveratrol may have applications in the treatment of bronchial asthma. Topics: Animals; Anti-Asthmatic Agents; Anti-Inflammatory Agents, Non-Steroidal; Asthma; Bronchoalveolar Lavage Fluid; Dexamethasone; Disease Models, Animal; Eosinophilia; Female; Goblet Cells; Immunoglobulin E; Immunoglobulin G; Interleukin-4; Interleukin-5; Lung; Mice; Mice, Inbred BALB C; Mucus; Ovalbumin; Resveratrol; Stilbenes | 2009 |
Diffusion-weighted MRI of hepatic tumor in rats: comparison between in vivo and postmortem imaging acquisitions.
To determine the feasibility of in vivo diffusion-weighted imaging (DWI) to distinguish between normal liver, viable tumor and necrosis compared to postmortem DWI in a rat model with vascular-targeting treatment.. Fifteen rats with liver implantation of 30 rhabdomyosarcomas were treated with combretastatin A-4-phosphate (CA4P) at 10 mg/kg. Two days after treatment, T2-weighted imaging, precontrast T1-weighted imaging, postcontrast T1-weighted imaging, and DWI were performed in vivo and postmortem with a 1.5T scanner. Apparent diffusion coefficients (ADCs) calculated from DWIs with b values of 0, 50, and 100 seconds/mm2 (ADClow), 500, 750, and 1000 seconds/mm2 (ADChigh), 0, 500, and 1000 seconds/mm2 (ADC3b), and 0-1000 seconds/mm2 (ADC10b) for tumor, liver, therapeutic necrosis, and phantoms were compared and validated with ex vivo microangiographic and histopathologic findings.. Except ADClow between tumor and necrosis, in vivo ADCs successfully differentiated liver, viable tumor, and necrosis (P<0.05). Compared to in vivo outcomes, postmortem ADCs significantly dropped in tumor and liver (P<0.05) except ADChigh of tumor, but not in necrosis and phantoms. Compared to ADClow, ADChigh was less affected by vital status.. Advantageous over postmortem DWI, in vivo DWI provides a noninvasive easy-performing tool for distinguishing between liver, viable tumor, and necrosis. ADClow and ADChigh better reflect tissue perfusion and water diffusion, respectively. Topics: Animals; Antineoplastic Agents, Phytogenic; Contrast Media; Diagnosis; Diagnosis, Differential; Diffusion Magnetic Resonance Imaging; Disease Models, Animal; Feasibility Studies; Image Enhancement; Image Processing, Computer-Assisted; Liver; Liver Neoplasms, Experimental; Male; Necrosis; Phantoms, Imaging; Rats; Rats, Wistar; Rhabdomyosarcoma; Stilbenes | 2009 |
Prevention of ocular inflammation in endotoxin-induced uveitis with resveratrol by inhibiting oxidative damage and nuclear factor-kappaB activation.
Resveratrol is known as one of the antioxidant polyphenols contained in red wine and grape skin. The purpose of the present study was to investigate the role of resveratrol in ocular inflammation in endotoxin-induced uveitis (EIU).. EIU was induced in male C57/B6 mice at the age of 6 weeks by a single intraperitoneal injection of lipopolysaccharide (LPS). Animals had received oral supplementation of resveratrol at the doses of 5, 50, 100, or 200 mg/kg for 5 days until LPS injection. Twenty-four hours after LPS administration, leukocyte adhesion to the retinal vasculature was examined with a concanavalin A lectin perfusion-labeling technique. Retinal and retinal pigment epithelium (RPE)-choroidal levels of intercellular adhesion molecule (ICAM)-1, monocyte chemotactic protein (MCP)-1, and 8-hydroxy-2'-deoxyguanosine (8-OHdG) and nuclear translocation of nuclear factor (NF)-kappaB p65 were evaluated by enzyme-linked immunosorbent assay. Retinal and RPE-choroidal activities of silent information regulator two ortholog (SIRT) 1 were measured by deacetylase fluorometric assay.. Resveratrol pretreatment led to significant and dose-dependent suppression of leukocyte adhesion to retinal vessels of EIU mice compared with vehicle application. Protein levels of MCP-1 and ICAM-1 in the retina and the RPE-choroid of EIU animals were significantly reduced by resveratrol administration. Importantly, resveratrol-treated animals showed significant decline of retinal 8-OHdG generation and nuclear NF-kappaB P65 translocation, both of which were upregulated after EIU induction. RPE-choroidal SIRT1 activity, reduced in EIU animals, was significantly augmented by treatment with resveratrol.. Resveratrol prevented EIU-associated cellular and molecular inflammatory responses by inhibiting oxidative damage and redox-sensitive NF-kappaB activation. Topics: 8-Hydroxy-2'-Deoxyguanosine; Administration, Oral; Animals; Antioxidants; Blotting, Western; Chemokine CCL2; Deoxyguanosine; Disease Models, Animal; Dose-Response Relationship, Drug; Enzyme-Linked Immunosorbent Assay; Escherichia coli; Fluorescent Antibody Technique, Indirect; Inflammation; Injections, Intraperitoneal; Intercellular Adhesion Molecule-1; Leukocytes; Lipopolysaccharides; Male; Mice; Mice, Inbred C57BL; NF-kappa B; Oxidative Stress; Resveratrol; Retina; Retinal Pigment Epithelium; Retinal Vessels; Sirtuin 1; Sirtuins; Stilbenes; Transcription Factor RelA; Uveitis | 2009 |
Resveratrol attenuates C5a-induced inflammatory responses in vitro and in vivo by inhibiting phospholipase D and sphingosine kinase activities.
The anti-inflammatory activity of the phytoalexin resveratrol (RSV) was evaluated in C5 anaphylatoxin (C5a)-stimulated primary neutrophils and in a mouse model of acute peritonitis. Pretreatment of human and mouse neutrophils with RSV significantly blocked oxidative burst, leukocyte migration, degranulation, and inflammatory cytokine production. The anti-inflammatory activity of RSV was a function of inhibition of sphingosine kinase (SphK) activity (IC(50) approximately 20 microM) within 5 min of exposure, its membrane localization, and SphK1-mediated Ca(2+) release. As an experimental control, the SphK1 pharmacological inhibitor N,N-dimethyl sphingosine (DMS) was used to compare the inhibitory effect of RSV. We also provide evidence that the SphK inhibitory effect of RSV was mediated via its ability to block phospholipase D (PLD) activity and membrane recruitment. Furthermore, RSV blocked ERK1/2 phosphorylation, which functioned independently of SphK1 in this study. To provide in vivo relevance to these data, C5a-induced model of acute peritonitis was established, and the effects of prior injection of RSV were investigated. Indeed, prior injection of RSV virtually completely attenuated the effects of C5a on vascular permeability, neutrophil migration, release of interleukin 1beta, tumor necrosis factor alpha, interleukin 6, and the chemokine MIP-1alpha. Taken together, these data demonstrate strong anti-inflammatory activity of RSV in vitro and in vivo and highlight SphK1 as a potential target of this remarkable phytoalexin. These data could have tremendous implications for the clinical use of RSV in inflammatory pathologies. Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Biological Transport, Active; Cell Degranulation; Cell Membrane; Chemokines; Chemotaxis, Leukocyte; Complement C5a; Cytokines; Disease Models, Animal; Enzyme Inhibitors; Extracellular Signal-Regulated MAP Kinases; Humans; In Vitro Techniques; Inflammation; Male; Mice; Mice, Inbred BALB C; Neutrophils; NF-kappa B; Peritonitis; Phospholipase D; Phosphotransferases (Alcohol Group Acceptor); Respiratory Burst; Resveratrol; Stilbenes | 2009 |
Effects of 2,3,4',5-tetrahydroxystilbene 2-O-beta-D-glucoside on vascular endothelial dysfunction in atherogenic-diet rats.
2,3,4',5-Tetrahydroxystilbene 2- O-beta- D-glucoside (TSG), an active component extracted from Polygonum multiflorum, has been found to have an anti-atherosclerotic effect. The aim of this study was to investigate whether the TSG could prevent the development of atherosclerosis through influencing endothelial function in atherogenic-diet rats and to explore the possible mechanisms. Vascular endothelial dysfunction was assessed using isolated aortic ring preparation, transmission electron microscopy of the aorta, and levels of nitrate/nitrite (NOx) in serum and aorta. Endothelial nitric oxide (NO) synthase (eNOS) and inducible NO synthase (iNOS) mRNA and protein expression were also measured. After 12 weeks treatment, TSG improved acetylcholine-induced endothelium-dependent relaxation, prevented intimal remodeling, inhibited the decreased NOx content in serum and aorta in atherogenic-diet rats. Furthermore, the observed decreased eNOS mRNA and protein expression and increased iNOS mRNA and protein expression in atherogenic-diet rats were attenuated by TSG treatment. These results suggest that TSG could restore vascular endothelial function, which may be related to its ability to prevent changes of eNOS and iNOS expression, leading to preservation of NO bioactivity. Topics: Animals; Aorta; Atherosclerosis; Disease Models, Animal; Drugs, Chinese Herbal; Endothelium, Vascular; Glucosides; Male; Microscopy, Electron, Transmission; Nitrates; Nitric Oxide Synthase; Nitrites; Polygonum; Rats; Rats, Sprague-Dawley; RNA, Messenger; Stilbenes | 2009 |
Resveratrol pretreatment protects rat brain from cerebral ischemic damage via a sirtuin 1-uncoupling protein 2 pathway.
Resveratrol is a natural polyphenol found in grapes and wine and has been associated with protective effects against cardiovascular diseases. In vitro, both resveratrol preconditioning (RPC) and ischemic preconditioning (IPC) require activation of sirtuin 1 (SIRT1), a nicotinamide adenine dinucleotide (NAD(+))-dependent deacetylase, to induce neuroprotection against cerebral ischemia. In the present study, we tested two hypotheses: (a) that neuroprotection against cerebral ischemia can be induced by RPC in vivo; and (b) that RPC neuroprotection involves alterations in mitochondrial function via the SIRT1 target mitochondrial uncoupling protein 2 (UCP2). IPC was induced by 2 min of global ischemia (temporary bilateral carotid artery occlusion with hypotension), and RPC, by i.p. injection of resveratrol at 10, 50 and 100 mg/kg dosages. Forty-eight hours later, we compared the neuroprotective efficacy of RPC and IPC in vulnerable cornu ammonis 1 hippocampal pyramidal neurons using a rat model of asphyxial cardiac arrest (ACA). SIRT1 activity was measured using a SIRT1-specific fluorescent enzyme activity assay. In hippocampal mitochondria isolated 48 h after IPC or RPC, we measured UCP2 levels, membrane potential, respiration, and the mitochondrial ATP synthesis efficiency (ADP/O ratio). Both IPC and RPC induced tolerance against brain injury induced by cardiac arrest in this in vivo model. IPC increased SIRT1 activity at 48 h, while RPC increased SIRT1 activity at 1 h but not 48 h after treatment in hippocampus. Resveratrol significantly decreased UCP2 levels by 35% compared to sham-treated rats. The SIRT1-specific inhibitor sirtinol abolished the neuroprotection afforded by RPC and the decrease in UCP2 levels. Finally, RPC significantly increased the ADP/O ratio in hippocampal mitochondria reflecting enhanced ATP synthesis efficiency. In conclusion, in vivo resveratrol pretreatment confers neuroprotection similar to IPC via the SIRT1-UCP2 pathway. Topics: Adenosine Triphosphate; Animals; Asphyxia; Benzamides; Brain Ischemia; Carotid Artery Diseases; Disease Models, Animal; Heart Arrest; Hippocampus; Hypotension; Ion Channels; Membrane Potential, Mitochondrial; Mitochondria; Mitochondrial Proteins; Naphthols; Neuroprotective Agents; Pyramidal Cells; Rats; Rats, Sprague-Dawley; Respiration; Resveratrol; Signal Transduction; Sirtuin 1; Sirtuins; Stilbenes; Uncoupling Protein 2 | 2009 |
Chemoprevention of metaplasia initiation and carcinogenic progression to esophageal adenocarcinoma by resveratrol supplementation.
Resveratrol (3,5,4'-trihydroxy-trans-stilbene), a polyphenol found in the skin of the grape and red wine, has been found to have chemopreventitive effects in some carcinogenic models. The effects of resveratrol on the initiation of Barrett's metaplasia and the carcinogenic progression to esophageal adenocarcinoma have not been evaluated. The aim of this study was to evaluate the effects of resveratrol on the transition from reflux esophagitis to Barrett's metaplasia to dysplasia to esophageal adenocarcinoma in an established rat model. Male Sprague-Dawley rats underwent esophagoduodenal anastomosis as per institutional approved protocol. They were then treated twice weekly with intraperitoneal injection of 7 mg/kg of resveratrol or saline. Additional nonoperated rats served as controls. The rats in each group were assigned to 1, 3, or 5-month subgroups. The distal esophagus was preserved for blinded histopathological examination at the time of harvest. Thirty-one animals in the 5-month resveratrol group showed a decreased severity of esophagitis (P<0.0001), incidence of intestinal metaplasia (P = 0.3567), and incidence of carcinoma (P = 0.4590) as compared with both the saline and nonoperated control groups. In conclusion, morphological characteristics consistent with decreased esophagitis and incidences of metaplasia and esophageal adenocarcinoma were seen on histopathology in the resveratrol group. Resveratrol resulted in a small diminution of the carcinogenic effects and progression to metaplasia, and further human studies are designed to explore the potential anticarcinogenic mechanism. Topics: Animals; Anticarcinogenic Agents; Apoptosis; Catalase; Disease Models, Animal; Disease Progression; Esophageal Neoplasms; Esophagus; Glutathione; Immunohistochemistry; In Situ Nick-End Labeling; Male; Metaplasia; Oxidative Stress; Rats; Rats, Sprague-Dawley; Resveratrol; Stilbenes; Superoxide Dismutase; Thiobarbituric Acid Reactive Substances | 2009 |
Chemoprevention of ovarian cancer.
Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Anticarcinogenic Agents; Apoptosis; Carcinoma; Chemoprevention; Chickens; Disease Models, Animal; Drug Delivery Systems; Fatty Acids, Omega-3; Female; Humans; Mice; Neoplasm Proteins; Ovarian Neoplasms; Phytoestrogens; Progestins; Resveratrol; Retinoids; Stilbenes; Vitamin D | 2009 |
Protective effects of resveratrol on small intestines against intestinal ischemia-reperfusion injury in rats.
The aim of this study was to determine whether resveratrol could prevent intestinal tissue injury induced by ischemia-reperfusion (I/R).. Intestinal I/R was induced in rats' intestines by 60-min occlusion of the superior mesenteric artery, followed by a 60-min reperfusion. Thirty rats were divided into three groups as follows: sham (group 1), control (group 2), and the treatment groups (group 3). The rats in the treatment group received resveratrol both before ischemia and before reperfusion. In all groups, serum aspartate aminotransferase, alanine aminotransferase, and lactate dehydrogenase levels were determined. Total antioxidant capacity (TAC), catalase, total oxidative status (TOS), oxidative stress index (OSI), and myeloperoxidase (MPO) in the intestinal tissue were measured. Intestinal tissue histopathology was also evaluated by light microscopy.. The levels of liver enzymes in group 3 were significantly lower than those in group 2 (P < 0.05). TAC in the intestinal tissue was significantly higher in group 3 than in group 2 (P < 0.05). TOS, OSI, and MPO in the intestinal tissue were significantly lower in group 3 than in group 2 (P < 0.05 for all). Histological tissue damage was milder in the resveratrol treatment group than in the control group.. The results of this study indicated that resveratrol treatment limits the oxidative injury of the small intestine induced by I/R in rats. However, more precise investigations are required to evaluate the antioxidative effect of resveratrol on small intestine tissue damage in clinical and experimental models. Topics: Alanine Transaminase; Animals; Antioxidants; Aspartate Aminotransferases; Biomarkers; Catalase; Disease Models, Animal; Intestine, Small; L-Lactate Dehydrogenase; Liver; Male; Oxidative Stress; Peroxidase; Rats; Rats, Wistar; Reperfusion Injury; Resveratrol; Stilbenes | 2009 |
Expression of Npc1 in glial cells corrects sterility in Npc1(-/-) mice.
Niemann-Pick type C1 (NPC) disease is an autosomal recessive neurodegenerative disorder. One feature of the mouse model of NPC1 is it's infertility. We have made transgenic mice which express the Npc1 protein exclusively in fibrillary astrocytes, using the glial fibrillary acidic protein (GFAP) promoter. This selective expression of Npc1 corrects sterility in GFAP-Npc1(-/-), Npc1(-/-) mice. Counts of acidophils in the pituitary of GFAP-Npc1E, Npc1(-/-) mice, as compared Npc1(-/-) mice, and measurements of dopamine D2 receptor (DRD2) mRNA in the pituitary, suggest mechanisms for fertility enhancement. We conclude that the correction of sterility in GFAP-Npc1E, Npc1(-/-) mice is a result of restoring hypothalamic control of the pituitary. Topics: Animals; Base Sequence; Biphenyl Compounds; Disease Models, Animal; DNA Primers; Female; Hypothalamo-Hypophyseal System; Infertility, Female; Intracellular Signaling Peptides and Proteins; Mice; Mice, Inbred BALB C; Mice, Knockout; Neuroglia; Niemann-Pick C1 Protein; Niemann-Pick Diseases; Ovary; Proteins; Receptors, Dopamine D2; RNA, Messenger; Stilbenes | 2009 |
FXR acetylation is normally dynamically regulated by p300 and SIRT1 but constitutively elevated in metabolic disease states.
The nuclear bile acid receptor FXR is critical for regulation of lipid and glucose metabolism. Here, we report that FXR is a target of SIRT1, a deacetylase that mediates nutritional and hormonal modulation of hepatic metabolism. Lysine 217 of FXR is the major acetylation site targeted by p300 and SIRT1. Acetylation of FXR increases its stability but inhibits heterodimerization with RXRalpha, DNA binding, and transactivation activity. Downregulation of hepatic SIRT1 increased FXR acetylation with deleterious metabolic outcomes. Surprisingly, in mouse models of metabolic disease, FXR interaction with SIRT1 and p300 was dramatically altered, FXR acetylation levels were elevated, and overexpression of SIRT1 or resveratrol treatment reduced acetylated FXR levels. Our data demonstrate that FXR acetylation is normally dynamically regulated by p300 and SIRT1 but is constitutively elevated in metabolic disease states. Small molecules that inhibit FXR acetylation by targeting SIRT1 or p300 may be promising therapeutic agents for metabolic disorders. Topics: Acetylation; Animals; Dimerization; Disease Models, Animal; Down-Regulation; Hep G2 Cells; Histone Deacetylases; Liver; Liver Diseases; Male; Mice; Mutagenesis, Site-Directed; p300-CBP Transcription Factors; Protein Stability; Receptors, Cytoplasmic and Nuclear; Resveratrol; Retinoid X Receptor alpha; RNA, Small Interfering; Sirtuin 1; Stilbenes; Transcription Factors; Transcriptional Activation | 2009 |
Protective effect of tetrahydroxystilbene glucoside on cardiotoxicity induced by doxorubicin in vitro and in vivo.
To test the effect of 2,3,5,4'-tetrahydroxystilbene-2-O-beta-D-glucoside (THSG) on doxorubicin (DOX)-induced cardiotoxicity.. We used neonate rat cardiomyocytes and an acute mouse model of DOX-induced cardiotoxicity to examine the protective effect of THSG.. In the mouse model, administration of THSG significantly reduced DOX-induced cardiotoxicity, including animal mortality, histopathological changes, and levels of serum creatine kinase (CK) and lactate dehydrogenase (LDH). Moreover, THSG was able to attenuate the increased malondialdehyde (MDA) and decreased reduced glutathione (GSH) caused by DOX. In in vitro studies, THSG 10-300 micromol/L ameliorated DOX-induced cardiomyocyte apoptosis in a concentration-dependent manner. Further studies showed that THSG inhibited reactive oxygen species (ROS) generation and prevented DOX-induced loss of mitochondrial membrane potential, caspase-3 activation and upregulation of Bax protein expression. We observed a protective response against damage after DOX treatment. The level of Bcl-2 protein was increased. Additionally, THSG inhibited a DOX-induced [Ca(2+)] increase.. These results showed that THSG protected against DOX-induced cardiotoxicity by decreasing ROS generation and intracellular [Ca(2+)] and by inhibiting apoptotic signaling pathways. Topics: Animals; Animals, Newborn; Antibiotics, Antineoplastic; Apoptosis; Calcium; Cardiotonic Agents; Disease Models, Animal; Dose-Response Relationship, Drug; Doxorubicin; Glucosides; Heart Diseases; Male; Mice; Myocytes, Cardiac; Rats; Reactive Oxygen Species; Signal Transduction; Stilbenes | 2009 |
Red wine coming up roses for intestinal ischemia reperfusion injury: role for resveratrol?
Topics: Animals; Antioxidants; Disease Models, Animal; Humans; Intestine, Small; Liver; Oxidative Stress; Rats; Reperfusion Injury; Resveratrol; Stilbenes; Wine | 2009 |
[Effect of resveratrol on chronic obstructive pulmonary disease in rats and its mechanism].
The purpose of this study is to establish COPD animal model by intra-tracheal instillation of bleomycin (BLM) once and exposure to cigarette smoke for continuous 27 d, and to observe the effects of the inhalation on the model. At the 29th day, blood samples were taken from cervical artery for blood-gas analysis and parameters of lung function were recorded. Bronchoalveolar lavage fluid (BALF) was collected to measure intercellular adhesion molecule-1 (ICAM-1) concentration. The results showed that atomization inhaled resveratrol could alleviate rat COPD lung injury accompanied by amelioration of pathological changes, increase the ratio of forced expiratory volume in 0.3 s (FEV0.3) and forced vital capacity (FVC), and decrease the ICAM-1 level in BALF. The ultimate reduction of inflammatory factors was involved, at least in part, in the mechanism of resveratrol effects. Topics: Animals; Bleomycin; Blood Gas Analysis; Bronchoalveolar Lavage Fluid; Disease Models, Animal; Female; Forced Expiratory Volume; Intercellular Adhesion Molecule-1; Lung; Lung Compliance; Male; Maximal Midexpiratory Flow Rate; Pulmonary Disease, Chronic Obstructive; Random Allocation; Rats; Rats, Sprague-Dawley; Resveratrol; Smoking; Stilbenes | 2008 |
Resveratrol attenuates ischemic brain damage in the delayed phase after stroke and induces messenger RNA and protein express for angiogenic factors.
