stilbenes and Carotid-Artery-Diseases

stilbenes has been researched along with Carotid-Artery-Diseases* in 2 studies

Other Studies

2 other study(ies) available for stilbenes and Carotid-Artery-Diseases

ArticleYear
Preventive Effects of Resveratrol on Endocannabinoid System and Synaptic Protein Modifications in Rat Cerebral Cortex Challenged by Bilateral Common Carotid Artery Occlusion and Reperfusion.
    International journal of molecular sciences, 2018, Jan-31, Volume: 19, Issue:2

    This study aims to evaluate the putative roles of a single acute dose of resveratrol (RVT) in preventing cerebral oxidative stress induced by bilateral common carotid artery occlusion, followed by reperfusion (BCCAO/R) and to investigate RVT's ability to preserve the neuronal structural integrity. Frontal and temporal-occipital cortices were examined in two groups of adult Wistar rats, sham-operated and submitted to BCCAO/R. In both groups, 6 h before surgery, half the rats were gavage-fed with a single dose of RVT (40 mg/per rat in 300 µL of sunflower oil as the vehicle), while the second half received the vehicle alone. In the frontal cortex, RVT pre-treatment prevented the BCCAO/R-induced increase of lipoperoxides, augmented concentrations of palmitoylethanolamide and docosahexaenoic acid, increased relative levels of the cannabinoid receptors type 1 (CB1) and 2 (CB2), and peroxisome-proliferator-activated-receptor (PPAR)-α proteins. Increased expression of CB1/CB2 receptors mirrored that of synaptophysin and post-synaptic density-95 protein. No BCCAO/R-induced changes occurred in the temporal-occipital cortex. Collectively, our results demonstrate that, in the frontal cortex, RVT pre-treatment prevents the BCCAO/R-induced oxidative stress and modulates the endocannabinoid and PPAR-α systems. The increased expression of synaptic structural proteins further suggests the possible efficacy of RVT as a dietary supplement to preserve the nervous tissue metabolism and control the physiological response to the hypoperfusion/reperfusion challenge.

    Topics: Animals; Arterial Occlusive Diseases; Carotid Artery Diseases; Frontal Lobe; Gene Expression Regulation; Male; Oxidative Stress; Rats; Rats, Wistar; Receptors, Cannabinoid; Reperfusion Injury; Resveratrol; Stilbenes

2018
Resveratrol pretreatment protects rat brain from cerebral ischemic damage via a sirtuin 1-uncoupling protein 2 pathway.
    Neuroscience, 2009, Mar-31, Volume: 159, Issue:3

    Resveratrol is a natural polyphenol found in grapes and wine and has been associated with protective effects against cardiovascular diseases. In vitro, both resveratrol preconditioning (RPC) and ischemic preconditioning (IPC) require activation of sirtuin 1 (SIRT1), a nicotinamide adenine dinucleotide (NAD(+))-dependent deacetylase, to induce neuroprotection against cerebral ischemia. In the present study, we tested two hypotheses: (a) that neuroprotection against cerebral ischemia can be induced by RPC in vivo; and (b) that RPC neuroprotection involves alterations in mitochondrial function via the SIRT1 target mitochondrial uncoupling protein 2 (UCP2). IPC was induced by 2 min of global ischemia (temporary bilateral carotid artery occlusion with hypotension), and RPC, by i.p. injection of resveratrol at 10, 50 and 100 mg/kg dosages. Forty-eight hours later, we compared the neuroprotective efficacy of RPC and IPC in vulnerable cornu ammonis 1 hippocampal pyramidal neurons using a rat model of asphyxial cardiac arrest (ACA). SIRT1 activity was measured using a SIRT1-specific fluorescent enzyme activity assay. In hippocampal mitochondria isolated 48 h after IPC or RPC, we measured UCP2 levels, membrane potential, respiration, and the mitochondrial ATP synthesis efficiency (ADP/O ratio). Both IPC and RPC induced tolerance against brain injury induced by cardiac arrest in this in vivo model. IPC increased SIRT1 activity at 48 h, while RPC increased SIRT1 activity at 1 h but not 48 h after treatment in hippocampus. Resveratrol significantly decreased UCP2 levels by 35% compared to sham-treated rats. The SIRT1-specific inhibitor sirtinol abolished the neuroprotection afforded by RPC and the decrease in UCP2 levels. Finally, RPC significantly increased the ADP/O ratio in hippocampal mitochondria reflecting enhanced ATP synthesis efficiency. In conclusion, in vivo resveratrol pretreatment confers neuroprotection similar to IPC via the SIRT1-UCP2 pathway.

    Topics: Adenosine Triphosphate; Animals; Asphyxia; Benzamides; Brain Ischemia; Carotid Artery Diseases; Disease Models, Animal; Heart Arrest; Hippocampus; Hypotension; Ion Channels; Membrane Potential, Mitochondrial; Mitochondria; Mitochondrial Proteins; Naphthols; Neuroprotective Agents; Pyramidal Cells; Rats; Rats, Sprague-Dawley; Respiration; Resveratrol; Signal Transduction; Sirtuin 1; Sirtuins; Stilbenes; Uncoupling Protein 2

2009