stilbenes and Central-Nervous-System-Diseases

stilbenes has been researched along with Central-Nervous-System-Diseases* in 5 studies

Reviews

2 review(s) available for stilbenes and Central-Nervous-System-Diseases

ArticleYear
Pterostilbene as a Therapeutic Alternative for Central Nervous System Disorders: A Review of the Current Status and Perspectives.
    Journal of agricultural and food chemistry, 2023, Oct-11, Volume: 71, Issue:40

    Topics: Animals; Central Nervous System Diseases; Glioma; Humans; NF-kappa B; Signal Transduction; Stilbenes

2023
Promising therapeutic potential of pterostilbene and its mechanistic insight based on preclinical evidence.
    European journal of pharmacology, 2016, Oct-15, Volume: 789

    Pterostilbene (PS) is a well-recognized antioxidant that primarily exists in blueberries, grapevines and heartwood of red sandalwood. Interest in this compound has been renewed in recent years, and studies have found that PS possesses an array of pharmacological properties, including chemopreventive, antiinflammatory, antidiabetic, antidyslipidemic, antiatherosclerotic and neuroprotective effects. However, the greater in vivo bioavailability of PS, as compared to resveratrol, is an added advantage for its efficacy. This review provides a summary regarding the sources, pharmacokinetic aspects and pharmacodynamics of PS, with a focus on the molecular mechanisms underlying its protective effects against cancer, brain injuries and heart disease. Studies regarding the safety profile of PS have also been included. Based on the presently available evidence, we conclude that PS represents an active phytonutrient and a potential drug with pleiotropic health applications.

    Topics: Animals; Cardiovascular Diseases; Central Nervous System Diseases; Humans; Neoplasms; Safety; Stilbenes

2016

Other Studies

3 other study(ies) available for stilbenes and Central-Nervous-System-Diseases

ArticleYear
Neuroprotective Properties of Resveratrol and Its Derivatives-Influence on Potential Mechanisms Leading to the Development of Alzheimer's Disease.
    International journal of molecular sciences, 2020, Apr-15, Volume: 21, Issue:8

    The lack of effective Alzheimer's disease treatment is becoming a challenge for researchers and prompts numerous attempts to search for and develop better therapeutic solutions. Compounds that affect several routes of the neurodegeneration cascade leading to the development of disease are of particular interest. An example of such substances is resveratrol and its synthetic and natural derivatives, which have gained popularity in recent years and show promise as a possible new therapeutic option in the approach to Alzheimer's disease treatment. In this article, the state of the art evidence on the role of resveratrol (RSV) in neuroprotection is presented; research results are summarized and the importance of resveratrol and its derivatives in the treatment of Alzheimer's disease are underlined. It also focuses on various modifications of the resveratrol molecule that should be taken into account in the design of future research on drugs against Alzheimer's disease.

    Topics: Alzheimer Disease; Amyloid beta-Peptides; Animals; Benzofurans; Blood-Brain Barrier; Central Nervous System Diseases; Humans; Inflammation; Metabolic Diseases; Neuroprotection; Oxidative Stress; Resveratrol; Stilbenes; tau Proteins

2020
Impact of manganese neurotoxicity on MMP-9 production and superoxide dismutase activity in rat primary astrocytes. Effect of resveratrol and therapeutical implications for the treatment of CNS diseases.
    Toxicological sciences : an official journal of the Society of Toxicology, 2013, Volume: 135, Issue:1

    Manganese (Mn) is an environmental contaminant and its overexposure contributes to the pathophysiological processes of numerous disorders of the central nervous system in humans with mechanisms of action not completely understood. Activation of astrocytes and the subsequent release of neurotoxic factors have been implicated to contribute to neurodegeneration. Here, we assessed the molecular basis of the effects of Mn on modulation of matrix metalloproteinases-2 (MMP-2) and -9 (MMP-9) in rat astrocyte cultures. Primary cultures of rat astrocytes were exposed to different doses of MnCl2. Culture supernatants and cell lysates were used for the detection of MMP-2 and MMP-9 levels and mRNA expression, respectively. The exposure of astrocytes to MnCl2 induced the levels and expression of MMP-9 in a dose-dependent manner. The addition of resveratrol (RSV) inhibited both levels and expression of MMP-9 in astrocytes, whereas N-acetylcysteine (NAC) and quercetin (QRC) were ineffective in inhibiting MMP-9. As a possible mechanism of Mn-induced MMP-9, we determined intracellular redox state in Mn-treated astrocytes by assessing superoxide dismutase (SOD) activity and intracellular reactive oxygen species (ROS) and found a significant increase of ROS and a decrease of SOD activity. RSV, NAC, and QRC restored the redox state. The study of the mitogen-activated protein kinase signaling pathway demonstrated that MMP-9 transcription is mainly regulated by extracellular-regulated protein kinases (ERK). Pretreatment with RSV significantly reduced ERK activation suggesting that its ability to counteract MMP-9 overexpression is due not only to a general redox balance phenomenon but also to the modulation of ERK signaling pathway.

    Topics: Acetylcysteine; Animals; Astrocytes; Cells, Cultured; Central Nervous System Diseases; Extracellular Signal-Regulated MAP Kinases; Manganese; MAP Kinase Signaling System; Matrix Metalloproteinase 9; Quercetin; Rats; Reactive Oxygen Species; Resveratrol; Stilbenes; Superoxide Dismutase

2013
Central nervous system protection by resveratrol in streptozotocin-induced diabetic rats.
    Journal of clinical neuroscience : official journal of the Neurosurgical Society of Australasia, 2007, Volume: 14, Issue:3

    The objective of the present study was to investigate the possible neuroprotective effect of resveratrol against streptozotocin-induced hyperglycaemia in the rat brain and medulla spinalis. Thirty adult male Wistar rats were divided into three groups as follows: control group, streptozotocin-induced diabetic-untreated group, and streptozotocin-induced diabetic resveratrol-treated group. Diabetes was induced by a single injection of streptozotocin (STZ) (60 mg/kg body weight). Three days after streptozotocin injection, resveratrol (10 mg/kg) was injected intraperiteonally daily over 6 weeks to the rats in the treatment group. Six weeks later, seven rats from each group were killed and the brain stem and cervical spinal cord were removed. The hippocampus, cortex, cerebellum, brain stem and spinal cord were dissected for biochemical studies (lipid peroxidation measuring malondialdehyde [MDA], xanthine oxidase [XO], nitric oxide [NO] and glutathione). MDA, XO and NO levels in hippocampus, cortex, cerebellum, brain stem and spinal cord in the streptozotocin-induced diabetic-untreated group increased significantly. Treatment with resveratrol significantly reduced MDA, XO and NO production and increased glutathione levels when compared to the streptozotocin-induced diabetic-untreated group. This study demonstrates that resveratrol is a potent neuroprotective agent against diabetic oxidative damage.

    Topics: Animals; Central Nervous System Diseases; Diabetes Mellitus, Experimental; Diabetic Neuropathies; Free Radical Scavengers; Glutathione; Hyperglycemia; Lipid Peroxidation; Male; Malondialdehyde; Medulla Oblongata; Neuroprotective Agents; Nitric Oxide; Oxidative Stress; Rats; Rats, Wistar; Resveratrol; Spinal Cord; Stilbenes; Vasodilator Agents; Xanthine Oxidase

2007