It has been reported recently that resveratrol preconditioning can protect the brain from ischemia-reperfusion injury. However, it was unclear whether resveratrol administration after stroke was beneficial to the delayed phases after focal cerebral ischemia injury. This study investigated the effects and possible protective mechanism of resveratrol on the delayed phase after focal cerebral ischemia injury in mice.. Mice were randomly assigned to five groups according to the time of administration of resveratrol. Control group mice received a corresponding volume of saline solution (0.9% NaCl) containing 20% hydroxypropyl h-cyclodextrin by gavage and were exposed to middle cerebral artery (MCA) occlusion and reperfusion injury. The treatment groups received resveratrol (50 mg/kg/d, gavage) until day 7. Ischemia group mice received their first dose 5 minutes before MCA ischemia, reperfusion group mice received their first dose 5 minutes before MCA reperfusion, first-day, group mice received their first dose 24 hours after MCA reperfusion, and third-day group mice received their first dose at 72 hours after MCA reperfusion. Brain injury was evaluated by triphenyltetrazolium chloride staining and neurologic examination 7 days after reperfusion. The microvascular cell number was examined with immunohistochemistry staining. Effect of resveratrol on matrix metalloproteinase-2 (MMP-2) and vascular endothelial growth factor (VEGF) gene expression was investigated with reverse transcriptase-polymerase chain reaction and Western blot.. The mean neurologic scores and infarct volumes of the ischemia and reperfusion groups were lower than that of the control group at 7 days after MCA reperfusion (P < .05). Immunohistochemistry staining showed significantly less reduction in the number of microvessels in the cortical area of mice of the ischemia and reperfusion groups compared with controls. The ischemic hemispheres of the ischemia and reperfusion groups showed significantly (P < .05) elevated levels of protein of MMP-2 and VEGF.. Resveratrol administration by gavage provided an important neuroprotective effect on focal cerebral ischemic injury in the delayed phase. The elevated MMP-2 and VEGF levels might be important in the neuroprotective effect of resveratrol administration by inducing angiogenesis. Topics: Angiogenic Proteins; Animals; Blotting, Western; Brain; Coloring Agents; Disease Models, Animal; Drug Administration Schedule; Immunohistochemistry; Infarction, Middle Cerebral Artery; Male; Matrix Metalloproteinase 2; Mice; Mice, Inbred BALB C; Microcirculation; Motor Activity; Neovascularization, Physiologic; Neuroprotective Agents; Reperfusion Injury; Resveratrol; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Stilbenes; Stroke; Tetrazolium Salts; Time Factors; Up-Regulation; Vascular Endothelial Growth Factor A | 2008 |
Effect of melatonin, curcumin, quercetin, and resveratrol on acute ferric nitrilotriacetate (Fe-NTA)-induced renal oxidative damage in rats.
The influence of melatonin, curcumin, quercetin, and resveratrol pretreatment on ferric nitrilotriacetate (Fe-NTA)-induced oxidative renal damage was studied. Male Wistar rats were treated orally once daily for 3 days with melatonin (10 mg/kg), curcumin (50 mg/kg), quercetin (15 mg/kg), and resveratrol (10 mg/kg). One hour after the last dose of antioxidants, a single dose of Fe-NTA was administered (8 mg of Fe/kg body weight, i.p.) to pre-treated animals. Twenty-four hours after Fe-NTA administration, the lipid peroxidation (LP), reduced glutathione (GSH), catalase (CAT), and glutathione peroxidase (GSH-Px) were estimated in kidney homogenates. Iron, zinc, and copper concentrations were estimated in kidney tissue. Administration of Fe-NTA to rats induced renal LP (170%, P < 0.001) and inhibited catalase (78%, P < 0.05) in the kidney. The oral pretreatment with melatonin, curcumin, quercetin, and resveratrol each one was effective in decreasing the Fe-NTA-induced LP (P < 0.001); however, it did not influence the FeNTA-induced inhibition of renal CAT activity. No changes were found in renal GSH level and GSH-Px activity compared to control animals. The pretreatment with antioxidants did not affect the increase in renal iron content, blood urea nitrogen/creatinine ratio, and relative kidney weight of FeNTA-intoxicated rats. The results indicate that the pretreatment with natural antioxidants, curcumin, melatonin, quercetin, and resveratrol, significantly and equally suppressed lipid peroxidation induced by Fe-NTA but had no effect on other markers of FeNTA nephrotoxicity and iron deposition in kidneys. Topics: Animals; Antioxidants; Blood Urea Nitrogen; Catalase; Curcumin; Disease Models, Animal; Ferric Compounds; Glutathione; Glutathione Peroxidase; Kidney; Kidney Diseases; Lipid Peroxidation; Male; Melatonin; Metals, Heavy; Nitrilotriacetic Acid; Organ Size; Oxidative Stress; Quercetin; Rats; Rats, Wistar; Resveratrol; Stilbenes | 2008 |
New amyloid plaques or a game of hide-and-seek?
Topics: Alkenes; Alzheimer Disease; Animals; Benzene Derivatives; Brain; Disease Models, Animal; Mice; Plaque, Amyloid; Stilbenes | 2008 |
Derivatives of 1,4-bis(3-hydroxycarbonyl-4-hydroxyl)styrylbenzene as PTP1B inhibitors with hypoglycemic activity.
Disalicylic acid derivatives with stilbene and bis-styrylbenzene skeleton were synthesized as PTP1B inhibitors. The most potent in this series exhibited a submicromolar IC(50) value. One of the compounds 7b was tested in an animal model for its efficacy as an anti-diabetic or an anti-obesity agent. In feeding compound 7b to diet-induced obese mice, no significant differences in weight gain and food consumption were observed between the drug-treated and the obese control mice. However, 7b significantly lowered the fasting glucose level and improved the glucose tolerance in the obesity-induced diabetic mice. Topics: Animals; Anti-Obesity Agents; Blood Glucose; Disease Models, Animal; Fasting; Glucose Tolerance Test; Hyperglycemia; Mice; Mice, Inbred C57BL; Mice, Obese; Obesity; Salicylates; Stilbenes; Structure-Activity Relationship; Styrenes; Weight Gain | 2008 |
In reply to Zou et al. "New amyloid plaques or a game of hide-and-seek?".
Topics: Alkenes; Alzheimer Disease; Animals; Benzene Derivatives; Brain; Disease Models, Animal; Mice; Plaque, Amyloid; Stilbenes | 2008 |
Resveratrol inhibits nonalcoholic fatty liver disease in rats.
The prevalence of nonalcoholic fatty liver disease (NAFLD) is high. NAFLD is linked to obesity, diabetes mellitus, and hypertriglyceridemia. Approximately 20% of patients with NAFLD will eventually develop cirrhosis. Our purpose was to investigate whether resveratrol decreased hepatic steatosis in an animal model of steatosis, and whether this therapeutic approach resulted in a decrease in tumor necrosis factor alpha (TNF-alpha) production, lipid peroxidation and oxidative stress.. Male Wistar CRL: Wi (Han) (225 g) rats were randomized into three groups. A control group (n = 12) was given free access to regular dry rat chow for 4 weeks. The steatosis (n = 12) and resveratrol (n = 12) groups were given free access to feed (a high carbohydrate-fat free modified diet) and water 4 days per week, and fasted for the remaining 3 days for 4 weeks. Rats in the resveratrol group were given resveratrol 10 mg daily by the oral route. All rats were killed at 4 weeks and assessed for fatty infiltration and bacterial translocation. Levels of TNF-alpha in serum, hepatic malondialdehyde (MDA), oxidative stress (superoxide dismutase, glutathione peroxidase, catalase and nitric oxide synthase) and biochemical parameters were measured.. Fat deposition was decreased in the resveratrol group as compared to the steatosis group (Grade 1 vs Grade 3, P < 0.05). TNF-alpha and MDA levels were significantly increased in the steatosis group (TNF-alpha; 33.4 +/- 5.2 vs 26.24 +/- 3.47 pg/ml and MDA; 9.08 +/- 0.8 vs 3.17 +/- 1.45 muM respectively, P < 0.05). This was accompanied by increased superoxide dismutase, glutathione peroxidase and catalase and decreased nitric oxide synthase in the liver of resveratrol group significantly (P < 0.05 vs steatosis group). Bacterial translocation was not found in any of the groups. Glucose levels were decreased in the group of rats given resveratrol (P < 0.05).. Resveratrol decreased NAFLD severity in rats. This effect was mediated, at least in part, by TNF-alpha inhibition and antioxidant activities. Topics: Animals; Antioxidants; Catalase; Disease Models, Animal; Fatty Liver; Glucose; Glutathione Peroxidase; Lipid Peroxidation; Male; Malondialdehyde; Nitric Oxide Synthase; Oxidative Stress; Random Allocation; Rats; Rats, Wistar; Resveratrol; Severity of Illness Index; Stilbenes; Superoxide Dismutase; Tumor Necrosis Factor-alpha | 2008 |
Resveratrol attenuates ventricular arrhythmias and improves the long-term survival in rats with myocardial infarction.
The effects of resveratrol treatment on ventricular arrhythmia, survival, and late cardiac remodeling were evaluated in rats with myocardial infarction (MI).. Three groups of rats (S: ham-operated, MI, and MI pre-treated with resveratrol) were treated in an in vivo MI model by ligation of left anterior descending coronary artery. The electrocardiogram signals were monitored and recorded for 24 h using an implanted telemetry transmitter. The incidence of ventricular arrhythmias during the first 24-h after MI was also evaluated. Meanwhile, invasive in vivo electrophysiology with pacing in the right ventricle was performed in each group to assess the inducibility of ventricular arrhythmias.. Administration of resveratrol significantly suppressed the MI-induced ventricular tachycardia and ventricular fibrillation (0.4 +/- 0.2 in Resv group vs. 7.1 +/- 2.2 in MI group episodes per hour per rat, P < 0.01). Data also showed that the incidence of inducible ventricular tachycardia was lower in the Resv group than the MI group (46% vs. 81%, P < 0.01). The infarct size and mortality in the Resv group at 14 weeks were reduced by 20% and 33%, respectively, compared with the MI groups. Results from patch clamp recording revealed that resveratrol inhibited L-type calcium current (I (Ca-L)), and selectively enhanced ATP-sensitive K(+) current (I (K,ATP)) in a concentration-dependent manner.. These results suggested that the emerging anti-arrhythmic character induced by resveratrol treatment in rat hearts could be mainly accounted for by inhibition of I (Ca-L) and enhancement of I (K,ATP). Administration of resveratrol also improved the long-term survival by suppressing left ventricular remodeling. Topics: Administration, Oral; Animals; Calcium Channels, L-Type; Cardiac Pacing, Artificial; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Administration Schedule; Electrocardiography; KATP Channels; Male; Myocardial Infarction; Patch-Clamp Techniques; Phytoalexins; Prostheses and Implants; Rats; Rats, Sprague-Dawley; Resveratrol; Sesquiterpenes; Stilbenes; Survival Rate; Tachycardia, Ventricular; Telemetry; Terpenes; Time Factors; Ventricular Fibrillation; Ventricular Remodeling | 2008 |
Neuroprotective effect of resveratrol on 6-OHDA-induced Parkinson's disease in rats.
The present study was undertaken to investigate the neuroprotective effects of resveratrol on 6-hydroxydopamine (6-OHDA)-induced Parkinson's disease in rats. 6-OHDA-induced Parkinson's disease rat model involves chronic inflammation, mitochondrial dysfunction, and oxidative stress, and the loss of the dopaminergic neurons in the substantia nigra is the predominant lesion. Resveratrol has been shown to have anti-inflammatory actions, and thus was tested for its beneficial effects using 6-OHDA-induced Parkinson's disease rat model. Adult Sprague-Dawley (SD) rats were unilaterally injected with 6-OHDA (5 microg/2 microl) into the right striatum, and the striatum damage was assessed by rotational test, ultrahistopathology, and molecular alterations. Resveratrol (10, 20 and 40 mg/kg) was then given orally to Parkinson's disease rats, daily for 10 weeks to examine the protective effects. Rotational test (turns of rats) showed that resveratrol significantly attenuated apomorphine-induced turns of rats in 6-OHDA-injuried Parkinson's disease rat model as early as two weeks of administration. Ultrastructural analysis showed that resveratrol alleviated 6-OHDA-induced chromatin condensation, mitochondrial tumefaction and vacuolization of dopaminergic neurons in rat substantia nigra. Furthermore, resveratrol treatment also significantly decreased the levels of COX-2 and TNF-alpha mRNA in the substantia nigra as detected by real-time RT-PCR. COX-2 protein expression in the substantia nigra was also decreased as evidenced by Western blotting. These results demonstrate that resveratrol exerts a neuroprotective effect on 6-OHDA-induced Parkinson's disease rat model, and this protection is related to the reduced inflammatory reaction. Topics: Administration, Oral; Animals; Anti-Inflammatory Agents, Non-Steroidal; Blotting, Western; Cyclooxygenase 2; Disease Models, Animal; Dose-Response Relationship, Drug; Gene Expression Regulation; Male; Neuroprotective Agents; Oxidopamine; Parkinson Disease; Rats; Rats, Sprague-Dawley; Resveratrol; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Stilbenes; Tumor Necrosis Factor-alpha | 2008 |
Resveratrol ameliorates hepatic injury via the mitochondrial pathway in rats with severe acute pancreatitis.
To gain insight into the processes by which severe acute pancreatitis induced apoptosis takes place in the liver, and to observe the protective effect of resveratrol on hepatic injury, a rat model of severe acute pancreatitis was induced by administering 4% sodium taurocholate through the common biliopancreatic duct. Pancreatic and hepatic injury was assessed by histology. Serum ALT (alanine aminotransferase), AST (aspartate aminotransferase) and total bilirubin were determined by reaction rate assay, and the serum levels of TNF-alpha (tumor necrosis factor-alpha) and IL-6 (interleukin-6) were detected by ELISA (enzyme linked immunosorbent assay). We investigated cytochrome c released from mitochondria and used the RT-PCR (reverse transcription PCR), Western blot technique to evaluate Bax, Bcl-2, and caspase-3 expression levels in hepatic tissue over the time course of apoptosis. Changes in hepatic cell mitochondrial membrane potential were observed by confocal laser scanning microscopy. The majority of cytochrome c release occurred early in apoptosis from mitochondria, which undergo gradual hepatic impairment. The released cytochrome c can be reduced by resveratrol through both up-regulation of Bcl-2 and down-regulation of Bax and caspase-3. These data provide substantial evidence that apoptosis is involved in hepatic injury during the severe acute pancreatitis process and that resveratrol can ameliorate the situation, thus protecting liver function in rats with severe acute pancreatitis. Topics: Acute Disease; Animals; Anti-Inflammatory Agents, Non-Steroidal; Apoptosis; bcl-2-Associated X Protein; Caspase 3; Cytochromes c; Disease Models, Animal; Gene Expression Regulation; Liver; Male; Mitochondria, Liver; Pancreatitis; Proto-Oncogene Proteins c-bcl-2; Rats; Rats, Sprague-Dawley; Resveratrol; Severity of Illness Index; Stilbenes | 2008 |
Resveratrol attenuates oxidative stress and histological alterations induced by liver ischemia/reperfusion in rats.
To investigate the effects of resveratrol on liver ischemia/reperfusion (I/R) injury in rats.. A total of 40 male Sprague-Dawley rats weighing 240-290 g were randomized into four groups of ten: (1) controls: data from unmanipulated animals; (2) sham group: rats subjected to the surgical procedure, except for liver I/R, and given saline; (3) I/R group: rats underwent liver ischemia for 45 min followed by reperfusion for 45 min; (4) I-R/Resveratrol group: rats pretreated with resveratrol (10 micromol/L, iv). Liver tissues were obtained to determine antioxidant enzyme levels and for biochemical and histological evaluation.. Plasma aminotransferase activities were higher in the I/R group than in the I-R/Resveratrol group. Malondialdehyde levels and the hepatic injury score decreased, while superoxide dismutase, catalase, and glutathione peroxidase levels increased in group 4 compared to group 3. In group 4, histopathological changes were significantly attenuated in resveratrol-treated livers.. These results suggest that resveratrol has protective effects against hepatic I/R injury, and is a potential therapeutic drug for ischemia reperfusion-related liver injury. Topics: Alanine Transaminase; Animals; Antioxidants; Aspartate Aminotransferases; Catalase; Disease Models, Animal; Glutathione Peroxidase; Ligation; Liver; Liver Diseases; Male; Malondialdehyde; Oxidative Stress; Rats; Rats, Sprague-Dawley; Reperfusion Injury; Resveratrol; Stilbenes; Superoxide Dismutase | 2008 |
Rapid microglial response around amyloid pathology after systemic anti-Abeta antibody administration in PDAPP mice.
Aggregation of amyloid-beta (Abeta) peptide in the brain in the form of neuritic plaques and cerebral amyloid angiopathy (CAA) is a key feature of Alzheimer's disease (AD). Microglial cells surround aggregated Abeta and are believed to play a role in AD pathogenesis. A therapy for AD that has entered clinical trials is the administration of anti-Abeta antibodies. One mechanism by which certain anti-Abeta antibodies have been proposed to exert their effects is via antibody-mediated microglial activation. Whether, when, or to what extent microglial activation occurs after systemic administration of anti-Abeta antibodies has not been fully assessed. We administered an anti-Abeta antibody (m3D6) that binds aggregated Abeta to PDAPP mice, an AD mouse model that was bred to contain fluorescent microglia. Three days after systemic administration of m3D6, there was a marked increase in both the number of microglial cells and processes per cell visualized in vivo by multiphoton microscopy. These changes required the Fc domain of m3D6 and were not observed with an antibody specific to soluble Abeta. These findings demonstrate that some effects of antibodies that recognize aggregated Abeta are rapid, involve microglia, and provide insight into the mechanism of action of a specific passive immunotherapy for AD. Topics: Age Factors; Alkenes; Alzheimer Disease; Amyloid; Amyloid beta-Protein Precursor; Animals; Antibodies; Benzene Derivatives; Calcium-Binding Proteins; Cell Count; Cell Movement; Cerebral Amyloid Angiopathy; CX3C Chemokine Receptor 1; Disease Models, Animal; Green Fluorescent Proteins; Leukocyte Common Antigens; Mice; Mice, Transgenic; Microfilament Proteins; Microglia; Plaque, Amyloid; Receptors, Chemokine; Stilbenes | 2008 |
Resveratrol and trimethylated resveratrol protect from acute liver damage induced by CCl4 in the rat.
The importance of hydroxyl groups in the antioxidant and hepatoprotective properties of resveratrol was investigated. To achieve this, resveratrol or its trimethylated analog were administered (10 mg kg(-1), p.o.) to male Wistar rats and liver damage was induced by acute administration of CCl4 (4 g kg(-1), p.o.); appropriate controls were performed. The animals were killed 24 h after CCl4 intoxication. The amount of reduced glutathione (GSH) in the liver was not modified by any treatment; interestingly, the GSH/GSSG (oxidized glutathione) ratio decreased in the groups receiving CCl4 and resveratrol associated with an increase in GSSG. In blood GSH and the GSH/GSSG ratio were decreased by CCl4; both effects were completely prevented by any of the compounds tested. Lipid peroxidation and the activity of gamma-glutamyl transpeptidase were increased significantly after CCl4. Resveratrol partially prevented these increases and surprisingly, trimethylated resveratrol completely prevented the increase of these markers. Both compounds partially but significantly prevented the increase in the activity of alanine aminotransferase; this result agrees with observations in the histological analysis. Both tested compounds administered alone produced no effect. The results of the present study suggest that OH groups are important for the antioxidant and hepatoprotective properties of the molecule of resveratrol; nevertheless, these effects can be improved by replacing hydrogen by a methyl in these groups. The differences in the antioxidant and hepatoprotective effects of these compounds could be due to the possibility that the trimethylated resveratrol acts like a prodrug, prolonging, probably, the half-life of the original compound. Topics: Acute Disease; Alanine Transaminase; Animals; Antioxidants; Carbon Tetrachloride Poisoning; Disease Models, Animal; gamma-Glutamyltransferase; Glutathione; Glutathione Disulfide; Lipid Peroxidation; Liver; Liver Diseases; Male; Methylation; Molecular Structure; Rats; Rats, Wistar; Resveratrol; Stilbenes; Structure-Activity Relationship | 2008 |
Protective effects of 2,3,5,4'-tetrahydroxystilbene-2-O-beta-d-glucoside, an active component of Polygonum multiflorum Thunb, on experimental colitis in mice.
Reactive oxygen metabolites (ROMs) and inducible nitric oxide synthase (iNOS) are involved in pathogenesis of inflammatory bowel disease. In this study, we examined the effects of 2,3,5,4'-tetrahydroxystilbene-2-O-beta-D-glucoside (THSG), an active component extracted from Polygonum multiflorum Thunb, on acetic acid-induced acute colitis and mitomycin C-induced chronic colitis. The inflammatory degree was assessed by histology and myeloperoxidase (MPO) activity. Nitric oxide (NO), malondialdehyde (MDA) and superoxide dismutase (SOD) levels were determined with biochemical methods. In addition, inducible nitric oxide synthase (iNOS) expression was immunohistochemically studied. In acetic acid-induced acute model, THSG (60 and 120 mg/kg) significantly ameliorated colon damage, inhibited the increase of acetic acid-induced MPO activity, depressed MDA and NO level, and enhanced SOD activity. Moreover, the effects of 120 mg/kg THSG were better than that of positive control drug, 5-aminosalicylic acid (5-ASA). In mitomycin C-induced model, THSG (60 mg/kg) administered for 7 days and 24 days, significantly improved colon damage and inhibited MPO activity and MDA content while increased SOD activity only on the 7th day and debased NO level on the 24th day. Furthermore, on the 24th day, the effects of THSG were prior to that of 5-ASA. Additionally, THSG (60 mg/kg) could inhibit iNOS expression in both models. In conclusion, THSG exerts protective effects on experimental colitis through alleviating oxygen and nitrogen free radicals level and down-regulating iNOS expression. Topics: Acetic Acid; Acute Disease; Animals; Anti-Inflammatory Agents; Antioxidants; Chronic Disease; Colitis; Colon; Disease Models, Animal; Dose-Response Relationship, Drug; Gastrointestinal Agents; Glucosides; Malondialdehyde; Mesalamine; Mice; Mitomycin; Nitric Oxide; Nitric Oxide Synthase Type II; Nitric Oxide Synthase Type III; Peroxidase; Polygonum; Stilbenes; Superoxide Dismutase; Time Factors | 2008 |
RETRACTED: Resveratrol induces apoptosis involving mitochondrial pathways in mouse skin tumorigenesis.
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal).\ This article has been retracted at the request of the Editor-in-Chief.\ Multiple figures in this article appear to be falsified/fabricated, and can not be verified as the corresponding author does not have the original data.\ Figure 2. It appears that data has been duplicated in panels V and VI.\ Figure 3A. Lanes II and VI in the p53 wild band appear to be duplicated.\ Figure 4A. Lanes I, II, V and VI of the Beta-actin blot appear to be the same data replicated.\ Figure 4B. The representative blots in the Bcl-2 band, lanes V and VI are identical, as are all lanes in the Beta-actin band.\ Figure 5B. Lanes III and IV of the Apaf 1 band, when rotated and vertically stretched, are duplicated and appear in Figure 3D as lanes III and IV of the Cytochrome C blot in “Chemopreventive potential of resveratrol in mouse skin tumors through regulation of mitochondrial and PI3K/AKT signaling pathways.” Pharmaceutical Research (2009). Doi: 10.1007/s11095-008-9723-z.\ Figure 5C. Lanes II and V of the Caspase 9 band appear to be duplicated.\ Figure 5E. The bands in lane V and VI of the Beta-actin blot are duplicated.\ Figure 5B and 5C. The Beta-actin lane IV band in 5B and lane IV in 5C appear to be duplicated from Figure 6B in “Hepatoprotective effects of lupeol and mango pulp extract of carcinogen induced alteration in Swiss albino mice.” Molecular Nutrition & Food Research (2007). Doi: 10.1002/mnfr.200600113. Topics: 9,10-Dimethyl-1,2-benzanthracene; Animals; Anticarcinogenic Agents; Antioxidants; Apoptosis; Apoptotic Protease-Activating Factor 1; bcl-2-Associated X Protein; Carcinogens; Chemoprevention; Cytochromes c; Disease Models, Animal; In Situ Nick-End Labeling; Male; Mice; Mitochondria; Poly(ADP-ribose) Polymerases; Proto-Oncogene Proteins c-bcl-2; Resveratrol; Skin; Skin Neoplasms; Stilbenes; Tetradecanoylphorbol Acetate | 2008 |
Neuroprotective effect of Smilacis chinae rhizome on NMDA-induced neurotoxicity in vitro and focal cerebral ischemia in vivo.
Previous work has shown that the Smilacis chinae rhizome (SCR) markedly inhibits amyloid beta protein (25-35)-induced neuronal cell damage in cultured rat cortical neurons. The present study was conducted to further verify the neuroprotective effect of SCR on excitotoxic and cerebral ischemic injury using both in vitro and in vivo studies. Exposure of cultured cortical neurons to 1 mM N-methyl-D-aspartate (NMDA) for 12 h induced neuronal cell death. SCR (10 and 50 microg/ml) inhibited NMDA-induced neuronal death, elevation of intracellular calcium ([Ca(2+)](i)), and generation of reactive oxygen species (ROS) in primary cultures of rat cortical neurons. In vivo, SCR prevented cerebral ischemic injury induced by 3-h middle cerebral artery occlusion (MCAO) and 24-h reperfusion. The ischemic infarct was significantly reduced in rats that received SCR (30 and 50 mg/kg, orally), with a corresponding improvement in neurological function. Moreover, SCR treatment significantly decreased the histological changes observed following ischemia. Oxyresveratrol and resveratrol isolated from SCR also inhibited NMDA-induced neuronal death, increase in [Ca(2+)](i), and ROS generation in cultured cortical neurons, suggesting that the neuroprotective effect of SCR may be attributable to these compounds. Taken together, these results suggest that the neuroprotective effect of SCR against focal cerebral ischemic injury is due to its anti-excitotoxic effects and that SCR may have a therapeutic role in neurodegenerative diseases such as stroke. Topics: Animals; Calcium; Cell Death; Cells, Cultured; Cerebral Cortex; Disease Models, Animal; Dose-Response Relationship, Drug; Excitatory Amino Acid Agonists; Infarction, Middle Cerebral Artery; Male; N-Methylaspartate; Neurons; Neuroprotective Agents; Plant Extracts; Plant Preparations; Rats; Rats, Sprague-Dawley; Reactive Oxygen Species; Reperfusion Injury; Resveratrol; Rhizome; Smilax; Stilbenes; Time Factors | 2008 |
Involvement of mammalian sirtuin 1 in the action of ethanol in the liver.
Chronic ethanol feeding causes liver steatosis in animal models by upregulating the sterol regulatory element-binding protein 1 (SREBP-1), which subsequently increases the synthesis of hepatic lipid. SREBP-1 activity is regulated by reversible acetylation at specific lysine residues. The present study tests the hypothesis that activation of SREBP-1 by ethanol may be mediated by mammalian sirtuin 1 (SIRT1), a NAD(+)-dependent class III protein deacetylase. The effects of ethanol on SIRT1 were determined in cultured rat hepatoma cells and in the livers of ethanol-fed mice. In rat H4IIEC3 cells, we observed that ethanol exposure induced SREBP-1c lysine acetylation and SREBP-1c transcriptional activity. The effect of ethanol was abolished by expression of wild-type SIRT1 or by treatment with resveratrol, a known potent SIRT1 agonist. Conversely, knocking down SIRT1 by the small silencing SIRT1 plasmid SIRT1shRNA or expression of a SIRT1 mutant, SIRT1(H363Y), did not negate the ethanol effect. These findings suggest that the effect of ethanol on SREBP-1 is mediated, at least in part, through SIRT1 inhibition. Consistent with the in vitro findings, chronic ethanol feeding substantially downregulated hepatic SIRT1 in mice. Inhibition of hepatic SIRT1 activity was associated with an increase in the acetylated active nuclear form of SREBP-1c in the livers of ethanol-fed mice. Our results indicate an essential role for SIRT1 in mediating the effects of ethanol on SREBP-1 and hepatic lipid metabolism, as well as the development of alcoholic fatty liver. Hence, SIRT1 may represent a novel therapeutic target for treatment of human alcoholic fatty liver disease. Topics: Acetylation; Alcohol Drinking; Animals; Cell Line, Tumor; Disease Models, Animal; Down-Regulation; Enzyme Activators; Ethanol; Fatty Liver, Alcoholic; Gene Expression Regulation, Enzymologic; Glycerol-3-Phosphate O-Acyltransferase; Lipogenesis; Liver; Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha; Rats; Resveratrol; RNA Interference; RNA, Small Interfering; Sirtuin 1; Sirtuins; Stearoyl-CoA Desaturase; Sterol Regulatory Element Binding Protein 1; Stilbenes; Trans-Activators; Transcription Factors; Transcription, Genetic; Transfection | 2008 |
Resveratrol attenuates inflammation and stricture formation in experimental caustic esophageal burns.
The purpose of medical treatment in the caustic esophageal burns (CEB) is to decrease inflammatory reaction and to prevent stricture formation. Resveratrol has anti-inflammatory and antifibrotic properties. The aim of this study is to investigate potential therapeutic effects of resveratrol in experimental CEB. We divided 42 male Wistar albino rats into five groups: a control group, caustic groups 4 and 28 (esophageal burns were created), and resveratrol groups 4 and 28 (esophageal burns were created and resveratrol was administered). We used 25% NaOH to form CEB following the method of Gehanno and Guedon as modified by Liu and Richardson. Animals were killed on the 4th and 28th days for biochemical and histopathological examinations. We found that the mean malondialdehyde and nitric oxide assays of the caustic groups were significantly higher than that of the resveratrol groups (P < 0.05). On the other hand, glutathione assay of the resveratrol groups was significantly higher than that of the caustic groups (P < 0.05). Histologically, edema, inflammation and necrosis were found to be significantly lower in the resveratrol 4 group compared with the caustic 4 group (P < 0.05). Submucosal and muscular collagen accumulation were found significantly lower in the resveratrol 28 group compared with the caustic 28 group (P < 0.05). We conclude that resveratrol decreased both the inflammatory reaction and the stricture formation in experimental CEB. Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Burns, Chemical; Caustics; Collagen; Disease Models, Animal; Esophageal Stenosis; Esophagitis; Glutathione; Inflammation; Male; Malondialdehyde; Nitric Oxide; Rats; Rats, Wistar; Research Design; Resveratrol; Stilbenes | 2008 |
Combretastatin dinitrogen-substituted stilbene analogues as tubulin-binding and vascular-disrupting agents.
Several stilbenoid compounds having structural similarity to the combretastatin group of natural products and characterized by the incorporation of two nitrogen-bearing groups (amine, nitro, serinamide) have been prepared by chemical synthesis and evaluated in terms of biochemical and biological activity. The 2',3'-diamino B-ring analogue 17 demonstrated remarkable cytotoxicity against selected human cancer cell lines in vitro (average GI 50 = 13.9 nM) and also showed good activity in regard to inhibition of tubulin assembly (IC 50 = 2.8 microM). In addition, a single dose (10 mg/kg) of compound 17 caused a 40% tumor-selective blood flow shutdown in tumor-bearing SCID mice at 24 h, thus suggesting the potential value of this compound and its corresponding salt formulations as new vascular-disrupting agents. Topics: Animals; Antineoplastic Agents; Bibenzyls; Disease Models, Animal; Drug Design; Drug Screening Assays, Antitumor; Humans; Inhibitory Concentration 50; Leukemia P388; Mice; Molecular Structure; Neoplasms; Regional Blood Flow; Stilbenes; Tubulin | 2008 |
Resveratrol inhibits uveal melanoma tumor growth via early mitochondrial dysfunction.
To test the efficacy of resveratrol, a nontoxic plant product, in the treatment of uveal melanoma.. The effect of oral administration and peritumor injection of resveratrol was tested on tumor growth in two animal models of uveal melanoma. The mechanism of resveratrol action on uveal melanoma cells was studied in vitro in a cell-viability assay: with JC-1 dye, to measure mitochondrial membrane potential; by Western blot analysis, to analyze the cellular redistribution of cytochrome c and Smac/diablo; and in a fluorescence assay with specific substrates, to measure activation of different caspases.. Resveratrol treatment inhibited tumor growth in animal models of uveal melanoma. Since oral administration resulted in relatively low bioavailability of resveratrol, the effect of increased local levels was tested by peritumor injection of the drug. This method resulted in tumor cell death and tumor regression. In vitro experiments with multiple uveal melanoma cell lines demonstrate that resveratrol causes a decrease in cell viability, resulting at least in part from an increase in apoptosis through a mitochondrial pathway. An early event in drug action is the direct targeting of mitochondria by resveratrol, which leads to a decrease in mitochondrial membrane potential and the eventual activation of caspase-3.. These data suggest that resveratrol can inhibit tumor growth and can induce apoptosis via the intrinsic mitochondrial pathway and that by further increasing bioavailability of resveratrol the potency of the drug can be increased, leading to tumor regression. The nontoxic nature of the drug at levels needed for therapy make resveratrol an attractive candidate for the treatment of uveal melanoma. Topics: Administration, Oral; Animals; Antineoplastic Agents, Phytogenic; Apoptosis; Apoptosis Regulatory Proteins; Biological Availability; Blotting, Western; Caspase 3; Caspase 9; Cell Line, Tumor; Cell Survival; Cytochromes c; Disease Models, Animal; Dose-Response Relationship, Drug; Intracellular Signaling Peptides and Proteins; Melanoma; Membrane Potential, Mitochondrial; Mice; Mice, Nude; Mitochondria; Mitochondrial Proteins; Resveratrol; Stilbenes; Transplantation, Heterologous; Uveal Neoplasms | 2008 |
SIRT1, a longevity gene, downregulates angiotensin II type 1 receptor expression in vascular smooth muscle cells.
Resveratrol (3,5,4'-trihydroxystilbene), a polyphenol found in red wine, is known to activate sirtuin1 (SIRT1), a longevity gene. Previous studies have demonstrated that resveratrol extends the life span of diverse species through activation of SIRT1. It was also reported that inhibition of angiotensin II function by angiotensin II type I receptor (AT1R) antagonist prolonged rat life span. We, therefore, hypothesized that resveratrol may inhibit the renin-angiontein system and examined whether resveratrol affects AT1R expression in vascular smooth muscle cells (VSMCs).. Northern and Western blot analysis revealed that resveratrol significantly decreased the expression of AT1R at mRNA and protein levels in a dose- and time-dependent manner. Overexpression of SIRT1 reduced AT1R expression whereas nicotinamide, an inhibitor of SIRT1, increased AT1R expression and reversed the resveratrol-induced AT1R downregulation. AT1R gene promoter activity was decreased by resveratrol, but resveratrol did not affect the AT1R mRNA stability. Deletion analysis showed that the most proximal region of AT1R gene promoter containing Sp1 site is responsible for downregulation. Administration of resveratrol suppressed AT1R expression in the mouse aorta and blunted angiotensin II-induced hypertension.. Resveratrol suppressed AT1R expression through SIRT1 activation both in vivo and in vitro. The inhibition of the renin-angiotensin system may contribute, at least in part, to the resveratrol-induced longevity and antiatherogenic effect of resveratrol. Topics: Angiotensin II; Animals; Antihypertensive Agents; Aorta; Cells, Cultured; Disease Models, Animal; Dose-Response Relationship, Drug; Down-Regulation; Enzyme Inhibitors; Hypertension; Mice; Mice, Inbred C57BL; Muscle, Smooth, Vascular; Myocytes, Smooth Muscle; Niacinamide; Promoter Regions, Genetic; Rats; Rats, Sprague-Dawley; Receptor, Angiotensin, Type 1; Renin-Angiotensin System; Resveratrol; RNA, Messenger; Sirtuin 1; Sirtuins; Sp1 Transcription Factor; Stilbenes; Time Factors; Transcription, Genetic; Transfection | 2008 |
Resveratrol, a red wine polyphenol, protects dopaminergic neurons in MPTP-treated mice.
Phytoestrogens, and particularly resveratrol, a red wine polyphenol, are currently under study for their therapeutic antioxidant properties. Administration of the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to C57BL/6 mice targets nigrostriatal dopaminergic neurons, leading to cell death and striatal dopamine (DA) depletion. The aim of the present study was to analyze the protective effect of a diet rich in resveratrol against MPTP-induced neuronal death. Male mice were kept on a phytoestrogen-free diet, supplemented or not with 50 or 100 mg/kg/day of resveratrol for 1 or 2 weeks, after which MPTP was injected intraperitoneally. We observed that daily administration of resveratrol prevented MPTP-induced depletion of striatal DA, and maintained striatal tyrosine hydroxylase (TH) protein levels. Our results also demonstrated that mice treated with resveratrol prior to MPTP administration showed more abundant TH-immunopositive neurons than mice given only MPTP, indicating that resveratrol protects nigral neurons from MPTP insults. Altogether, these data revealed that resveratrol can counteract the toxic effects of the neurotoxin MPTP and, as such, it may be regarded as a powerful molecule for complementary neuroprotective therapy. Topics: 3,4-Dihydroxyphenylacetic Acid; Analysis of Variance; Animals; Animals, Newborn; Cell Count; Disease Models, Animal; Docosahexaenoic Acids; Dopamine; Homovanillic Acid; Male; Mice; Mice, Inbred C57BL; MPTP Poisoning; Neurons; Resveratrol; Stilbenes; Substantia Nigra; Tyrosine 3-Monooxygenase | 2008 |
Anti-inflammatory and anti-atherogenic effects of cathechin, caffeic acid and trans-resveratrol in apolipoprotein E deficient mice.
A strong negative correlation between polyphenols consumption and coronary heart disease has been extensively documented. These results prompted investigations on the mechanisms responsible for polyphenols effects in cardiovascular disease. The aim of this work was to investigate in apoE KO mice the effect of P183/1 (a mixture of cathechin, caffeic acid and resveratrol) on atherosclerosis and gene expression patterns in the vascular wall. ApoE KO mice were fed a diet supplemented with P183/1, 40 and 160 mg/kg body weight/day for 8 weeks. The supplementation with the high dose of P183/1 significantly reduced the presence of atherosclerotic plaque by 40 and 36% in the aortic sinus and in the ascending aorta, respectively. This reduction was associated with a reduced expression of markers for macrophages, lymphocytes (both Th1 and Th2) and of MCP-1, MIP-1alpha, MIP-1beta, CCR1, CCR2 and ET1 in the vascular wall. In conclusion, P183/1 supplementation significantly decreases atherosclerosis in ApoE KO mice by affecting inflammatory cells recruitment and expression of pro-inflammatory chemokines in the vascular wall. Topics: Animals; Anti-Inflammatory Agents; Aorta; Apolipoproteins E; Atherosclerosis; Caffeic Acids; Cardiovascular Agents; Catechin; Cytokines; Dietary Fats; Disease Models, Animal; Dose-Response Relationship, Drug; Endothelin-1; Gene Expression; Mice; Mice, Knockout; Receptors, Chemokine; RNA, Messenger; Stilbenes | 2007 |
Resveratrol alleviates bleomycin-induced lung injury in rats.
Antioxidant therapy may be useful in diseases with impaired oxidant-antioxidant balance such as pulmonary fibrosis. This study was designed to examine the effects of resveratrol, an antioxidant agents, against bleomycin-induced pulmonary fibrosis and oxidative damage. Wistar albino rats were administered a single dose of bleomycin (5 mg/kg; via the tracheal cannula) followed by either saline or resveratrol (10 mg/kg; orally) for 14 days. The effect of resveratrol on pulmonary oxidative damage was studied by cell count and analysis of cytokine levels (TGF-beta, TNF-alpha, IL-1beta and IL-6) in the bronchoalveolar lavage fluid (BALF) and biochemical measurements of malondialdehyde (MDA), an end product of lipid peroxidation; glutathione (GSH), a key antioxidant; and myeloperoxidase (MPO) activity, an index of neutrophil infiltration, in the lung tissue. Bleomycin-induced lung fibrosis was determined by lung collagen contents and also microscopically. Bleomycin caused a significant decrease in lung GSH, which was accompanied with significant increases in MDA level, MPO activity, and collagen contents of the lung tissue concomitant with increased levels of the pro-inflammatory mediators and cell count in BALF. On the other hand, resveratrol treatment reversed all these biochemical indices as well as histopathological alterations induced by bleomycin. The results demonstrate the role of oxidative mechanisms in bleomycin-induced pulmonary fibrosis, and resveratrol, by its antioxidant properties, ameliorates oxidative injury and fibrosis due to bleomycin. Thus, an effective supplement with resveratrol as an adjuvant therapy may be a very promising agent in alleviating the side effects of bleomycin, an effective chemotherapeutic agent. Topics: Administration, Oral; Animals; Antibiotics, Antineoplastic; Antioxidants; Bleomycin; Bronchoalveolar Lavage Fluid; Cytokines; Disease Models, Animal; Glutathione; Lipid Peroxidation; Lung; Male; Malondialdehyde; Neutrophil Infiltration; Peroxidase; Pulmonary Fibrosis; Rats; Rats, Wistar; Resveratrol; Stilbenes | 2007 |
The effect of oil components on the physicochemical properties and drug delivery of emulsions: tocol emulsion versus lipid emulsion.
An emulsion system composed of vitamin E, coconut oil, soybean phosphatidylcholine, non-ionic surfactants, and polyethylene glycol (PEG) derivatives (referred to as the tocol emulsion) was characterized in terms of its physicochemical properties, drug release, in vivo efficacy, toxicity, and stability. Systems without vitamin E (referred to as the lipid emulsion) and without any oils (referred to as the aqueous micelle system) were prepared for comparison. A lipophilic antioxidant, resveratrol, was used as the model drug for emulsion loading. The incorporation of Brij 35 and PEG derivatives reduced the vesicle diameter to <100nm. The inclusion of resveratrol into the emulsions and aqueous micelles retarded the drug release. The in vitro release rate showed a decrease in the order of aqueous micelle system>tocol emulsion>lipid emulsion. Treatment of resveratrol dramatically reduced the intimal hyperplasia of the injured vascular wall in rats. There was no significant difference in this reduction when resveratrol was delivered by either emulsion or the aqueous micelle system. The percentages of erythrocyte hemolysis by the emulsions and aqueous micelle system were approximately 0 and approximately 10%, respectively. Vitamin E prevented the aggregation of emulsion vesicles. The mean vesicle size of the tocol emulsion remained unchanged during 30 days at 37 degrees C. The lipid emulsion and aqueous micelle system, respectively, showed 11- and 16-fold increases in vesicle size after 30 days of storage. Topics: Animals; Antioxidants; Biphenyl Compounds; Carotid Stenosis; Chemistry, Pharmaceutical; Coconut Oil; Disease Models, Animal; Drug Carriers; Drug Compounding; Emulsions; Hemolysis; Male; Micelles; Oils; Particle Size; Phosphatidylcholines; Picrates; Plant Oils; Polyethylene Glycols; Rats; Rats, Sprague-Dawley; Resveratrol; Solubility; Stilbenes; Surface-Active Agents; Technology, Pharmaceutical; Time Factors; Vitamin E | 2007 |
Resveratrol does not ameliorate muscle wasting in different types of cancer cachexia models.
Resveratrol has been reported to have antitumoural effects and recently it has been demonstrated that resveratrol partially blocks skeletal muscle wasting by interfering with NF-kappaB activation. We decided to investigate the potential anti-wasting properties of resveratrol on different models of cancer cachexia in experimental animals.. Incubations of isolated extensor digitorum longus muscles in the presence of 30 microM of resveratrol caused a significant decrease in the rate of protein degradation. However, administration of resveratrol in vivo to both rats bearing the Yoshida AH-130 ascites hepatoma (at the dose of 1 mg/kg body weight) and mice bearing the Lewis lung carcinoma (at two different doses, 5 and 25 mg/kg body weight) had no effect on skeletal muscle mass or body weight in tumour-bearing rodents. In addition, a combination of resveratrol (3 mg/kg body weight) and fish oil was also unable to induce any changes in skeletal muscle weights.. It is therefore concluded from this study that resveratrol is unable to influence muscle mass in vivo and has no potential role as anticachectic agent for the treatment of muscle wasting associated with tumour growth. Topics: Animals; Body Weight; Cachexia; Carcinoma, Lewis Lung; Disease Models, Animal; Energy Intake; Fish Oils; Male; Mice; Mice, Inbred C57BL; Muscle Proteins; Muscle, Skeletal; Neoplasms, Experimental; NF-kappa B; Organ Size; Random Allocation; Rats; Rats, Wistar; Resveratrol; Sarcoma, Yoshida; Stilbenes | 2007 |
Resveratrol ameliorates experimental autoimmune myocarditis.
Myosin-induced autoimmune myocarditis of rats is a model of human dilated cardiomyopathy. Resveratrol is a natural polyphenol found in grapes and wine that is reported to have cardioprotective and immunomodulatory effects.. To examine the effect of resveratrol on myocarditis, vehicle or resveratrol (50 mg/kg per day) was administered to cardiac myosin immunized rats 1 day before the immunization. At 14 days after immunization, resveratrol had preserved cardiac function of myosin-immunized rats according to echocardiographic analysis. The heart weight/tibial length ratio of vehicle-treated myosin-immunized rats was increased by 1.8-fold compared with unimmunized rats, and resveratrol attenuated the heart weight increase. Resveratrol significantly decreased cellular infiltration, fibrosis, and expression of inflammatory cytokines in the myocardium. Expressions of antioxidant genes were increased in myosin-immunized hearts, and resveratrol decreased those expressions. Resveratrol also attenuated myocarditis 21 days after immunization. SIRT1, a potential effector of resveratrol, was increased in the myocardium of myosin-immunized rats compared with unimmunized rats. The SIRT1 protein was localized mainly in infiltrating mononuclear cells.. Resveratrol significantly ameliorated myocardial injury and preserved cardiac function in a rat model of autoimmune myocarditis. Resveratrol may be a therapeutic modality for myocarditis. Topics: Animals; Autoimmune Diseases; Cardiomegaly; Cardiomyopathy, Dilated; Cardiotonic Agents; Chemotaxis, Leukocyte; Disease Models, Animal; Electrocardiography; Female; Inflammation; Leukocytes, Mononuclear; Myocarditis; Myosins; Rats; Rats, Inbred Lew; Resveratrol; Sirtuin 1; Sirtuins; Stilbenes | 2007 |
Evaluation of the vascular targeting agent combretastatin a-4 prodrug on retinal neovascularization in the galactose-fed dog.
Combretastatin A-4 (CA-4) is a vascular targeting agent known to rapidly shut off blood flow in new vessels and, as a result, regress neovascularization. In this pilot study, the ability of CA-4 to modify retinal neovascularization, which results in altered retinal vessel blood flow and retinal permeability, was evaluated in aphakic long-term galactose-fed beagles, an animal model that develops diabetes-like retinal neovascularization.. Two (2) groups of aphakic dogs, each group comprised of 4 galactose-fed dogs and 2 age-matched controls dogs, were utilized. Each group initially received the combretastatin A-4-phosphate prodrug (CA-4P) as either sub-Tenon's injections, administered at the corneoscleral junction, or intravitreal injections. Six (6) weeks after this treatment, all dogs also received systemic (intravenous) injections of CA-4P. Retinal vascular changes were monitored at 2-week intervals by fluorescein angiography.. All galactose-fed dogs demonstrated the presence of retinal neovascular lesions by fluorescein angiograms. Fluorescein leakage or perfusion through neovascular vessels was not altered by either sub-Tenon's, intravitreal, or systemic CA-4P administration. Whereas CA-4P was well tolerated by the healthy eyes of the control animals, its administration to some galactose-fed dogs was associated with corneal edema and increases in intraocular pressure following sub-Tenon's and intraocular injections.. Neovascularization in the galactose-fed dog progresses over a period of years, similar to that observed with clinical diabetic retinopathy. The failure of CA-4P to ameliorate neovascularization suggests that chronic, long-term administration may be required to destroy the slowly growing retinal endothelial cells. Topics: Animals; Antineoplastic Agents, Phytogenic; Aphakia; Diabetic Retinopathy; Disease Models, Animal; Dogs; Fluorescein Angiography; Galactose; Injections; Intraocular Pressure; Prodrugs; Retinal Neovascularization; Retinal Vessels; Stilbenes | 2007 |
In which period of injury is resveratrol treatment effective: ischemia or reperfusion?
The periods of ischemia and reperfusion represent different characteristics by lack of oxygen and reoxygenation. The aim of this experimental spinal cord injury model was to investigate whether resveratrol has protective effects during ischemia or reperfusion and the mechanism of the protection by using N-nitro-L-arginine methyl ester (L-NAME), an inhibitor of nitric oxide synthase. Rabbits were divided into seven groups according to the time of administration of resveratrol or L-NAME (RI and RR, resveratrol during ischemia or reperfusion; IL and RL, L-NAME during ischemia or reperfusion; RILR, resveratrol during ischemia and L-NAME during reperfusion; LIRR, L-NAME during ischemia and resveratrol during reperfusion; control group). After neurologic evaluation at the twenty-fourth hour of reperfusion, lumbar spinal cords were removed for electron microscopic evaluation, immunohistochemical staining for apoptosis, and malondialdehyde (MDA) and myeloperoxidase (MPO) measurements. The RILR group had the best functional recovery, with a mean 3.6 Tarlov score (P < 0.05), and showed near normal electron microscopic findings (scores of 7.6 +/- 0.9 for the control group and 3.9 +/- 2.9 for the RILR group, P < 0.05). MPO and MDA levels were decreased in all groups compared with the control group, but only the decrement in the RILR group reached statistical significance. Immunohistochemical analysis showed that the groups including resveratrol and L-NAME together had the best staining for apoptosis. Resveratrol exhibits important protection by means of neurologic outcome, histopathologic analysis, and biochemical analysis, especially when used in during ischemia followed by L-NAME administration during reperfusion. Also, resveratrol protects against apoptosis, especially when combined with L-NAME. Topics: Analysis of Variance; Animals; Antioxidants; Apoptosis; Disease Models, Animal; Enzyme Inhibitors; Hindlimb; Immunohistochemistry; Ischemic Preconditioning; Lumbar Vertebrae; Malondialdehyde; Microscopy, Electron; Movement; NG-Nitroarginine Methyl Ester; Nitrates; Nitrites; Peroxidase; Rabbits; Recovery of Function; Reperfusion; Reperfusion Injury; Resveratrol; Spinal Cord Injuries; Stilbenes; Time Factors; Treatment Outcome | 2007 |
Retinoblastoma tumor vessel maturation impacts efficacy of vessel targeting in the LH(BETA)T(AG) mouse model.
The aim of this study was to quantify tumor cell proliferation and growth, analyze tumor blood vessel development, and determine the efficacy of antiangiogenic and angiostatic therapy in targeting mature vessels in retinal tumors of the LH(BETA)T(AG) mouse model for retinoblastoma.. LH(BETA)T(AG) mouse retinas were analyzed at 4, 8, 12, and 16 weeks of age. Tumor burden was analyzed by histology; cell proliferation, vessel density, angiogenesis, and vessel maturation were detected by immunofluorescence. To assess the efficacy of mature vessel targeting, 16-week-old mice were treated with single subconjunctival injections of the selective vascular-targeting drug combretastatin A4 prodrug (CA4P) or anecortave acetate, and eyes were analyzed 1 day and 1 week after injection to determine microvessel density and the number of angiogenic and mature vessels.. Increased cell proliferation and angiogenesis were detected in the retinal inner nuclear layer (INL) before morphologic neoplastic changes were evident. As tumor size increased, angiogenesis diminished concomitantly with the appearance of mature vessels. Treatment with CA4P and anecortave acetate resulted in significant reductions in total vessel density. However, neither drug reduced the amount of alpha-smooth muscle actin (SMA)-positive, mature vessels.. Results of this study provide new insight into the relationship between tumor growth and blood vessel development in the LH(BETA)T(AG) mouse and establish the framework for defining the selective action of two vessel-targeting drugs against new blood vessels compared with mature blood vessels. These findings suggest a high potential value in targeting the process of angiogenesis in the treatment of children with retinoblastoma. Topics: Actins; Angiogenesis Inhibitors; Animals; Antineoplastic Agents, Phytogenic; Bibenzyls; Biomarkers, Tumor; Cell Proliferation; Disease Models, Animal; Endoglin; Endothelium, Vascular; Intracellular Signaling Peptides and Proteins; Ki-67 Antigen; Mice; Mice, Transgenic; Microscopy, Fluorescence; Neovascularization, Pathologic; Pericytes; Pregnadienediols; Retinal Neoplasms; Retinoblastoma; Stilbenes | 2007 |
Transgenic alfalfa that accumulates piceid (trans-resveratrol-3-O-beta-D-glucopyranoside) requires the presence of beta-glucosidase to inhibit the formation of aberrant crypt foci in the colon of CF-1 mice.
Plants have been genetically enhanced to produce a number of products for agricultural, industrial and pharmaceutical purposes. This technology could potentially be applied to providing chemoprevention strategies to the general population. Resveratrol (3,5,4'-trihydroxystilbene) is a compound that has been shown to have protective activity against a number of cancers and could be an ideal candidate for such an application. Alfalfa that was genetically modified to express resveratrol-synthase was used as a model in applying biotechnological approaches to cancer prevention. The transgenic alfalfa, which accumulates resveratrol as a glucoside (piceid = trans-resveratrol-3-O-Beta-D-glucopyranoside) (152 +/- 17.5 microg piceid/g dry weight), was incorporated into a standard mouse diet at 20% of the diet by weight and fed for 5 wk to 6-wk-old, female CF-1 mice (N = 17-30) that were injected with a single dose of azoxymethane (5 mg/kg body weight). While the addition of resveratrol-aglycone (20 mg/kg diet) to the basal diet reduced the number of aberrant crypt foci/mouse, the transgenic alfalfa did not inhibit the number, size, or multiplicity of aberrant crypt foci in the colon of the CF-1 mice relative to control alfalfa which does not accumulate resveratrol-glucoside. However, diets containing transgenic alfalfa with an exogenous Beta-glucosidase (860 U/kg diet) did significantly inhibit the number of aberrant crypt foci in the distal 2 cm of the colon of the mice relative to mice fed diets containing the transgenic alfalfa without the enzyme (P < 0.05; Fisher's Combination of p-values). The Beta-glucosidase alone appeared to have no effect on the inhibition of aberrant crypt foci. These results suggest that piceid in transgenic piceid-accumulating alfalfa was not bioavailable. Topics: Acyltransferases; Animals; beta-Glucosidase; Colonic Neoplasms; Disease Models, Animal; Female; Glucosides; Humans; Medicago sativa; Mice; Mice, Inbred Strains; Plants, Genetically Modified; Precancerous Conditions; Random Allocation; Resveratrol; Stilbenes | 2007 |
SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer's disease and amyotrophic lateral sclerosis.
A progressive loss of neurons with age underlies a variety of debilitating neurological disorders, including Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS), yet few effective treatments are currently available. The SIR2 gene promotes longevity in a variety of organisms and may underlie the health benefits of caloric restriction, a diet that delays aging and neurodegeneration in mammals. Here, we report that a human homologue of SIR2, SIRT1, is upregulated in mouse models for AD, ALS and in primary neurons challenged with neurotoxic insults. In cell-based models for AD/tauopathies and ALS, SIRT1 and resveratrol, a SIRT1-activating molecule, both promote neuronal survival. In the inducible p25 transgenic mouse, a model of AD and tauopathies, resveratrol reduced neurodegeneration in the hippocampus, prevented learning impairment, and decreased the acetylation of the known SIRT1 substrates PGC-1alpha and p53. Furthermore, injection of SIRT1 lentivirus in the hippocampus of p25 transgenic mice conferred significant protection against neurodegeneration. Thus, SIRT1 constitutes a unique molecular link between aging and human neurodegenerative disorders and provides a promising avenue for therapeutic intervention. Topics: Acetylation; Alzheimer Disease; Amyotrophic Lateral Sclerosis; Animals; Cells, Cultured; Cyclin-Dependent Kinase 5; Disease Models, Animal; Enzyme Activation; Gene Expression Regulation; Humans; Mice; Mice, Transgenic; Mutation; Nerve Degeneration; Rats; Resveratrol; Sirtuin 1; Sirtuins; Stilbenes; Superoxide Dismutase; Superoxide Dismutase-1; Tumor Suppressor Protein p53 | 2007 |
Resveratrol neuroprotective effects during focal cerebral ischemia injury via nitric oxide mechanism in rats.
Our prior study showed that resveratrol could suppress infarct volume and exert neuroprotective effect on rats subjected to focal cerebral ischemia (FCI) injury. Recently, it has been reported in some literature that resveratrol protects the spinal cord, kidney, and heart from ischemia-reperfusion injury through upregulation of nitric oxide (NO). Therefore, this study was designed to investigate the role of nitric oxide on the neuroprotective mechanisms of resveratrol on rats after FCI injury.. The FCI injury was induced by the middle cerebral artery (MCA) occlusion for 1 hour and then a 24-hour reperfusion followed in the anesthetized Long-Evans rats. Resveratrol was intravenously injected after 1 hour MCA occlusion.. Treatment of resveratrol (0.1 and 1 microg/kg) decreased the lactate dehydrogenase (LDH) in plasma and malondialdehyde (MDA) in FCI injury brain tissue, whereas the level of NO in plasma was increased. In addition, resveratrol downregulated protein and mRNA expression of inducible nitric oxide synthase (iNOS), and upregulated protein and mRNA expression of endothelial nitric oxide synthase (eNOS), while the expression of protein and mRNA of neuronal nitric oxide synthase (nNOS) was unchanged. Pretreatment with N(G)-nitro-L-arginine methyl ester (L-NAME, the nonselective NOS inhibitor) or L-N(5)-(1-iminoethyl)-ornithine (L-NIO, the eNOS selective inhibitor) completely blocked the effect of resveratrol in decreasing infarction volumes.. This study demonstrated the important role of NO in the neuroprotective effect of resveratrol in FCI injury. Topics: Animals; Brain; Brain Ischemia; Carotid Arteries; Disease Models, Animal; Dose-Response Relationship, Drug; Enzyme Inhibitors; Infarction, Middle Cerebral Artery; L-Lactate Dehydrogenase; Ligation; Male; Malondialdehyde; Middle Cerebral Artery; Neuroprotective Agents; NG-Nitroarginine Methyl Ester; Nitric Oxide; Nitric Oxide Synthase; Ornithine; Rats; Rats, Long-Evans; Resveratrol; RNA, Messenger; Stilbenes; Up-Regulation | 2007 |
Pomegranate polyphenols and resveratrol protect the neonatal brain against hypoxic-ischemic injury.
A previous study from our lab has shown that the polyphenol-rich pomegranate juice can protect the neonatal mouse brain against hypoxic-ischemic (H-I) injury when given to mothers in their drinking water. To test the hypothesis that this protection is due to the polyphenols in the juice, we studied the effects of the pomegranate polyphenol extract in the same neonatal H-I model. To further explore the role of a specific polyphenol in neonatal H-I we investigated the effects of resveratrol. The neuroprotective effects of resveratrol have been demonstrated in adult models of stroke, but had not previously been examined in neonates. We show that pomegranate polyphenols and resveratrol reduce caspase-3 activation following neonatal H-I. Resveratrol reduced caspase-3 activation when given before the injury but not when given 3 h after the injury. In addition to preventing caspase-3 activation, resveratrol also reduced calpain activation. Finally, we show that resveratrol can protect against tissue loss measured at 7 days after the injury. These and other recent findings suggest that polyphenols should be further investigated as a potential treatment to decrease brain injury due to neonatal H-I. Topics: Animals; Animals, Newborn; Antioxidants; Apoptosis; Birth Injuries; Calpain; Caspase 3; Caspase Inhibitors; Disease Models, Animal; Enzyme Activation; Female; Flavonoids; Hypoxia-Ischemia, Brain; Lythraceae; Male; Mice; Mice, Inbred C57BL; Neuroprotective Agents; Phenols; Plant Extracts; Polyphenols; Rats; Rats, Sprague-Dawley; Resveratrol; Stilbenes; Treatment Outcome | 2007 |
Enteral resveratrol supplementation attenuates intestinal epithelial inducible nitric oxide synthase activity and mucosal damage in experimental necrotizing enterocolitis.
The release of various enzymes including inducible nitric oxide synthase (iNOS) leads to enterocyte apoptosis through free nitrogen radicals, which in turn leads to impaired mucosal barrier and bacterial translocation with resultant sepsis in necrotizing enterocolitis (NEC). Resveratrol, a polyphenol compound from phytoalexins with antioxidant and scavenger properties, also play a critical role in modulating key enzymes in cell cycle including iNOS. We therefore hypothesized that resveratrol would prevent mucosal damage in experimental NEC in rats.. Newborn rats were randomized into 3 groups: group 1 was left to breast-feed (BF), whereas group 2 (NEC) was induced by enteral formula feedings twice daily and by being subjected to hypoxia thrice. The third group (R) received the same treatment as the NEC group but the enteral feeds were supplemented with resveratrol. Rats were killed on day 4, and their terminal ileal samples were harvested for histopathologic analysis. Expression of iNOS was assessed by sodium dodecyl sulfate polyacrylamide-gel electrophoresis analysis and immunohistochemistry. Band densities were quantified by using the software NIH image.. The epithelial structure in group BF was normal. In the NEC group, there were marked loss of the brush border, vacuolization, and necrosis. The epithelial structure was found to be preserved in group R. Western blot analysis revealed marked elevation in the expression of iNOS protein at 130 kD molecular weight (band densities in groups BF, NEC, and R were 0.3 +/- 3.5, 3.7 +/- 2.9, and 0.6 +/- 5.1, respectively; P < .01). Immunohistochemical analysis revealed that iNOS staining was significantly increased in the NEC group, whereas it remained minimal for the BF and R groups. Ileal tissue nitrate/nitrite levels for groups BF, NEC, and R were 178.3 +/- 7, 191.4 +/- 4.1, and 181 +/- 3.6 micromol/(L x g), respectively (P < .01).. These findings may provide insights for the beneficial effect of enteral resveratrol supplementation on inflammatory conditions of the bowel including NEC through attenuating the release of iNOS and preservation of mucosal integrity. Topics: Administration, Oral; Animals; Animals, Newborn; Antioxidants; Disease Models, Animal; Drug Evaluation, Preclinical; Enterocolitis, Necrotizing; Female; Ileum; Intestinal Mucosa; Male; Microvilli; Nitrates; Nitric Oxide Synthase Type II; Nitrites; Pregnancy; Random Allocation; Rats; Rats, Wistar; Resveratrol; Stilbenes | 2007 |
The effect of resveratrol on prevention of the development of postoperative adhesions in a rat model.
Our aim was to investigate the anti-adhesion potential of resveratrol, a phytoestrogen naturally found in wine, in a rat uterine horn model.. Lesions were created by laparotomy in the uterine horn of 70 rats, randomized before the operation into seven groups consisting of ten animals each: (1) control group, no adjuvant therapy; (2) intraperitoneal (IP) application of the resveratrol dilution vehicle, 10 mg/kg, before closing the laparotomy; (3) subcutaneous (SC) injection of dilution vehicle, 10 mg/kg, 30 min before the operation; (4) IP application of resveratrol, 10 mg/kg, before closing the laparotomy; (5) SC injection of resveratrol, 10 mg/kg, 30 min before the operation; (6) IP application of resveratrol, 10 mg/kg, before closing the laparotomy and continued SC daily for 5 days; and (7) SC injection of resveratrol, 10 mg/kg, 30 min before the operation and continued SC daily for 5 days. On the 14th postoperative day adhesion scores were determined. Levels of thiobarbituric acid-reactive substances and total antioxidant capacity (TAC) were also measured.. In animals treated with repeated SC resveratrol, adhesions were graded as significantly less severe than in the vehicle control group or the groups treated with resveratrol IP or IP plus SC. TAC of control group rats was significantly lower than that of animals treated with repeated SC resveratrol.. Repeated SC resveratrol significantly reduces adhesion formation. Topics: Animals; Antioxidants; Disease Models, Animal; Drug Evaluation, Preclinical; Female; Postoperative Complications; Rats; Rats, Wistar; Resveratrol; Stilbenes; Thiobarbituric Acid Reactive Substances; Tissue Adhesions | 2007 |
Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes.
Calorie restriction extends lifespan and produces a metabolic profile desirable for treating diseases of ageing such as type 2 diabetes. SIRT1, an NAD+-dependent deacetylase, is a principal modulator of pathways downstream of calorie restriction that produce beneficial effects on glucose homeostasis and insulin sensitivity. Resveratrol, a polyphenolic SIRT1 activator, mimics the anti-ageing effects of calorie restriction in lower organisms and in mice fed a high-fat diet ameliorates insulin resistance, increases mitochondrial content, and prolongs survival. Here we describe the identification and characterization of small molecule activators of SIRT1 that are structurally unrelated to, and 1,000-fold more potent than, resveratrol. These compounds bind to the SIRT1 enzyme-peptide substrate complex at an allosteric site amino-terminal to the catalytic domain and lower the Michaelis constant for acetylated substrates. In diet-induced obese and genetically obese mice, these compounds improve insulin sensitivity, lower plasma glucose, and increase mitochondrial capacity. In Zucker fa/fa rats, hyperinsulinaemic-euglycaemic clamp studies demonstrate that SIRT1 activators improve whole-body glucose homeostasis and insulin sensitivity in adipose tissue, skeletal muscle and liver. Thus, SIRT1 activation is a promising new therapeutic approach for treating diseases of ageing such as type 2 diabetes. Topics: Acetylation; Allosteric Site; Animals; Blood Glucose; Caloric Restriction; Catalytic Domain; Cell Line; Diabetes Mellitus, Type 2; Dietary Fats; Disease Models, Animal; Drosophila melanogaster; Heterocyclic Compounds, 4 or More Rings; Humans; Insulin; Male; Mice; Mitochondria; Rats; Rats, Sprague-Dawley; Rats, Zucker; Resveratrol; Sirtuin 1; Sirtuins; Stilbenes | 2007 |
Mechanism of retinoblastoma tumor cell death after focal chemotherapy, radiation, and vascular targeting therapy in a mouse model.
To evaluate the mechanism and timing of retinal tumor cell death in the LH(BETA)T(AG) mouse model of retinoblastoma after treatment with vascular targeting therapies and conventional therapies (focal chemotherapy and radiation).. For vascular targeting therapy, 12- or 16-week-old mice were treated with a single subconjunctival injection of either anecortave acetate (300 microg) or combretastatin A4 (1.5 mg). Eyes were analyzed at 1 day and 1 week after treatment. Tumor cell death was evaluated using TUNEL assays or immunofluorescence analysis of activated caspase 3 to detect apoptosis. Histopathologic analysis was performed to identify areas of necrosis. For conventional therapy, LH(BETA)T(AG) mice were treated with six serial subconjunctival injections of focally delivered carboplatin chemotherapy (100 microg/delivery) or hyperfractionated external beam radiotherapy (EBRT; 15 Gy total dose). Cell death was analyzed by TUNEL assay.. The highest levels of apoptotic cell death were seen 1 day after treatment in all treatment groups compared with vehicle controls. At 1 week after treatment, apoptotic cell death remained significantly elevated in the EBRT and carboplatin groups, but not after vessel targeting therapy. No significant necrosis was detected by histology in tumors of treated or of control eyes.. Conventional therapies (focal carboplatin chemotherapy and EBRT) and vascular targeting agents significantly increase cell death through apoptosis, while not having a significant effect on necrosis in this murine model of retinoblastoma. These studies will aid in the optimization of delivery schemes of combined treatment modalities. Topics: Angiogenesis Inhibitors; Animals; Antineoplastic Agents; Apoptosis; Carboplatin; Caspase 3; Disease Models, Animal; Endothelium, Vascular; In Situ Nick-End Labeling; Mice; Mice, Transgenic; Neovascularization, Pathologic; Pregnadienediols; Radiotherapy, Conformal; Retinal Neoplasms; Retinoblastoma; Stilbenes; Time Factors | 2007 |
Resveratrol reduces the elevated level of MMP-9 induced by cerebral ischemia-reperfusion in mice.
Stroke is one of the leading causes of mortality; however, its treatment remains obscure and largely empirical. Since matrix metalloproteinase 9 (MMP-9) has been postulated to be the major contributor of neuronal injury during reperfusion, inhibition of MMP-9 could be a potential approach in maintaining the viability of neurons. Trans-resveratrol (resveratrol), a polyphenolic compound has recently been shown to have neuroprotective activity against cerebral ischemia. Therefore, the aim of the present study was to evaluate the effect of resveratrol on MMP-9 induced by cerebral ischemia-reperfusion in vivo. Male Balb/C mice were treated with resveratrol for 7 days (50 mg/kg, gavage). Thereafter, middle cerebral artery occlusion (MCAo) was performed for 2 h with the help of intraluminal thread. Drug-treated mice showed improvement in necrotic changes in cortex and basal ganglia. Detection of MMP-9 activity and gene expression was performed at various time points after MCAo. The elevated levels of MMP-9 were significantly attenuated in the resveratrol-treated mice as compared to the vehicle MCAo mice. The study suggests that resveratrol has protective effects against acute ischemic stroke, which could be attributed to its property against MMP-9. Thus, resveratrol may be a potential agent for the treatment of neuronal injury associated with stroke. Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Cerebral Cortex; Disease Models, Animal; Gene Expression; Ischemic Attack, Transient; Male; Matrix Metalloproteinase 9; Mice; Mice, Inbred BALB C; Neuroprotective Agents; Reperfusion Injury; Resveratrol; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Stilbenes; Stroke | 2006 |
Possible role of nitric oxide in the protective effect of resveratrol in 5/6th nephrectomized rats.
Nitric oxide (NO) plays an important role in the modulation of glomerular disease. The renal protective effect of resveratrol (RVT), a polyphenolic phytoalexin, was investigated in the 5/6th nephrectomized rats.. Resveratrol (5 mg/kg, PO) was administered for 12 weeks to 5/6th nephrectomized (NX) rats together with and without nitro L-arginine methyl ester (L-NAME) (10 mg/kg, IP). We evaluated the effect of these agents on proteinuria, hypertension, renal function, glomerulosclerosis, and urinary excretion of nitric oxide metabolites.. 5/6th NX resulted in elevation in systolic blood pressure (SBP), reduced the urinary excretion of NO metabolites, increased urinary protein excretion, and deranged renal function and glomerulosclerosis. Treatment of animals with resveratrol significantly attenuated the increase in SBP, preserved the normal renal function, reduced the urinary protein excretion, increased the urinary excretion of NO metabolites, and prevented the glomerulosclerosis. Co-administration of animals with L-NAME along with resveratrol prevented the protection observed with resveratrol.. These findings indicate that resveratrol exerts its protective effect in 5/6 NX rats through a nitric oxide pathway. Topics: Animals; Antineoplastic Agents, Phytogenic; Blood Pressure; Body Weight; Disease Models, Animal; Eating; Enzyme Inhibitors; Kidney Function Tests; Male; Nephrectomy; NG-Nitroarginine Methyl Ester; Nitrates; Nitric Oxide; Nitric Oxide Synthase; Nitrites; Proteinuria; Rats; Rats, Wistar; Renal Insufficiency, Chronic; Resveratrol; Stilbenes; Survival Rate | 2006 |
Resveratrol, a natural ingredient of grape skin: antiarrhythmic efficacy and ionic mechanisms.
Resveratrol has been demonstrated to produce a variety of biological actions. Accumulating line of evidence supported the view that resveratrol may exert protective effect on the cardiovascular system. The aim of the study was to assess the antiarrhythmic profile as well as electrophysiological properties of resveratrol. We observe the antiarrhythmic effect of resveratrol on aconitine induced rat arrhythmia, ouabain induced guinea pig arrhythmia, and coronary ligation induced rat arrhythmia animal models. Resveratrol significantly and dose-dependently increased the doses of aconitine and ouabain required to induce the arrhythmia indexes. In coronary ligation induced rat arrhythmia model, resveratrol shortened duration of arrhythmia, decreased incidence of ventricular tachycardia and mortality. Electrophysiological experiment revealed that resveratrol could shorten APD through inhibition of ICa and selective enhancement of IKs without an effect on IKr. Topics: Animals; Anti-Arrhythmia Agents; Arrhythmias, Cardiac; Disease Models, Animal; Dose-Response Relationship, Drug; Fruit; Guinea Pigs; Ion Channel Gating; Muscle Cells; Plant Extracts; Rats; Rats, Wistar; Resveratrol; Stilbenes; Survival Rate; Treatment Outcome; Vitis | 2006 |
Kinetics of cerebral amyloid angiopathy progression in a transgenic mouse model of Alzheimer disease.
Cerebral amyloid angiopathy (CAA), the deposition of cerebrovascular beta-amyloid (Abeta) in the walls of arterial vessels, has been implicated in hemorrhagic stroke and is present in most cases of Alzheimer disease. Previous studies of the progression of CAA in humans and animal models have been limited to the comparison of pathological tissue from different brains at single time points. Our objective was to visualize in real time the initiation and progression of CAA in Tg2576 mice by multiphoton microscopy through cranial windows. Affected vessels were labeled by methoxy-X04, a fluorescent dye that selectively binds cerebrovascular beta-amyloid and plaques. With serial imaging sessions spaced at weekly intervals, we were able to observe the earliest appearance of CAA in leptomeningeal arteries as multifocal deposits of band-like Abeta. Over subsequent imaging sessions, we were able to identify growth of these deposits (propagation), as well as appearance of new bands (additional initiation events). Statistical modeling of the data suggested that as the extent of CAA progressed in this vascular bed, there was increased prevalence of propagation over initiation. During the early phases of CAA development, the overall pathology burden progressed at a rate of 0.35% of total available vessel area per day (95% confidence interval, 0.3-0.4%). The consistent rate of disease progression implies that this model is amenable to investigations of therapeutic interventions. Topics: Alkenes; Alzheimer Disease; Amyloid beta-Peptides; Animals; Benzene Derivatives; Cerebral Amyloid Angiopathy; Craniotomy; Disease Models, Animal; Disease Progression; Fluorescent Dyes; Humans; Image Processing, Computer-Assisted; Kinetics; Meninges; Mice; Mice, Transgenic; Plaque, Amyloid; Skin Window Technique; Stilbenes | 2006 |
Resveratrol reduces renal and lung injury caused by sepsis in rats.
Resveratrol (3,5,4'-trans-trihydroxystilbene), a natural phytoalexin, has various pharmacological effects, including anti-inflammatory properties via inhibition of oxidation, leukocyte priming, and expression of inflammatory mediators. The present study was aimed to investigate the possible beneficial activities of resveratrol on lung and kidney damage in a rat model of sepsis.. Sepsis was induced to Sprague-Dawley rats of both sexes (200-250 g) by cecal ligation and perforation. The rats were treated with resveratrol (30 mg/kg; i.p.) or saline after induction of sepsis and at 16 h. Twenty-four hours after the sepsis-induction, all rats were decapitated. Blood was collected for the measurement of tumor necrosis factor-alpha level and lactate dehydrogenase activity. Lung and kidney samples were taken for histological assessment and for the measurement of malondialdehyde, glutathione level, myeloperoxidase activity, and collagen content.. Sepsis caused a significant increase in malondialdehyde levels, myeloperoxidase activity, and collagen content of the lung and kidney tissues with a concomitant reduction in glutathione levels. Microscopic examination revealed severe destruction of regular morphology in both lung and kidney tissues. Serum tumor necrosis factor-alpha and lactate dehydrogenase levels also were higher in rats with sepsis compared to those of the sham group. Resveratrol treatment reversed these biochemical parameters and preserved tissue morphology as evidenced by histological evaluation.. Resveratrol, a phenolic compound, reduces sepsis-induced remote organ injury, at least in part, through its ability to balance oxidant-antioxidant status, to inhibit neutrophil infiltration and to regulate the release of inflammatory mediators. Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Cecum; Collagen; Disease Models, Animal; Female; Glutathione; Kidney; Kidney Diseases; L-Lactate Dehydrogenase; Ligation; Lung; Lung Diseases; Male; Malondialdehyde; Peroxidase; Rats; Rats, Sprague-Dawley; Resveratrol; Sepsis; Stilbenes; Tumor Necrosis Factor-alpha | 2006 |
The effect of resveratrol in experimental cataract model formed by sodium selenite.
To investigate if resveratrol can prevent sodium selenite-induced experimental cataract model in rats.. Forty-eight Spraque-Dawley rat pups were divided into 3 treatment groups: (1) normal saline-% 5 ethanol injected i.p. on postpatum day 10; (2) Na selenite (30 nmol/g body wt) injected s.c on day 10; (3) Na selenite s.c on day 10+resveratrol (40 mg/kg) i.p on days 10-13. On day 21, cataract development was graded by slit-lamp examination and photography. Encapsulated lenses and erythrocytes were analyzed for reduced glutathione (GSH) and malondialdehyde (MDA), a marker of lipid peroxidation. Lenses were also analyzed for total nitrite (TN).. All control lenses in group 1 were clear. In group 2, all rats developed cataracts (grade 3-grade 6), whereas in group 3, only 9 of 16 rats developed cataracts (grade 2-grade 3). The difference of cataract frequency between groups 2 and 3 was statistically significant (p<0.05). Group 3 lenses and erythrocytes had higher mean GSH and lower mean MDA levels than those in group 2 (p<0.05). TN was highest in group 3 and lowest in group 1 (p<0.05).. Resveratrol suppressed selenite-induced oxidative stress and cataract formation in rats. This protective effect was supported by higher GSH and lower MDA in lens and erythrocytes. The presence of oxidative stress in selenite cataract development and its prevention by resveratrol support the possibility that high natural consumption of resveratrol in food can help prevent human senile cataract. Topics: Animals; Antioxidants; Cataract; Disease Models, Animal; Glutathione; Lens, Crystalline; Lipid Peroxidation; Malondialdehyde; Nitrites; Oxidative Stress; Rats; Rats, Sprague-Dawley; Resveratrol; Sodium Selenite; Stilbenes | 2006 |
Protective effects of resveratrol on spleen and ileum in rats subjected to ischemia-reperfusion.
Resveratrol is as an antioxidant with free radical-scavenging activity and finds its clinical application in the prevention of postischemic tissue injury following solid organ transplantation. This study investigates the effect of Resveratrol on spleen and ileum tissues subjected to hepatic ischemia-reperfusion (I/R) in rats. Twenty-four rats were recruited in the study as follows: group A: I/R (n = 8), group B: I/R + Resveratrol (n = 8), and group C: sham operation (n = 8). After intraperitonealy pretreatment of eight rats with resveratrol (15 mg/kg/d) for 5 days, 16 rats were subjected to 45 minutes of hepatic ischemia followed by 30 minutes reperfusion period. Resveratrol was given 15 minutes prior to ischemia and just before the reperfusion in rats. After reperfusion period all rats were sacrificed. Spleen and ileum tissues were examined spectrophotometrically to measure malondialdehyde (MDA), glutathione (GSH), and total nitrite, nitrate as an end product of nitric oxide (NO) levels. Concerning the spleen, statistically significant decrease of GSH and increase of MDA and NO levels were found group A when compared to groups B and C (P = .040, P = .004, and P = .001 group A vs group B; P = .05, P = .003, and P = .001 group A vs group C, respectively). Parallel results were obtained in ileum. A statistically significant decrease in GSH and an increase in MDA and NO levels in group A in respect to group B and group C was obtained (P = .048, P = .034, and P = .001 group A vs group B; P = .004, P = .001, and P = .003 group A vs group C, respectively). The result of this study shows that resveratrol has a protective effect on spleen and ileal mitochondrial oxidative stress in rats subjected to I/R. Topics: Animals; Disease Models, Animal; Glutathione; Ileum; Malondialdehyde; Nitric Oxide; Oxidative Stress; Rats; Rats, Wistar; Reperfusion Injury; Resveratrol; Spleen; Stilbenes; Vasodilator Agents | 2006 |
Comparative study of natural antioxidants - curcumin, resveratrol and melatonin - in cadmium-induced oxidative damage in mice.
The present study was designed to examine the antioxidative effect of curcumin, resveratrol and melatonin pre-treatment on cadmium-induced oxidative damage and cadmium distribution in an experimental model in mice. Male CD mice were treated once daily for 3 days with curcumin (50mg/kg b.w., p.o.), resveratrol (20mg/kg b.w., p.o.) or melatonin (12mg/kg, p.o.), dispersed in 0.5% methylcellulose. One hour after the last dose of antioxidants cadmium chloride was administered (7mg/kg b.w., s.c.) to pre-treated animals and control animals receiving methylcellulose. At 24th h after Cd administration the lipid peroxidation (LP - expressed as malondialdehyde production), reduced glutathione (GSH), catalase (CAT) and glutathione peroxidase (GPx) were estimated in liver homogenates. Cadmium concentration was measured in the liver, kidneys, testes and brain by AAS. Cadmium chloride administration to mice induced hepatic lipid peroxidation (to 133%, p<0.001), decreased GSH content (to 65%, p<0.001) and inhibited catalase (to 68%, p<0.001) and GPx activity (to 60%, p<0.001) in the liver. Curcumin, resveratrol and melatonin oral pre-treatment completely prevented the Cd-induced lipid peroxidation and Cd-induced inhibition of GPx hepatic activity. Resveratrol was effective against Cd-induced inhibition of catalase activity (p<0.001). The decrease in hepatic GSH level was not prevented by curcumin, resveratrol or melatonin pre-treatment. In mice treated with antioxidants alone the level of LP, GSH, GPx or CAT was not different from control levels. The pre-treatment with antioxidants did not affect cadmium distribution in the tissues of Cd-intoxicated mice. The results demonstrate that curcumin, resveratrol and melatonin pre-treatment effectively protect against cadmium-induced lipid peroxidation and ameliorate the adverse effect of cadmium on antioxidant status without any reduction in tissue Cd burden. Topics: Animals; Antioxidants; Cadmium; Catalase; Curcumin; Disease Models, Animal; Drug Interactions; Drug Therapy, Combination; Glutathione; Glutathione Peroxidase; Lipid Peroxidation; Liver; Male; Malondialdehyde; Melatonin; Mice; Mice, Inbred Strains; Oxidative Stress; Resveratrol; Stilbenes | 2006 |
Effect of the second-generation vascular disrupting agent OXi4503 on tumor vascularity.
As first-generation small-molecule vascular disrupting agents (VDA) have begun to enter clinical trials, second-generation agents are under active development. One such agent is the combretastatin A4 disodium phosphate (CA4P) analogue OXi4503 (CA1P).. C3H/HeJ mice bearing KHT sarcomas were treated with CA4P and OXi4503 and the effect on tumor vasculature was determined by evaluating the extent of vascular shutdown (Hoechst-33342 vessel staining) and tumor perfusion inhibition (dynamic contrast-enhanced magnetic resonance imaging). Dynamic contrast-enhanced magnetic resonance imaging and tumor necrosis end points also were used to examine the pathophysiologic tumor effects following repeated exposures to these agents.. Single doses of either agent (CA4P, 100 mg/kg; OXi4503, 25 mg/kg) resulted in an 80% to 90% reduction in tumor perfusion 4 hours after treatment. Whereas recovery in tumor perfusion was observed 48 hours posttreatment, this recovery was significantly slower in mice treated with OXi4503. Tumors re-treated with either VDA 72 hours after the first drug exposure showed a similar reduction and recovery in tumor perfusion. Histologic evidence showed the presence of a smaller viable rim after exposure to OXi4503 than that observed after CA4P treatment. Furthermore, the extent of recovery of tumor necrosis 72 hours after drug treatment was less for OXi4053.. The present studies show that the second-generation VDA OXi4503 possesses significant antivascular effects in solid tumors. Importantly, the vasculature of tumors of mice that had received an initial dose this agent was as responsive to a subsequent treatment. Topics: Animals; Cell Survival; Diphosphates; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Screening Assays, Antitumor; Female; Injections, Intraperitoneal; Magnetic Resonance Imaging; Mice; Mice, Inbred C3H; Neovascularization, Pathologic; Radiography; Sarcoma, Experimental; Stilbenes; Time Factors; Transplantation, Heterologous; Xenograft Model Antitumor Assays | 2006 |
Potential pro-inflammatory action of resveratrol in vascular smooth muscle cells from normal and diabetic rats.
Based on the reported cardioprotective effects of resveratrol, a polyphenolic antioxidant abundant in grapes that binds to estrogen receptors, and the well-characterized anti-inflammatory properties of 17beta-estradiol, the effects of resveratrol on the functional expression of inflammatory enzymes were assessed in vascular smooth muscle cells (SMC) from normoglycaemic and streptozotocin-diabetic rats.. SMC were isolated from the aorta four weeks after treating rats with streptozotocin or its vehicle. In SMC exposed to a cytokine mixture for 24h, unexpectedly, treatment with resveratrol (0.1-100microM) as well as the structurally related isoflavone genistein (1nM-1microM) enhanced expression of inducible NO synthase (iNOS). Genistein failed to mimic the elevated iNOS activity induced by resveratrol. Inhibition of estrogen receptors by the pure antiestrogen ICI 182,780 reversed the action of resveratrol on iNOS. In addition, resveratrol failed to alter cyclooxygenase-2 protein levels but reduced the accumulation of prostaglandin E(2) in the culture medium of SMC from normoglycaemic, but not diabetic rats.. These results indicate that resveratrol, at concentrations approaching putative peak plasma levels in vivo, exhibited no anti-inflammatory properties in vascular SMC from normal and diabetic rats. By contrast, resveratrol displayed a potential pro-inflammatory activity in settings of vascular inflammation. Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Aorta; Diabetes Mellitus, Experimental; Disease Models, Animal; Dose-Response Relationship, Drug; Estradiol; Genistein; Male; Muscle, Smooth, Vascular; Nitric Oxide Synthase Type II; Rats; Rats, Sprague-Dawley; Receptors, Estrogen; Resveratrol; Stilbenes; Tissue Culture Techniques | 2006 |
Dietary supplementation of resveratrol suppresses colonic tumour incidence in 1,2-dimethylhydrazine-treated rats by modulating biotransforming enzymes and aberrant crypt foci development.
Diet-induced changes in the activities of bacterial enzymes are known to play a role in colon cancer development. Resveratrol has been implicated as a protective agent in carcinogenesis. In the present study, the effect of resveratrol on the activities of faecal and colonic biotransforming enzymes such as beta-glucuronidase, beta-glucosidase, beta-galactosidase, mucinase, nitroreductase and faecal sulfatase activity was assessed. The total number of aberrant crypt foci and their distribution in the proximal, medial and distal colon were observed in 1,2-dimethylhydrazine (DMH)-induced rats (group 3) and other treatment groups (groups 4-6). DMH (0.02 g/kg body weight) was given subcutaneously once a week for 15 consecutive weeks, and the experiment was terminated at 30 weeks. DMH-treated rats showed elevated levels of cancer-associated bacterial enzyme activities, whereas on resveratrol supplementation in three different regimens, rats showed lowered activities. Resveratrol supplementation throughout the experimental period (group 6) exerted a more pronounced effect (P < 0.01) by modulating the development of aberrant crypt foci and the activities of bacterial enzymes than did the other treatment regimens (groups 4 and 5). Thus, the present results demonstrate the inhibitory effect of resveratrol on DMH-induced colon carcinogenesis in rats. Topics: 1,2-Dimethylhydrazine; Animals; Antineoplastic Agents, Phytogenic; Bacteria; Carcinogens; Colon; Colonic Neoplasms; Dietary Supplements; Disease Models, Animal; Feces; Glycoside Hydrolases; Intestinal Mucosa; Male; Nitroreductases; Polysaccharide-Lyases; Precancerous Conditions; Rats; Rats, Wistar; Resveratrol; Stilbenes; Sulfatases | 2006 |
Involvement of cell adhesion molecules in polydatin protection of brain tissues from ischemia-reperfusion injury.
Previous studies have demonstrated that polydatin, a crystal component extracted from the root stem of the perennial herbage Polygonum Cuspidatum Sieb.et Zucc, exerts a neuroprotective effect on cerebral injury induced by ischemia/reperfusion. To investigate the possible mechanism of this action, we determined the effects of polydatin on the expression of cell adhesion molecules (CAMs) after ischemia-induced cerebral injury. Rats were treated with polydatin (i.v.) immediately after the operation of middle cerebral artery occlusion (MCAO) for 1 h. It was found that polydatin improved neurological deficits and reduced the volume of brain infarction. In addition, polydatin decreased the levels of CAMs relative to the control (MCAO alone); these included intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), E-selectin, L-selectin and Integrins. These results suggest that polydatin exerts protective effects likely via inhibition of the expression of various CAMs; polydatin may be a potential agent for treatment of brain injury associated with stroke. Topics: Analysis of Variance; Animals; Brain; Disease Models, Animal; Dose-Response Relationship, Drug; Gene Expression; Glucosides; Immunohistochemistry; Intercellular Adhesion Molecule-1; Male; Neural Cell Adhesion Molecules; Neurologic Examination; Neuroprotective Agents; Oligonucleotide Array Sequence Analysis; Rats; Rats, Sprague-Dawley; Reperfusion Injury; Stilbenes; Vascular Cell Adhesion Molecule-1 | 2006 |
Learning-memory deficit with aging in APP transgenic mice of Alzheimer's disease and intervention by using tetrahydroxystilbene glucoside.
To investigate learning-memory deficit in different ages of AD-like APP transgenic mice and to observe the protective effects of 2,3,5,4'-tetrahydroxystilbene-2-O-beta-D-glucoside (TSG), which is the main component of Polygonum multiflorum, on learning-memory abilities.. PDAPPV717I transgenic (Tg) mice were randomly divided into 3 model groups (4, 10 and 16 months old mice) and TSG treated (at doses 120 and 240 micromol/kg/d) groups. TSG was administered to some Tg mice with an age range 4-10 months. In untreated 10 months old Tg mice, the TSG was administrated to those falling in the age range 10-16 months. For the control group we adopted the same age and background C57BL/6J mice. The learning-memory ability was measured by applying Morris water maze (MWM) and object recognition test (ORT).. In the 4 months old PDAPPV717I Tg mice, the learning-memory deficit was detected. The escape latency in MWM was prolonged, and the discrimination index decreased in ORT. In the 10 months old Tg mice, the learning-memory deficit was aggravated. TSG improved all spatial learning-memory impairment in MWM as well as the object recognition impairment in ORT. In the 16 months old Tg mice, the learning-memory deficit remained to exist but abated a lot. TSG showed significant improvement in learning-memory ability in both MWM and ORT.. PDAPPV717I transgenic mice with an age range 4-16 months revealed the existence of learning-memory deficit compared with the control group. Tetrahydroxystilbene glucoside not only prevents, i.e. at an early stage, the learning-memory deficit in AD-like model, but also can reverse the learning-memory deficit in the late stage of AD-like model. Thus, TSG could be considered among the future therapeutic drugs indicated for the treatment of AD. Topics: Age Factors; Aging; Alzheimer Disease; Amyloid beta-Protein Precursor; Analysis of Variance; Animals; Disease Models, Animal; Glucosides; Learning Disabilities; Maze Learning; Mice; Mice, Inbred C57BL; Mice, Transgenic; Pattern Recognition, Visual; Stilbenes | 2006 |
Resveratrol or higher arterial blood pressure protects the spinal cord from ischemia-reperfusion injury?
Topics: Animals; Blood Pressure; Disease Models, Animal; Ischemic Preconditioning; Rabbits; Reperfusion Injury; Resveratrol; Spinal Cord Ischemia; Stilbenes; Swine; Vasodilator Agents | 2006 |
Protective effects of resveratrol in ischemia-reperfusion injury of skeletal muscle: A clinically relevant animal model for lower extremity ischemia.
Ischemia and reperfusion injury of the skeletal muscle is a common and serious condition observed in patients admitting to peripheral vascular surgery, interventional radiology and cardiology departments. Resveratrol (RVT) being a strong natural antioxidant is found in deal of red wine and Mediterranean diet. In the present study, male Spraque-Dawley rats were randomized into two groups of equal size. The first group was the control group, and these rats were administered with tap water with a gastric tube for fourteen consecutive days once daily. According to the same protocol, the rats in the second group were treated with tap water containing 20 mg/kg RVT. All the rats in the two groups were subjected to acute hind limb ischemia through clamping of the abdominal aorta for 120 min. Following this procedure, 60 minutes of reperfusion was applied by reestablishing blood flow in both iliac arteries. Ischemic damage in the skeletal muscle tissue was assessed by measuring myoglobin, lactate dehydrogenase, creatinine phosphokinase, aspartate transaminase enzymes in venous blood samples obtained at the end of the reperfusion period. Oxidative stress caused by reperfusion was determined by measuring MDA, carbonyl and protein sulphydryl levels in quadriceps muscle tissue retrieved at the end of the experiment. In Group II rats, all the measured ischemic enzymes and the markers of oxidative stress reflected robust anti-ischemic properties obtained by RVT administration. The data from both groups revealed statistically significant protection against acute skeletal muscle ischemia and reperfusion injury in Group II rats, compared to Group I. As a major dietary flavonoid RVT can protect the skeletal muscle tissue against global ischemia and reperfusion injury because of its strong antioxidant and cytoprotective properties. Topics: Animals; Disease Models, Animal; Lower Extremity; Male; Muscle, Skeletal; Rats; Rats, Sprague-Dawley; Reperfusion Injury; Resveratrol; Stilbenes; Treatment Outcome; Vasodilator Agents | 2006 |
Combretastatin A-4 prodrug in the treatment of a murine model of retinoblastoma.
To evaluate the effect of subconjunctival injections of combretastatin A-4 phosphate (CA-4P) prodrug treatment on tumor vasculature and growth in an animal model of hereditary retinoblastoma.. Twenty-four, 12-week-old simian virus-40 T-antigen-positive mice received six subconjunctival CA-4P injections at doses of 0.5, 1.0, 1.5, and 2.0 mg delivered at 72-hour intervals to the right eye only. Six control animals received placebo treatment. All animals underwent serial ophthalmic evaluations and were euthanatized at 16 weeks of age, and eyes were obtained for histopathologic examination. Eyes were graded for presence or absence of tumor, delay of tumor growth, and intratumoral vascularity.. The use of subconjunctivally injected CA-4P prodrug induced an extensive, dose-dependent decrease in microvessel density and led to significant tumor reduction in treated eyes compared with the placebo control (P <0.001). No evidence of corneal, lenticular, choroidal, or retinal toxicity was observed by histopathologic evaluation.. Subconjunctival delivery of CA-4P is associated with extensive dose-dependent reduction in blood vessel count in this murine model of retinoblastoma. A combination treatment of retinoblastoma incorporating CA-4P may allow enhanced tumor reduction enabling a decrease in standard treatment doses of both chemotherapy and external beam radiotherapy. Topics: Animals; Antigens, Polyomavirus Transforming; Antineoplastic Agents; Conjunctiva; Disease Models, Animal; Dose-Response Relationship, Drug; Injections; Mice; Mice, Transgenic; Neovascularization, Pathologic; Prodrugs; Retinal Neoplasms; Retinoblastoma; Stilbenes | 2005 |
Effect of resveratrol on activation of nuclear factor kappa-B and inflammatory factors in rat model of acute pancreatitis.
To observe the effect of resveratrol on nuclear factor Kappa-B (NF-kappaB) activation and the inflammatory response in sodium taurocholate-induced pancreatitis in rats.. Seventy-two male SD rats were randomly divided into three groups: sham operation group (control), severe acute pancreatitis (SAP) group, and severe acute pancreatitis group treated with resveratrol (RES). A SAP model was established by injecting 4% sodium taurocholate 1 mL/kg through puncturing the pancreatic duct. In Res group, Res was given at 30 mg/kg b.m. intraperitoneally after the SAP model was successfully established. Eight animals from each group were sacrificed at 3, 6 and 12 h after modeling. The expression of NF-kappaB activation of pancreas was detected by immunohistochemical staining, whereas the levels of TNF-alpha and IL-8 in pancreatic tissues were estimated by radioimmunoassay. The pathological changes of pancreas and lungs were examined microscopically.. Much less hyperemia, edema, dust-colored necrotic focus and soaps were noticed in pancreas in RES group than in SAP group. In RES group, hemorrhage, exudates and infiltration of inflammatory cells in pancreas and interstitial edema, destruction of alveolar wall in lung were significantly less than in SAP group. In the SAP group, the activation of NF-kappaB in pancreatic tissues was enhanced significantly at any measure point compared with control group (64.23+/-10.72% vs 2.56+/-0.65%, 55.86+/-11.34% vs 2.32+/-0.42%, 36.23+/-2.30% vs 2.40+/-0.36%,P<0.01), TNF-alpha,IL-8 were also increased and reached their peak at 6 h and then declined. The activation of NF-kappaB and the levels of TNF-alpha and IL-8 in RES group were significantly lower than those in SAP group (P<0.01): activation (52.63+/-9.45% vs 64.23+/-10.72%, 40.52+/-8.40% vs 55.86+/-11.34%, 29.83+/-5.37% vs 36.23+/-2.30%), TNF-alpha (132.76+/-15.68 pg/mL vs 158.36+/-12.58 pg/mL, 220.32+/-23.57 pg/mL vs 247.67+/- 11.62 pg/mL, 175.68+/-18.43 pg/mL vs 197.35+/-12.57 pg/mL) and IL-8 (0.62+/-0.21 microg/L vs 0.83+/-0.10 microg/L, 1.10+/-0.124 microg/L vs 1.32+/-0.18 microg/L, 0.98+/-0.16 microg/L vs 1.27+/-0.23 microg/L).. The activation of NF-kappaB is involved in the inflammatory response of rats with SAP. Resveratrol could effectively inhibit the expression of NF-kappaB activation, alleviate the severity of SAP through its anti-inflammatory effects and regulate the inflammatory mediators. Topics: Acute Disease; Animals; Antioxidants; Cholagogues and Choleretics; Disease Models, Animal; Interleukin-8; Male; NF-kappa B; Pancreas; Pancreatitis; Rats; Rats, Sprague-Dawley; Resveratrol; Severity of Illness Index; Stilbenes; Taurocholic Acid; Tumor Necrosis Factor-alpha | 2005 |
Dietary wine phenolics catechin, quercetin, and resveratrol efficiently protect hypercholesterolemic hamsters against aortic fatty streak accumulation.
The effects of the phenolic compounds catechin (Cat), quercetin (Qer), and resveratrol (Res) present in red wine on early atherosclerosis were studied in hamsters. Hamsters (n = 32) were divided into 4 groups of 8 and fed an atherogenic diet for 12 weeks. They received by force-feeding 7.14 mL/(kg of body wt.day) Cat, Qer, or Res in water [2.856 mg/(kg of body wt.day) for Cat and 0.1428 mg/(kg of body wt.dday) for Qer and Res], mimicking a moderate consumption of alcohol-free red wine (equivalent to that supplied by the consumption of about two glasses of red wine per meal for a 70 kg human), or water as control. Plasma cholesterol concentration was lower in groups that consumed phenolics than in controls. The increase in plasma apolipoprotein (Apo) A1 concentration was mainly due to Cat (26%) and Qer (22%) and to a lesser extent, but nonsignificantly, Res (19%). Apo-B was not affected. Plasma antioxidant capacity was not improved, and there was no sparing effect on plasma vitamins A and E. Plasma iron and copper concentrations were not modified nor were liver super oxide dismutase and catalase activities. A sparing effect of Qer on liver glutathione peroxidase activity appeared, whereas Cat and Res exhibited a smaller effect. Aortic fatty streak area was significantly reduced in the groups receiving Cat (84%) or Qer (80%) or Res (76%) in comparison with the controls. These findings demonstrate that catechin, quercetin, and resveratrol at nutritional doses prevent the development of atherosclerosis through several indirect mechanisms. Topics: Animals; Aortic Diseases; Arteriosclerosis; Catechin; Cricetinae; Disease Models, Animal; Hypercholesterolemia; Male; Mesocricetus; Quercetin; Resveratrol; Stilbenes; Wine | 2005 |
Effects of trans-resveratrol from Polygonum cuspidatum on bone loss using the ovariectomized rat model.
trans-Resveratrol (resveratrol) has been shown in several studies to significantly modulate biomarkers of bone metabolism. But, there is no direct evidence supporting its inhibitory effect towards bone loss. In the present study, effects of resveratrol on bone mineral density (BMD) and bone calcium content (BCC) were examined in the ovariectomized (OVX) rat model. Female Wistar rats were divided into four groups: SHAM group (sham-operated), OVX group (OVX control), OVX + ALD group (OVX and treated with 1.0 mg/kg of body weight of alendronate sodium), and OVX + RES group (OVX and treated with 0.7 mg/kg of body weight of resveratrol). Tested materials were given by gavage for 12 weeks after ovariectomy. Results showed that rats in the OVX, OVX + ALD, and OVX + RES groups had significantly higher body weights and feed efficiency than those in the SHAM group (P < .01). The OVX group had significantly lower femoral epiphysis BMD than the SHAM group, and epiphysis BMD in the OVX + ALD and OVX + RES groups was significantly greater than that in the OVX group (P < .05). However, the femoral midpoint BMD was not significantly different among the four groups. Additionally, animals in the OVX group had significantly lower BCC compared with the SHAM group, while the BCC of the OVX + ALD and OVX + RES groups was significantly higher than that of the OVX group (P < .05). These results indicated that resveratrol could increase epiphysis BMD and inhibit the decrease of femur BCC in OVX rats, suggesting that it could play a role in protecting against bone loss induced by estrogen deficiency. Topics: Absorptiometry, Photon; Alendronate; Analysis of Variance; Animals; Bone and Bones; Bone Density; Calcium; Disease Models, Animal; Fallopia japonica; Female; Femur; Osteoporosis; Ovariectomy; Random Allocation; Rats; Rats, Wistar; Resveratrol; Stilbenes; Weight Gain | 2005 |
Effect of resveratrol in experimental osteoarthritis in rabbits.
Resveratrol (trans-3,4',5-trihydroxystilbene) is a phytoalexin found in high concentration in the skins of grapes and red wines which has been shown to have antiinflammatory, anticancerogen and antioxidant properties. Resveratrol is a potent and specific inhibitor of nuclear factor kappa B (NF-kappaB). Resveratrol also inhibits COX-2 gene expression and enzyme activity. We aimed to determine the in vivo effects of intra-articular injections of resveratrol on cartilage and synovium in an experimental osteoarthritis (OA) model in rabbits.. As OA model, rabbits underwent unilateral anterior cruciate ligament transection (ACLT). Five weeks after test group was injected with 10 microMol/kg resveratrol in dimethylsulphoxide (DMSO) in the knees once daily for two weeks and as the control group at the same time DMSO was injected into the knees. All rabbits were killed one week after the last injection. Cartilage tissue and synovium were evaluated with a histological scoring system.. Histological evaluation of cartilage tissue by H&E staining revealed a significantly reduced average cartilage tissue destruction score of 1.7 in the resveratrol group versus 2.8 in the control group (p = 0.016). Loss of matrix proteoglycan content in cartilage was also much lower, as determined by safranin O staining. Scores of synovial inflammation didn't show difference between groups (1.3 vs 2.2; p = 0.057).. A characteristic parameter in arthritis is the progressive loss of articular cartilage. This study suggests that intraarticular injections of resveratrol starting at the onset of disease may protect cartilage against the development of experimentally induced OA. Topics: Animals; Cartilage; Disease Models, Animal; Inflammation; Osteoarthritis; Rabbits; Resveratrol; Stilbenes | 2005 |
[Resveratrol rescues mutant polyglutamine cytotoxicity in nematode and mammalian neurons].
Topics: Animals; Disease Models, Animal; Glutamine; Huntington Disease; Mammals; Mutation; Nematoda; Peptides; Resveratrol; Sirtuins; Stilbenes | 2005 |
Protective effect of resveratrol against renal oxidative stress in cholestasis.
This experimental study was designed to evaluate histological changes of the kidney and renal tissue levels of malondialdehyde (MDA), reduced glutathione (GSH), and nitric oxide (NO) and the effect of resveratrol on these metabolites after bile duct ligation in rats.. Secondary biliary cirrhosis was induced by bile duct ligation for 28 days. Swiss albino rats were divided into three groups. Group 1: Sham (n=7), Group 2: Bile duct ligation (n=7), Group 3: Bile duct ligation plus resveratrol (n=7). Bile duct ligation (BDL) plus resveratrol group received 10 mgr/kg dose of resveratrol intraperitoneally daily throughout 28 days. Kidney tissues were harvested to determine the tissue levels of MDA, GSH, and NO activity. Liver and kidney tissues were removed for light microscopic evaluation.. Cholestasis was determined by biochemical and pathologic examination. In the resveratrol-treated rats, levels of MDA were significantly lower than those of the BDL group (p < 0.04). The levels of GSH in the resveratrol-treated rats were significantly higher than those in the BDL group (p < 0.01). The levels of NO in the resveratrol group were significantly lower than those in the BDL group (p < 0.01).. The present study demonstrates that intraperitoneal administration of resveratrol in bile duct ligated rats maintains antioxidant defenses and reduces kidney oxidative damage. This effect of resveratrol may be useful in the preservation of renal oxidative stress in cholestasis. Topics: Animals; Antioxidants; Biopsy, Needle; Cholestasis; Disease Models, Animal; Female; Immunohistochemistry; Injections, Intraperitoneal; Kidney Diseases; Ligation; Male; Oxidative Stress; Primary Prevention; Probability; Random Allocation; Rats; Rats, Inbred Strains; Resveratrol; Risk Factors; Sensitivity and Specificity; Statistics, Nonparametric; Stilbenes; Survival Rate | 2005 |
Role of nitric oxide in resveratrol-induced renal protective effects of ischemic preconditioning.
Resveratrol, a natural antioxidant and polyphenol found in red wine and grapes, has been found to pharmacologically precondition the heart through upregulation of nitric oxide (NO). This study was designed to explore the involvement of NO in the renoprotective effect of resveratrol in renal ischemic preconditioning in rat kidney.. Ischemic preconditioning was induced by three cycles 2-minutes of ischemia followed by 5 minutes of reperfusion before 45 minutes of prolonged ischemia. Resveratrol was given 1 hour before the surgical procedures.. Ischemic preconditioning and resveratrol treatment significantly improved the renal dysfunction, decrease in total NO levels, and oxidative stress induced by 45 minutes of ischemia followed by 24 hours of reperfusion. Histopatholgic examination of the kidneys of ischemic/reperfusion rats revealed severe renal damage, which was attenuated in both preconditioned and resveratrol-treated animals. Preconditioning and resveratrol administration led to a marked increase in NO levels in kidney. Renoprotective effects of resveratrol were abolished when animals were pretreated with NG-nitro-L-arginine methyl ester, a nonspecific NO synthase inhibitor.. These findings demonstrate an important contributory role of NO in the protection afforded by resveratrol in renal ischemic preconditioning.. It is now well established that brief periods of ischemia followed by reperfusion render a variety of tissues tolerant to subsequent ischemia/reperfusion-induced injury. This phenomenon, referred to as ischemic preconditioning, was first demonstrated in the dog myocardium. The potential for clinical application of such a powerful protective phenomenon has generated enormous interest in identifying the underlying intracellular signaling pathways, with the ultimate aim of pharmacologically exploiting these mechanisms to develop therapeutic strategies that can enhance tolerance to ischemia/reperfusion injury in patients. This study explored the possible involvement of nitric oxide in renal ischemic preconditioning. Topics: Angiogenesis Inhibitors; Animals; Antioxidants; Biomarkers; Blood Urea Nitrogen; Creatinine; Disease Models, Animal; Enzyme Inhibitors; Ischemic Preconditioning; Kidney; Kidney Diseases; NG-Nitroarginine Methyl Ester; Nitric Oxide; Oxidative Stress; Rats; Rats, Wistar; Resveratrol; Stilbenes | 2005 |
Effect of resveratrol on peritoneal macrophages in rats with severe acute pancreatitis.
The literature on resveratrol in severe acute pancreatitis (SAP) is limited though it has been widely studied in infections and trauma. The aim of this study was to investigate the inhibitory effect of resveratrol on inflammatory responses in a rat model of SAP.. Male Sprague-Dawley (SD) rats were randomly divided into 3 groups: SAP group, resveratrol group and control group. 4.0% sodium taurocholate was injected into the pancreatic duct to induce SAP. In the resveratrol group, resveratrol (10 mg/kg) was injected through penal vein 5 min after SAP was induced. The peritoneal macrophages of the rats were collected 3, 6 and 12 h after stimulus and then incubated for 24 h. The expression of nuclear factor kappa B (NF-kappaB) and inducible nitric oxide synthase (iNOS) in peritoneal macrophages was measured. The levels of tumor necrosis factor alpha (TNF-alpha), interleukin-1 (IL-1) and nitric oxide (NO) in culture medium of peritoneal macrophages and serum of rats were evaluated.. Histological examination of pancreas indicated that the damage in the SAP group was more severe than that in the resveratrol group. The expression of NF-kappaB and iNOS in peritoneal macrophages was significantly higher in the SAP group than in the resveratrol group. The concentrations of TNF-alpha, IL-1 and NO in culture medium and serum were significantly elevated in the SAP group when compared with the resveratrol group.. The inhibiting effect on the inflammatory response and the decreased expression of TNF-alpha, IL-1 and NO in peritoneal macrophages suggest resveratrol as a novel anti-inflammatory agent for reducing the severity of SAP. Topics: Acute Disease; Animals; Anti-Inflammatory Agents, Non-Steroidal; Culture Media; Disease Models, Animal; Interleukin-1; Macrophages, Peritoneal; Male; NF-kappa B; Nitric Oxide; Nitric Oxide Synthase; Pancreatitis; Random Allocation; Rats; Rats, Sprague-Dawley; Resveratrol; Stilbenes; Systemic Inflammatory Response Syndrome; Time Factors; Tumor Necrosis Factor-alpha | 2005 |
Resveratrol suppresses the angiogenesis and tumor growth of gliomas in rats.
We wanted to investigate the antitumor effects and effect on angiogenesis of resveratrol in rat RT-2 gliomas.. RT-2 glioma cells were treated with resveratrol, and then cytotoxicity was assayed, apoptosis was measured by flow-activated cell sorter flow cytometry, and expression of vascular endothelial growth factor was measured by reverse transcription-PCR. Tumor size, animal survival time, and survival rate were followed in resveratrol-treated rats with s.c. or intracerebral gliomas. Furthermore, in vitro proliferation was assayed to explore the effect of resveratrol on the proliferation of ECV304 human umbilical vein endothelial cells. Expression of CD31 in resveratrol-treated gliomas was followed immunohistochemically to study the effect of resveratrol on the glioma-induced angiogenesis.. Resveratrol was demonstrated to exert cytotoxic effects and induce glioma cell apoptosis in a concentration- and time-dependent manner (P < 0.05). Resveratrol (40 mg/kg/day) exerted significant antitumor effects on s.c. tumors, including slower tumor growth rate, longer animal survival time, and higher animal survival rate (P < 0.05). In contrast, resveratrol affected intracerebral tumors at only an increased dose (100 mg/kg/day), prolonging animal survival (P < 0.05) without affecting survival rate. The expression of vascular endothelial growth factor in the glioma cells and the proliferation of ECV304 cells were inhibited by resveratrol in a concentration-dependent manner. Immunohistochemical analyses showed that the s.c. gliomas from resveratrol-treated rats had fewer microvessel densities than did control rats (P < 0.01).. Resveratrol caused significant glioma cell cytotoxicity and apoptosis, exerted antitumor effects on the s.c. and intracerebral gliomas, and inhibited angiogenesis in s.c. gliomas. Thus, resveratrol might be considered a possible treatment strategy for gliomas. Topics: Angiogenesis Inhibitors; Animals; Apoptosis; Cell Division; Cell Line; Cell Line, Tumor; Disease Models, Animal; Endothelium, Vascular; Flow Cytometry; Glioma; Kinetics; Neovascularization, Pathologic; Rats; Resveratrol; Stilbenes; Umbilical Veins | 2004 |
Oxyresveratrol (trans-2,3',4,5'-tetrahydroxystilbene) is neuroprotective and inhibits the apoptotic cell death in transient cerebral ischemia.
Oxidative stress is one of the major pathological factors in the cascade that leads to cell death in cerebral ischemia. Here, we investigated the neuroprotective effect of a naturally occurring antioxidant, oxyresveratrol, to reduce brain injury after cerebral stroke. We used the transient rat middle cerebral artery occlusion (MCAO) model of brain ischemia to induce a defined brain infarction. Oxyresveratrol was given twice intraperitoneally: immediately after occlusion and at the time of reperfusion. Oxyresveratrol (10 or 20 mg/kg) significantly reduced the brain infarct volume by approximately 54% and 63%, respectively, when compared to vehicle-treated MCAO rats. Also, the neurological deficits as assessed by different scoring methods improved in oxyresveratrol-treated MCAO rats. Histological analysis of apoptotic markers in the ischemic brain area revealed that oxyresveratrol treatment diminished cytochrome c release and decreased caspase-3 activation in MCAO rats. Also, staining for apoptotic DNA showed that the number of apoptotic nuclei in ischemic brain was reduced after oxyresveratrol treatment as compared to the vehicle-treated MCAO rats. This dose-dependent neuroprotective effect of oxyresveratrol in an in vivo stroke model demonstrates that this drug may prove to be beneficial for a therapeutic strategy to limit brain injury in acute brain ischemia. Topics: Analysis of Variance; Animals; Brain Ischemia; Cell Death; Cerebral Cortex; Cerebral Infarction; Cytochromes c; Disease Models, Animal; DNA Fragmentation; Dose-Response Relationship, Drug; Epoprostenol; Immunohistochemistry; Infarction, Middle Cerebral Artery; Ischemic Attack, Transient; Male; Microtubule-Associated Proteins; Mitochondria; Neurologic Examination; Neurons; Neuroprotective Agents; Phosphopyruvate Hydratase; Plant Extracts; Rats; Rats, Wistar; Stilbenes; Time Factors | 2004 |
Targeting prion amyloid deposits in vivo.
The diagnosis of prion diseases in humans is challenging due to a lack of specific and sensitive non-invasive tests. Many forms of human prion disease including variant Creutzfeldt-Jakob disease (vCJD), Gerstmann-Sträussler-Scheinker (GSS) syndrome, and 10% of sporadic CJD cases are associated with amyloid deposition. Several positron emission tomography (PET) ligands have recently been developed to directly image beta-amyloid associated with Alzheimer disease. One of them, methoxy-X04, is a fluorescent derivative of Congo red with high binding affinity toward amyloid fibrils and good blood-brain barrier permeability. Using methoxy-X04, we investigated whether amyloid-targeting ligands can be also employed for direct imaging of amyloid deposits associated with some prion diseases. Such a method could potentially become a novel diagnostic approach for these conditions. Studies were performed on MB mice infected with the 87V mouse-adapted scrapie strain. Labeling of PrP amyloid plaques in brains of presymptomatic and symptomatic mice was demonstrated using in vivo transcranial two-photon microscopy after systemic administration of methoxy-X04. During real-time imaging, PrP amyloid deposits could be clearly distinguished 15 min after intravenous administration of methoxy-X04. The ligand showed rapid clearance from brain areas that did not contain amyloid deposits. PrP amyloid deposits could also be detected by direct application of methoxy-X04 on cerebellar sections from GSS patients. These results suggest that methoxy-X04 or similar derivatives could be used as PET imaging agents to improve the diagnosis of human prion diseases associated with amyloid deposition. Topics: Alkenes; Amyloid beta-Peptides; Animals; Benzene Derivatives; Brain; Disease Models, Animal; Humans; Metabolic Clearance Rate; Mice; Plaque, Amyloid; Predictive Value of Tests; Prion Diseases; Reproducibility of Results; Scrapie; Stilbenes; Tomography, Emission-Computed | 2004 |
Cardioprotection with resveratrol pretreatment: improved beneficial effects over standard treatment in rat hearts after global ischemia.
The major objective of the present study is to evaluate the potential role of resveratrol (RVT), a natural antioxidant found in grapes and red wine, in protecting the myocardium from the deleterious effects of ischemia-reperfusion (I/R) injury using isolated rat hearts.. Langendorff perfused isolated rat hearts were subjected to 60 min of global ischemia following 60 min of reperfusion. RVT was given according to chronic pretreatment and/or acute treatment protocols. Animals received RVT at the dose of 20 mg/kg via an intragastric tube for 14 days before the experiment and/or at the infusion concentration of 10 microM for 30 min before the onset of ischemia. The myocardial postischemic recovery was compared using hemodynamic data (peak systolic pressure, end diastolic pressure, and +dP/dtmax), coronary flow, biochemical parameters (LDH, CK-MB, cTnI, myoglobin) from coronary effluent, and oxidative stress markers (MDA, GSH, carbonyl) from heart tissue homogenates in each group.. RVT pretreatment and treatment protocols have provided increased preservation in myocardial recovery following global ischemia compared to a non-treated group. Furthermore, the ischemic damage of myocardium was significantly lower in chronic pretreated rats than in the acutely treated group. In contrast, no significant difference was observed in cardioprotective effects of RVT between the only pretreated group, and both the pretreated and treated group throughout reperfusion.. The findings from this study indicate that RVT has potent cardioprotective properties against I/R injury in rat hearts. The study also highlighted that the administration of RVT, as pretreatment, has amplified the beneficial effects over the standard treatment. Topics: Analysis of Variance; Animals; Coronary Circulation; Disease Models, Animal; Hemodynamics; Ischemic Preconditioning, Myocardial; Male; Myocardial Ischemia; Myocardial Reperfusion; Myocardial Reperfusion Injury; Probability; Random Allocation; Rats; Rats, Sprague-Dawley; Resveratrol; Sensitivity and Specificity; Stilbenes; Survival Rate | 2004 |
Combretastatin A4 phosphate has tumor antivascular activity in rat and man as demonstrated by dynamic magnetic resonance imaging.
Combretastatin A4 phosphate (CA4P) is a novel vascular targeting agent. Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) studies were performed to examine changes in parameters related to blood flow and vascular permeability in tumor and normal tissue after CA4P treatment.. Changes in kinetic DCE-MRI parameters (transfer constant [Ktrans] and area under contrast medium-time curve [AUC]) over 24 hours after treatment with CA4P were measured in 18 patients in a phase I trial and compared with those obtained in the rat P22 carcinosarcoma model, using the same imaging technique. Rats were treated with 30 mg/kg of CA4P; patients received escalating doses from 5 to 114 mg/m2.. A similar pattern and time course of change in tumor and normal tissue parameters was seen in rats and humans. Rat tumor Ktrans was reduced by 64% 6 hours after treatment with CA4P (30 mg/kg). No significant reductions in kidney or muscle parameters were seen. Significant reductions were seen in tumor Ktrans in six of 16 patients treated at >or= 52 mg/m2, with a significant group mean reduction of 37% and 29% at 4 and 24 hours, respectively, after treatment. The mean reduction in tumor initial area under the gadolinium-diethylenetriamine pentaacetic acid concentration-time curve (AUC) was 33% and 18%, respectively, at these times. No reduction was seen in muscle Ktrans or in kidney AUC in group analysis of the clinical data.. CA4P acutely reduces Ktrans in human as well as rat tumors at well-tolerated doses, with no significant changes in kidney or muscle, providing proof of principle that this drug has tumor antivascular activity in rats and humans. Topics: Animals; Antineoplastic Agents, Phytogenic; Area Under Curve; Contrast Media; Disease Models, Animal; Gadolinium DTPA; Humans; Infusion Pumps; Magnetic Resonance Imaging; Male; Neoplasms; Neoplasms, Experimental; Rats; Stilbenes; Treatment Outcome | 2003 |
Combretastatin A-4 phosphate suppresses development and induces regression of choroidal neovascularization.
Combretastatin A-4 (CA-4) is a naturally occurring agent that binds tubulin and causes necrosis and shrinkage of tumors by damaging their blood vessels. In this study the effect of a CA-4 prodrug, combretastatin A-4-phosphate (CA-4-P), was tested in two models of ocular neovascularization.. The effect of CA-4-P was quantitatively assessed in transgenic mice with overexpression of vascular endothelial growth factor in the retina (rho/VEGF mice) and mice with choroidal neovascularization (CNV) due to laser-induced rupture of Bruch's membrane.. In rho/VEGF mice, daily intraperitoneal injections of 4.0 mg/kg CA-4-P starting at postnatal day (P)7, the time of onset of transgene expression, resulted in a significant reduction in the number of neovascular lesions and total area of neovascularization per retina at P21, compared with vehicle-injected mice. In mice with laser-induced rupture of Bruch's membrane, daily intraperitoneal injections of 75 or 100 mg/kg CA-4-P resulted in a significant reduction in the area of CNV at rupture sites compared with vehicle-injected mice. In mice with established CNV, daily intraperitoneal injections of 100 mg/kg CA-4-P for 1 week resulted in a significant reduction in CNV area at rupture sites compared with the baseline area before treatment or the area of CNV in vehicle-treated mice.. These data indicate that CA-4-P suppresses the development of VEGF-induced neovascularization in the retina and both blocks development and promotes regression of CNV. Therefore, CA-4-P shows potential for both prevention and treatment of ocular neovascularization. Topics: Animals; Antineoplastic Agents, Phytogenic; Choroidal Neovascularization; Disease Models, Animal; Endothelial Growth Factors; Female; Intercellular Signaling Peptides and Proteins; Lymphokines; Mice; Mice, Inbred C57BL; Mice, Transgenic; Prodrugs; Remission Induction; Rhodopsin; Stilbenes; Vascular Endothelial Growth Factor A; Vascular Endothelial Growth Factors | 2003 |
Suppression of N-nitrosomethylbenzylamine (NMBA)-induced esophageal tumorigenesis in F344 rats by resveratrol.
Resveratrol (3,5,4'-trihydroxy-trans-stilbene) is a natural product occurring in grapes and various other plants with medicinal properties associated with reduced cardiovascular disease and reduced cancer risk. To evaluate the possibility and potential mechanism(s) of which resveratrol inhibits N-nitrosomethylbenzylamine (NMBA)-induced rat esophageal tumorigenesis, 96 F344 male rats were divided into 10 groups and resveratrol (1 and 2 mg/kg) was administered orally or intraperitoneally (i.p.). In the groups in which resveratrol was administered at 2 mg/kg (orally, for 16 weeks), 1 and 2 mg/kg (i.p., for 16 weeks) and 1 mg/kg (i.p., for 20 weeks), the number of NMBA-induced esophageal tumors per rat was significantly reduced to 78, 62, 54 and 48, respectively (P < 0.05), and the size of maximum tumors in each group with resveratrol treatment was also significantly smaller than that in NMBA alone group (P < 0.05). Although the pathological examination did not indicate significantly decreased incidence of carcinomas by administering resveratrol, the tendency of carcinogensis suppression was observed (P = 0.177). Semi-quantitative RT-PCR and ELISA analysis demonstrated that following NMBA treatment, the expression of COX-1 mRNA was strongly present in tumor tissues, while weakly present in non-tissues; the expression of COX-2 mRNA was induced in both tumor and non-tumor tissues. The production of prostaglandin E(2) (PGE(2)) increased approximately 6-fold, compared with the normal esophageal mucosa. The higher expression of COX-1, the up-regulated COX-2 expression and the increased levels of PGE(2) synthesis were all significantly decreased by administering resveratrol. Our study suggests that resveratrol suppressed NMBA-induced rat esophageal tumorigenesis by targeting COXs and PGE(2), and therefore may be a promising natural anti-carcinogenesis agent for the prevention and treatment of human esophageal cancer. Topics: Animals; Carcinogenicity Tests; Cyclooxygenase 1; Cyclooxygenase 2; Dimethylnitrosamine; Dinoprostone; Disease Models, Animal; Esophageal Neoplasms; Isoenzymes; Male; Membrane Proteins; Prostaglandin-Endoperoxide Synthases; Rats; Rats, Inbred F344; Resveratrol; RNA, Messenger; Stilbenes; Transcription, Genetic | 2002 |
Imaging Abeta plaques in living transgenic mice with multiphoton microscopy and methoxy-X04, a systemically administered Congo red derivative.
The identification of amyloid deposits in living Alzheimer disease (AD) patients is important for both early diagnosis and for monitoring the efficacy of newly developed anti-amyloid therapies. Methoxy-X04 is a derivative of Congo red and Chrysamine-G that contains no acid groups and is therefore smaller and much more lipophilic than Congo red or Chrysamine-G. Methoxy-X04 retains in vitro binding affinity for amyloid beta (Abeta) fibrils (Ki = 26.8 nM) very similar to that of Chrysamine-G (Ki = 25.3 nM). Methoxy-X04 is fluorescent and stains plaques, tangles, and cerebrovascular amyloid in postmortem sections of AD brain with good specificity. Using multiphoton microscopy to obtain high-resolution (1 microm) fluorescent images from the brains of living PSI/APP mice, individual plaques could be distinguished within 30 to 60 min after a single i.v. injection of 5 to 10 mg/kg methoxy-X04. A single i.p. injection of 10 mg/kg methoxy-X04 also produced high contrast images of plaques and cerebrovascular amyloid in PSI/APP mouse brain. Complementary quantitative studies using tracer doses of carbon- 11-labeled methoxy-X04 show that it enters rat brain in amounts that suggest it is a viable candidate as a positron emission tomography (PET) amyloid-imaging agent for in vivo human studies. Topics: Alkenes; Alzheimer Disease; Amyloid beta-Peptides; Animals; Benzene; Benzene Derivatives; Binding, Competitive; Blood-Brain Barrier; Carbon Radioisotopes; Coloring Agents; Congo Red; Disease Models, Animal; Imaging, Three-Dimensional; Male; Mice; Mice, Transgenic; Microscopy; Peptide Fragments; Plaque, Amyloid; Rats; Rats, Sprague-Dawley; Sensitivity and Specificity; Stilbenes | 2002 |
Chronic treatment with trans resveratrol prevents intracerebroventricular streptozotocin induced cognitive impairment and oxidative stress in rats.
We have recently shown free radical generation is associated with cognitive impairment in intracerebroventricular (ICV) streptozotocin (STZ) model of sporadic dementia of Alzheimer's type in rats. Trans resveratrol is a polyphenolic compound and is known to have antioxidant activity. In the present study, the effect of trans resveratrol was investigated on ICV STZ induced cognitive impairment and oxidative stress in rats. Adult male Wistar rats were injected with ICV STZ bilaterally, on day 1 and day 3. The learning and memory behavior was assessed using passive avoidance paradigms, elevated plus maze and the closed field activity test while the parameters of oxidative stress assessed were malondialdehyde [MDA] and glutathione. The rats were treated with trans resveratrol chronically at doses of 10 and 20 mg/kg,i.p. for 21 days starting from day 1 of STZ injection. Trans resveratrol treatment significantly prevented ICV STZ induced cognitive impairment. There was a rise in brain glutathione and an insignificant increase in brain MDA in trans resveratrol treated ICV STZ rats as compared to significantly elevated brain MDA levels in the vehicle treated ICV STZ animals. The study demonstrates the effectiveness of trans resveratrol in preventing the cognitive deficits as well as the oxidative stress caused by ICV STZ in rats and it's potential in the treatment of neurodegenerative diseases such as Alzheimer's disease. Topics: Animals; Antioxidants; Behavior, Animal; Cognition Disorders; Disease Models, Animal; Dose-Response Relationship, Drug; Exploratory Behavior; Injections, Intraventricular; Learning; Male; Oxidative Stress; Rats; Rats, Wistar; Resveratrol; Stilbenes; Streptozocin | 2002 |
Constituents of the bark and twigs of Artocarpus dadah with cyclooxygenase inhibitory activity.
Fractionation of an ethyl acetate-soluble extract of the bark of Artocarpus dadah has led to the isolation of three new prenylated stilbenoid derivatives, 3-(gamma,gamma-dimethylallyl)resveratrol (1), 5-(gamma,gamma-dimethylallyl)oxyresveratrol (2), 3-(2,3-dihydroxy-3-methylbutyl)resveratrol (3), and a new benzofuran derivative, 3-(gamma,gamma-dimethylpropenyl)moracin M (4), along with six known compounds, oxyresveratrol, (+)-catechin, afzelechin-3-O-alpha-L-rhamnopyranoside, (-)-epiafzelechin, dihydromorin, and epiafzelechin-(4beta-->8)-epicatechin. From an ethyl acetate-soluble extract of the twigs of the same plant were isolated compound 4 and two new neolignan derivatives, dadahols A (5) and B (6), as well as 10 known compounds, oxyresveratrol, (+)-catechin, afzelechin-3-O-alpha-L-rhamnopyranoside, resveratrol, steppogenin, moracin M, isogemichalcone B, gemichalcone B, norartocarpetin, and engeletin. The structures of compounds 1-6 were determined using spectroscopic and chemical methods. Isolates were evaluated for their inhibitory effects against both cyclooxygenase-1 (COX-1) and -2 (COX-2) and in a mouse mammary organ culture assay. Topics: 9,10-Dimethyl-1,2-benzanthracene; Acetylation; Animals; Benzofurans; Breast; Catechin; Cell Transformation, Neoplastic; Chromatography, High Pressure Liquid; Chromatography, Thin Layer; Cyclooxygenase 1; Cyclooxygenase 2; Cyclooxygenase 2 Inhibitors; Cyclooxygenase Inhibitors; Disease Models, Animal; Indonesia; Isoenzymes; Membrane Proteins; Methylation; Mice; Mice, Inbred BALB C; Molecular Structure; Moraceae; Nuclear Magnetic Resonance, Biomolecular; Organ Culture Techniques; Plant Bark; Plant Extracts; Plant Shoots; Plants, Medicinal; Prostaglandin-Endoperoxide Synthases; Spectroscopy, Fourier Transform Infrared; Stereoisomerism; Stilbenes | 2002 |
The protective effect of resveratrols on ischaemia-reperfusion injuries of rat hearts is correlated with antioxidant efficacy.
1. Dietary antioxidants are thought to be beneficial in reducing the incidence of coronary heart disease. In this study, we compared resveratrol and analogues on their antioxidation and free radical scavenging activities to their protective effects on ischaemia-reperfusion induced injuries of rat hearts. 2. Astringinin (3,3',4',5-tetrahydroxystilbene) was shown to be a more potent inhibitor than other analogues against Cu(2+)-induced LDL (low-density lipoprotein) oxidation, as measured by the formation of conjugated diene and TBARS (thiobarbituric acid-reactive substance) and by the electrophoretic mobility of the oxidized LDL. 3. Resveratrol (trans-3,4',5-trihydroxystilbene) and astringinin scavenged the stable free radical DPPH (1,1-diphenyl-2-picryl-hydrazyl) with an IC(0.200) of 7.1 and 4.3 microM, respectively. 4. Astringinin has a superoxide anion scavenging activity about 160 fold more potent than resveratrol. 5. After a 30 min global ischemia followed by 2 h reperfusion, astringinin (10 microM) significantly reduced infarct size, superoxide anion production and increased functional recovery of the coronary flow in Langendorff-perfused rat hearts. 6. The result showed there is a positive correlation between the anti-oxidation and cardioprotective activities among these phenolic compounds. Our finding together with the fact that astringinin is more water-soluble than resveratrol suggest that astringinin could potentially be used as an anti-oxidant and cardioprotective agent in biological systems. Topics: Animals; Biphenyl Compounds; Disease Models, Animal; Free Radical Scavengers; Humans; Lipoproteins, LDL; Male; Myocardial Ischemia; Oxidation-Reduction; Picrates; Protective Agents; Rats; Rats, Inbred WKY; Reperfusion Injury; Resveratrol; Stilbenes; Superoxides | 2002 |
Protective effect of resveratrol against pentylenetetrazole-induced seizures and its modulation by an adenosinergic system.
The effect of trans-resveratrol (resveratrol), a polyphenolic compound with potent antioxidant activity, was investigated against pentylenetetrazole (PTZ) induced seizures in rats. Resveratrol (20, 40, and 80 mg/kg i.p.) administered 20 min prior to convulsive challenge with PTZ (60 mg/kg i.p.) dose dependently reduced the percent incidence of generalized tonic-clonic convulsions. Resveratrol (40 mg/kg) also potentiated the effect of sodium valproate (150 mg/kg) and diazepam (2 mg/kg) against PTZ-induced seizures. Since adenosine, an endogenous anticonvulsant, has been demonstrated to modulate the action of various antiepileptics, experiments were also carried out to determine whether an adenosinergic mechanism is involved in the anticonvulsant action of resveratrol. When a subanticonvulsant dose of adenosine (500 mg/kg) was administered together with resveratrol, a significant reduction in the percent incidence of generalized tonic-clonic convulsions was observed. Moreover, the nonspecific adenosine receptor antagonist theophylline (50 mg/kg i.p.) significantly reversed the resveratrol-induced protection, whereas the specific adenosine A2 receptor antagonist 3,7-dimethyl-1-propargylxanthine (1 mg/kg i.p.) could not reverse the resveratrol-induced protection. The findings of the present study suggest an antiepileptic potential of resveratrol and that an adenosinergic mechanism may play a role in its anticonvulsant activity. Topics: Adenosine; Animals; Anticonvulsants; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Synergism; Injections, Intraperitoneal; Male; Pentylenetetrazole; Purinergic P1 Receptor Antagonists; Rats; Rats, Wistar; Resveratrol; Seizures; Stilbenes; Theophylline | 2002 |
Protective effect of resveratrol against oxidative stress in middle cerebral artery occlusion model of stroke in rats.
Free radicals have been implicated in neuronal injury during ischemia reperfusion in stroke. Trans resveratrol, a potent antioxidant, polyphenolic compound found in grapes and wines has recently been shown to have neuroprotective activity against oxidative stress in in vitro studies. In the present study the effect of chronic treatment of trans resveratrol was evaluated in focal ischemia induced by middle cerebral artery [MCA] occlusion in rats. Male Wistar rats were pretreated with trans resveratrol 20 mg/kg i.p. for 21 days and were subjected to focal ischemia by occlusion of MCA using intraluminal thread. After two hours of MCA occlusion reperfusion was allowed by retracting the thread. Animals were assessed for motor performance after 24 hours and subsequently rats were sacrificed for estimation of markers of oxidative stress [malondialdehyde [MDA] and reduced glutathione] and for evaluation of volume of infarction. Control group received vehicle and similar protocol was followed. Significant motor impairment, with elevated levels of MDA and reduced glutathione was observed in the vehicle treated MCA occluded rats. Treatment with trans resveratrol prevented motor impairment, rise in levels of MDA and reduced glutathione and also significantly decreased the volume of infarct as compared to control. The study provides first evidence of effectiveness of trans resveratrol in focal ischemia most probably by virtue of its antioxidant property. Topics: Animals; Brain; Disease Models, Animal; Drug Administration Schedule; Free Radicals; Hand Strength; Ischemic Attack, Transient; Male; Malondialdehyde; Middle Cerebral Artery; Motor Activity; Muscle, Skeletal; Oxidative Stress; Platelet Aggregation Inhibitors; Rats; Rats, Wistar; Reference Values; Reperfusion Injury; Resveratrol; Stilbenes; Stroke; Time Factors | 2002 |
Improvement of Clostridium tumour targeting vectors evaluated in rat rhabdomyosarcomas.
Previous studies have demonstrated the feasibility of using apathogenic clostridia as a promising strategy for hypoxia-specific tumour targeting. The present study shows that the use of the vascular targeting compound combretastatin A-4 phosphate could significantly (P<0.001) increase the number of Clostridium vegetative cells in rat rhabdomyosarcomas with sizes between 0.2 cm(2) and 3 cm(2). Furthermore, this study showed that administration of metronidazole for a 9-day period was sufficient to eliminate systemically administered Clostridium from the tumour. Moreover, previous Clostridium spore administration did not effect tumour colonisation, regardless of the immune response status of the host. Topics: Animals; Anti-Bacterial Agents; Anti-Infective Agents; Antibodies, Bacterial; Clostridium; Clostridium Infections; Colony Count, Microbial; Disease Models, Animal; Genetic Therapy; Genetic Vectors; Humans; Metronidazole; Rats; Rhabdomyosarcoma; Spores, Bacterial; Stilbenes | 2001 |
Combretastatin A4 prodrug study of effect on the growth and the microvasculature of colorectal liver metastases in a murine model.
Combretastatin A4P (CA4P) is a prodrug that, in active form, binds to tubulin microtubules of capillary endothelial cells. Studies to date indicate it has significant activity as a specific tumor vascular targeting agent. The goals were to assess the effects of CA4P on tumor growth and microvasculature of colorectal liver metastases in the mouse model, using stereological and histological methods to measure tumor growth, and vascular corrosion casting and laser doppler flowmetry to assess effect on the microvasculature. Continuous s.c. infusion of CA4P produced a major reduction in tumor growth. The percentage of the liver occupied by metastases decreased from 20.55 +/- 13.3% in controls to 7.46 +/- 5.99% in treated animals (P = 0.03). Ultrastructural study of tumor microvasculature after a single dose of CA4P revealed marked effects 1 h after treatment. There was loss of patent microvessels at the normal liver-tumor interface. Central microvascular density was reduced, with constriction and tapering of vessels. CA4P appeared to cause no damage to normal liver tissue or vasculature. Tumor blood flow decreased from 37.6 +/- 13.9% in controls to 24.4 +/- 6.1% in tumors >5 mm in diameter, 1 h after treatment with CA4P (P < 0.03). Quantitative histology of tissue at 6 and 24 h after CA4P treatment showed a significant increase in tumor necrosis (48.7 +/- 21% and 55.5 +/- 19% compared with controls, 20.6 +/- 8%; P = 0.01). Continuous infusion with CA4P causes marked reduction in tumor volume. A single dose of CA4P causes major changes of the tumor microvasculature, reduction of tumor blood flow, and increase in tumor necrosis. CA4P has a potential role in the management of patients with liver metastases. Topics: Animals; Antineoplastic Agents, Phytogenic; Cell Division; Colorectal Neoplasms; Disease Models, Animal; Laser-Doppler Flowmetry; Liver Neoplasms; Male; Mice; Mice, Inbred CBA; Neovascularization, Pathologic; Stilbenes | 2001 |
Resveratrol isolated from Polygonum cuspidatum root prevents tumor growth and metastasis to lung and tumor-induced neovascularization in Lewis lung carcinoma-bearing mice.
Resveratrol is a naturally occurring phytoalexine found in medicinal plants. We found that resveratrol, at doses of 2.5 and 10 mg/kg, significantly reduced the tumor volume (42%), tumor weight (44%) and metastasis to the lung (56%) in mice bearing highly metastatic Lewis lung carcinoma (LLC) tumors, but not at a dose of 0.6 mg/kg. Resveratrol did not affect the number of CD4(+), CD8(+) and natural killer (NK)1.1.(+) T cells in the spleen. Therefore, the inhibitory effects of resveratrol on tumor growth and lung metastasis could not be explained by natural killer or cytotoxic T-lymphocyte activation. In addition, resveratrol inhibited DNA synthesis most strongly in LLC cells; its 50% inhibitory concentration (IC(50)) was 6.8 micromol/L. Resveratrol at 100 micromol/L increased apoptosis to 20.6 +/- 1.35% from 12.1 +/- 0.36% (P < 0.05) in LLC cells, and decreased the S phase population to 22.1 +/- 1.03% and 29.2 +/- 0.27% from 35.2 +/- 1.72% (P < 0.05) at concentrations of 50 and 100 micromol/L, respectively. Resveratrol inhibited tumor-induced neovascularization at doses of 2.5 and 10 mg/kg in an in vivo model. Moreover, resveratrol significantly inhibited the formation of capillary-like tube formation from human umbilical vein endothelial cells (HUVEC) at concentrations of 10-100 micromol/L; the degree of the inhibition of capillary-like tube formation by resveratrol was 45.5% at 10 micromol/L, 50.2% at 50 micromol/L and 52.6% at 100 micromol/L. Resveratrol inhibited the binding of vascular endothelial growth factor (VEGF) to HUVEC at concentrations of 10-100 micromol/L, but not at concentrations of 1 and 5 micromol/L. The degree of inhibition of VEGF binding to HUVEC by resveratrol was 16.9% at 10 micromol/L, 53.2% at 50 micromol/L and 47.8% at 100 micromol/L. We suggest that the antitumor and antimetastatic activities of resveratrol might be due to the inhibition of DNA synthesis in LLC cells and the inhibition of LLC-induced neovascularization and tube formation (angiogensis) of HUVEC by resveratrol Topics: Angiogenesis Inhibitors; Animals; Anticarcinogenic Agents; Apoptosis; Body Weight; Carcinoma, Lewis Lung; CD4-CD8 Ratio; Cell Cycle; Disease Models, Animal; DNA; Female; Lung Neoplasms; Mice; Mice, Inbred C57BL; Neoplasm Metastasis; Neovascularization, Pathologic; Organ Size; Polygonaceae; Resveratrol; Spleen; Stilbenes; Thymus Gland; Tumor Cells, Cultured | 2001 |
Inhibitory effect of resveratrol on proteinuria, hypoalbuminemia and hyperlipidemia in nephritic rats.
The effect of resveratrol, a polyphenolic compound present in grapes and other plants, on proteinuria, hypoalbuminemia and hyperlipidemia was studied in rats with glomerulonephritis. The nephritis was induced by an intravenous injection of anti-rat kidney glomerular basement membrane rabbit antiserum. Nephritic rats were given oral intubation of resveratrol (5 mg/day/100 g body weight) for 14 days, while control nephritic rats as well as normal ones were similarly given vehicle alone. By resveratrol treatment, enlargement in liver and kidney due to nephritis induction was significantly reduced, together with partial restoration of nephritis-induced reduction in body weight gain. Both proteinuria and hypoalbuminemia, characteristic symptoms to nephrotic syndrome, were significantly remedied, that is, urinary protein excretion was suppressed and serum albumin concentration was increased by resveratrol treatment. Resveratrol also suppressed significantly hyperlipidemia incident to nephritis, the hypotriglyceridemic action being more prominent than the hypocholesterolemic one. From these results, resveratrol is suggested to be a potent anti-glomerulonephritic food factor capable of suppressing proteinuria, hypoalbuminemia and hyperlipidemia at the same time. Topics: Administration, Oral; Albumins; Animals; Anti-Inflammatory Agents, Non-Steroidal; Basement Membrane; Blood Urea Nitrogen; Body Weight; Cholesterol; Disease Models, Animal; Eating; Glomerulonephritis; Hyperlipidemias; Hypoproteinemia; Kidney; Kidney Glomerulus; Liver; Male; Organ Size; Proteinuria; Rabbits; Rats; Rats, Wistar; Resveratrol; Stilbenes; Triglycerides | 2001 |
Resveratrol inhibits intestinal tumorigenesis and modulates host-defense-related gene expression in an animal model of human familial adenomatous polyposis.
We studied the effect of oral administration of resveratrol, a natural constituent of grapes, on tumorigenesis in Min mice. Min mice are congenic mice genetically predisposed to develop intestinal tumors as a result of a mutation of the Apc gene. Resveratrol (0.01% in the drinking water containing 0.4% ethanol) was administered for seven weeks to Min mice starting at five weeks of age. The control group was fed the same diet and received water containing 0.4% ethanol. Resveratrol prevented the formation of colon tumors and reduced the formation of small intestinal tumors by 70%. Comparison of the expression of 588 genes in the small intestinal mucosa showed that resveratrol downregulated genes that are directly involved in cell cycle progression or cell proliferation (cyclins D1 and D2, DP-1 transcription factor, and Y-box binding protein). In addition, resveratrol upregulated several genes that are involved in the recruitment and activation of immune cells (cytotoxic T lymphocyte Ag-4, leukemia inhibitory factor receptor, and monocyte chemotactic protein 3) and in the inhibition of the carcinogenic process and tumor expansion (tumor susceptibility protein TSG101, transforming growth factor-beta, inhibin-beta A subunit, and desmocollin 2). Our data highlight the complexity of the events associated with intestinal tumorigenesis and the multiplicity of the molecular targets of resveratrol. The high potency and efficacy of resveratrol support its use as a chemopreventive agent in the management of intestinal carcinogenesis. Topics: Adenomatous Polyposis Coli; Animals; Anticarcinogenic Agents; Cell Division; Disease Models, Animal; Gene Expression Regulation; Immunity, Cellular; Intestinal Neoplasms; Male; Mice; Mice, Inbred C57BL; Resveratrol; Stilbenes; Treatment Outcome | 2001 |
Resveratrol attenuates ovariectomy-induced hypertension and bone loss in stroke-prone spontaneously hypertensive rats.
We examined the effect of resveratrol (3,4',5-trihydroxy stilbene), a phenolic compound found in the skins of most grapes, on blood pressure and bone loss in ovariectomized (OVX), stroke-prone spontaneously hypertensive rats (SHRSP). Nineteen-week-old female SHRSP were divided into a sham-ovariectomized (sham) group fed a control diet and two OVX groups fed either a control diet (OVX-Cont) or a diet supplemented with resveratrol (5 mg/kg per d; OVX-Resv). Ovariectomy induced significant increases in systolic blood pressure (SBP). Resveratrol lowered the SBP by 15%) by the third week of administration, and this effect was maintained throughout the study. Resveratrol treatment also significantly enhanced endothelium-dependent vascular relaxation in response to acetylcholine (ACh) in OVX rats. Finally, femur breaking energies measured for the resveratrol-treated (OVX-Resv) group were significantly higher than those of the resveratrol-untreated (OVX-Cont) group. While no significant differences in calcium, magnesium and phosphorus content were found between the femurs of OVX-Cont and OVX-Resv rats, the femur hydroxyproline content in the OVX-Resv group was significantly higher than of the OVX-Cont group. We conclude that, in OVX-SHRSP, resveratrol acts by a similar mechanism to mammalian estrogens, lowering blood pressure by increasing dilatory responses to ACh. The present study also demonstrated that resveratrol was able to prevent ovariectomy-induced decreases in femoral bone strength. Topics: Animals; Antihypertensive Agents; Bone Density; Disease Models, Animal; Female; Femur; Hypertension; Osteoporosis; Ovariectomy; Rats; Rats, Inbred SHR; Resveratrol; Stilbenes | 2000 |
Effect of resveratrol on intimal hyperplasia after endothelial denudation in an experimental rabbit model.
The ability of resveratrol to inhibit vascular intimal thickening was tested in an experimental model in which endothelial denudation was performed in the normal rabbit iliac artery. Resveratrol (2 approximately 4mg/ kg/d) was administered intragastrically for 5 weeks beginning 1 week before denudation. At the higher concentration of resveratrol, the intimal hyperplasia of injured vascular wall was effectively inhibited; the intimal proliferation index also was significantly less than that in the untreated control group (0.28 +/- 0.07 vs 0.41 +/- 0.13, respectively, p<0.01); the relative luminal area increased from 0.38 +/- 0.06 in the untreated control group to 0.53 +/- 0.10 in the resveratrol treatment group (p < 0.001); and the count of smooth muscle cells in the thickened intima was statistically significantly reduced in the high dose resveratrol treatment group than that in the untreated group (1,115 +/- 510 vs 1,796 +/- 963, respectively, p < 0.05). Resveratrol added to the culture media of cultured rabbit vascular smooth muscle cells inhibited DNA synthesis in a dose-dependent manner. These results showing that resveratrol is capable of inhibiting intimal hyperplasia of injured artery raise the possibility that this polyphenol might have clinical potential in prevention and treatment of restenosis after angioplasty. Topics: Animals; Antioxidants; Cattle; Cells, Cultured; Disease Models, Animal; Dose-Response Relationship, Drug; Endothelium, Vascular; Graft Occlusion, Vascular; Hyperplasia; Iliac Artery; Male; Muscle, Smooth, Vascular; Rabbits; Resveratrol; Stilbenes; Tunica Intima | 2000 |
A novel combretastatin A-4 derivative, AC-7700, shows marked antitumor activity against advanced solid tumors and orthotopically transplanted tumors.
AC-7700, a novel combretastatin A-4 derivative, suppresses the growth of solid tumors by inhibiting tumor perfusion. We evaluated the antitumor activity of AC-7700 on solid tumors in two experimental models, an advanced tumor model (murine colon 26 (c26) adenocarcinoma, colon 38 (c38) adenocarcinoma, MethA fibrosarcoma, Sarcoma 180 (S180), Lewis lung carcinoma (3LL), human LS180 adenocarcinoma) and an orthotopically transplanted tumor model (c26), compared with that of cisplatin (CDDP). The maximum tolerable dose (MTD) of CDDP suppressed early-stage c26 and c38 tumor growth when treatment was started after the tumor volume (TV) reached 0.2-0.5 cm3, but it showed reduced activity against the same tumors at an advanced growth stage when TV exceeded 2 cm3. At its MTD, AC-7700 was active against all tumors tested except 3LL in both early and advanced growth stages, reducing the tumor mass and having a curative effect in advanced c38 tumors. AC-7700 was also effective on orthotopically transplanted c26 tumors, showing a comparable activity to that on subcutaneous tumors. Unlike flavon acetic acid, which damages tumor vasculature by inducing endogenous tumor necrosis factor-alpha production, AC-7700 potently suppressed the growth of advanced c26 tumors in athymic as well as euthymic mice. These results suggest that AC-7700 is a novel antivascular agent that may have potent activity against advanced-stage cancer in the clinical setting. Topics: Animals; Antineoplastic Agents; Disease Models, Animal; Drug Screening Assays, Antitumor; Female; Humans; Male; Mice; Mice, Inbred BALB C; Mice, Inbred DBA; Mice, Inbred ICR; Neoplasm Transplantation; Neoplasms, Experimental; Serine; Stilbenes; Survival Analysis; Transplantation, Heterologous; Tumor Cells, Cultured; Tumor Necrosis Factor-alpha | 1999 |
Antitumor effects due to irreversible stoppage of tumor tissue blood flow: evaluation of a novel combretastatin A-4 derivative, AC7700.
The relation between tumor tissue blood flow (tBF) reduction and antitumor effects was investigated. Changes in tBF of normal tissues (liver, kidney cortex, bone marrow and brain cortex) and tumors (Yoshida sarcoma subline, LY80 and Sato lung carcinoma, SLC) due to i.v. administration of AC7700 (1, 3, 10 mg/kg), one of the combretastatin A-4 derivatives, were measured with the hydrogen clearance method. The change in blood flow in tumor microfoci was also observed directly using a rat transparent chamber. Chemotherapy against the solid tumors (LY80, SLC) was performed by administering AC7700 7 times at intervals of 3 days and the effect on the tumor growth, the histological effect, the effect on lymph node metastasis and the survival rate were investigated. Tumor tBF showed a dose-dependent response to AC7700. Although tumor tBF decreased markedly at a dose of 1 mg/kg, it tended to recover partly within several hours. At 10 mg/kg, however, tumor tBF completely stopped within approximately 30 min and never recovered in many regions. The irreversible stoppage of tumor tBF was observed in large s.c. tumors and in microfoci as well. On the other hand, in normal tissues, tBF changes due to AC7700 were not uniform. In the liver, although tBF decreased by approximately 50% at 10 mg/kg AC7700, it recovered within 8 h. In the brain, although the mean maximum reduction was 35%, the blood flow recovered to the original level within 24 h. The blood flow in the kidney cortex did not change at all. In the bone marrow, tBF decreased by approximately 80%. Generally, the blood flow reduction in normal tissues tended to be reversible. The effect on tumor growth and the histological effect were also dependent on the dose of AC7700. The tumor growth was markedly inhibited by 10 mg/ kg AC7700 and extensive necrosis was induced. Lymph node metastases were significantly inhibited and survival was prolonged significantly. In the control group, all 8 SLC tumor-bearing rats died of cancer, the presence of which was verified by gross and microscopic evaluation, within 45 days after tumor implantation. On the other hand, in the treated group, 2 of 8 rats recovered completely and survived. No obvious side effects such as body weight loss, anemia or diarrhea were observed at the dose used in this experiment. From these results, we conclude that strong antitumor effects are obtained by stopping tumor tBF irreversibly and by shutting off the nutritional supply into tumor tissue. AC7700 Topics: Animals; Antineoplastic Agents; Blood Pressure; Body Weight; Disease Models, Animal; Drug Screening Assays, Antitumor; Lymphatic Metastasis; Male; Neoplasm Transplantation; Neoplasms, Experimental; Rats; Regional Blood Flow; Serine; Stilbenes; Survival Rate | 1999 |
Role of prostaglandins generated by cyclooxygenase-1 and cyclooxygenase-2 in healing of ischemia-reperfusion-induced gastric lesions.
In this study, ischemia-reperfusion produced in rats by clamping the celiac artery for 0.5 h followed by 1 h of reperfusion was used to develop a new model of superficial gastric erosions progressing to deeper ulcers. Ischemia alone resulted in an immediate fall in gastric blood flow but no gross mucosal lesions were observed. When ischemia was followed by reperfusion, gastric erosive lesions occurred, reached a maximum at 12 h and then declined after 24 h. These acute erosions progressed into deeper lesions 24 h after ischemia-reperfusion and reached a peak after 3 days. Gastric blood flow and the mucosal generation of prostaglandin E(2) were significantly suppressed immediately following ischemia-reperfusion, but with the healing of deeper gastric ulcers, both gastric blood flow and prostaglandin E(2) generation were gradually restored. Cyclooxygenase-1 mRNA was detected by reverse transcription-polymerase chain reaction in intact gastric mucosa and throughout the recovery of the mucosa from acute ischemia-reperfusion lesions, whereas cyclooxygenase-2 mRNA, was recorded only after ischemia-reperfusion. NS-398 and rofecoxib, selective inhibitors of cyclooxyganase-2, failed to affect prostaglandin E(2) generation in the non-ulcerated gastric mucosa but inhibited it significantly in the ulcer area. The two cyclooxygenase-2 inhibitors as well as resveratrol, a specific cyclooxygenase-1 inhibitor and indomethacin and meloxicam, non-specific inhibitors of cyclooxygenase, augmented acute gastric erosions induced by ischemia-reperfusion and delayed significantly the progression of these lesions into deeper ulcers at each time interval after ischemia-reperfusion. We conclude that prostaglandins generated by both cyclooxygenase-1 and cyclooxygenase-2 contribute to the healing of gastric lesions induced by ischemia-reperfusion. Topics: Animals; Cyclooxygenase 1; Cyclooxygenase 2; Cyclooxygenase 2 Inhibitors; Cyclooxygenase Inhibitors; Dinoprostone; Disease Models, Animal; Gastric Mucosa; Gastrins; Gene Expression Regulation, Enzymologic; Indomethacin; Interleukin-1; Isoenzymes; Lactones; Meloxicam; Membrane Proteins; Nitrobenzenes; Prostaglandin-Endoperoxide Synthases; Prostaglandins; Rats; Regional Blood Flow; Reperfusion Injury; Resveratrol; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Stilbenes; Stomach Ulcer; Sulfonamides; Sulfones; Thiazines; Thiazoles; Time Factors | 1999 |
Resveratrol promotes atherosclerosis in hypercholesterolemic rabbits.
The hypothesis was tested that resveratrol, a compound in red wine, would inhibit atherosclerotic development in rabbits fed 0.5% cholesterol for 60 days. Rabbits were supplemented with or without oral resveratrol. During the study, body weights and food consumption were similar for the two groups. The lack of differences between liver weights and a series of serum parameters indicative of liver disease suggest that liver function was similar in the two groups. The diet produced hypercholesterolemia in both groups, but no differences in lipoprotein-cholesterol concentrations. The electrophoretic mobility of plasma low-density lipoprotein (LDL) and plasma LDL after induced oxidation also was not different between the groups. Staining of atherosclerotic lesions in the control and resveratrol-treated groups revealed that the resveratrol-treated rabbits had significantly more aortic surface area covered by atherosclerotic lesions (P < 0.02). Therefore, resveratrol promoted atherosclerotic development, rather than protect against it, by a mechanism that is independent of observed differences in gross animal health, liver function, plasma cholesterol concentrations, or LDL oxidative status. Topics: Animals; Aorta; Arteriosclerosis; Disease Models, Animal; Kidney; Lipoproteins; Liver; Male; Platelet Aggregation Inhibitors; Rabbits; Resveratrol; Stilbenes | 1996 |