stilbenes and Cardiomyopathies

stilbenes has been researched along with Cardiomyopathies* in 20 studies

Reviews

1 review(s) available for stilbenes and Cardiomyopathies

ArticleYear
The effects of resveratrol and SIRT1 activation on dystrophic cardiomyopathy.
    Annals of the New York Academy of Sciences, 2015, Volume: 1348, Issue:1

    The muscular dystrophies, which cause progressive weakening of the skeletal muscles, are frequently associated with cardiomyopathy. In fact, the leading cause of mortality in patients with Duchenne muscular dystrophy, the most common and most severe type of muscular dystrophy, is heart failure due to cardiomyopathy. Therefore, more effective methods for treating cardiomyopathy are expected to improve long-term outcomes for patients with Duchenne muscular dystrophy. Our recent preclinical data show that treatment with the SIRT1 activator resveratrol is beneficial for dystrophic cardiomyopathy. We examined the effects of resveratrol treatment in two different models of muscular dystrophy: dystrophin-deficient mdx mice and δ-sarcoglycan-deficient TO-2 hamsters. In both models, resveratrol suppressed cardiac hypertrophy, preserved cardiac function, and reduced tissue fibrosis in the diseased heart. Importantly, resveratrol significantly improved survival in TO-2 hamsters. Resveratrol also attenuated skeletal muscle pathology in mdx mice. These promising results indicate resveratrol's potential for clinical translation to treat cardiomyopathy in patients with muscular dystrophies.

    Topics: Animals; Cardiomyopathies; Cardiotonic Agents; E1A-Associated p300 Protein; Enzyme Activation; Humans; Muscular Dystrophy, Duchenne; Proteolysis; Resveratrol; Sirtuin 1; Stilbenes; Ubiquitination

2015

Other Studies

19 other study(ies) available for stilbenes and Cardiomyopathies

ArticleYear
Cardiac amyloidosis characterization by kinetic model fitting on [18F]florbetaben PET images.
    Journal of nuclear cardiology : official publication of the American Society of Nuclear Cardiology, 2022, Volume: 29, Issue:4

    To evaluate the feasibility of kinetic modeling-based approaches from [18F]-Flobetaben dynamic PET images as a non-invasive diagnostic method for cardiac amyloidosis (CA) and to identify the two AL- and ATTR-subtypes.. Twenty-one patients with diagnoses of CA (11 patients with AL-subtype and 10 patients with ATTR-subtype of CA) and 15 Control patients with no-CA conditions underwent PET/CT imaging after [18F]Florbetaben bolus injection. A two-tissue-compartment (2TC) kinetic model was fitted to time-activity curves (TAC) obtained from left ventricle wall and left atrium cavity ROIs to estimate kinetic micro- and macro-parameters. Combinations of kinetic parameters were evaluated with the purpose of distinguishing Control subjects and CA patients, and to correctly label the last ones as AL- or ATTR-subtype. Resulting sensitivity, specificity, and accuracy for Control subjects were: 0.87, 0.9, 0.89; as far as CA patients, the sensitivity, specificity, and accuracy were respectively 0.9, 1, and 0.97 for AL-CA patients and 0.9, 0.92, 0.97 for ATTR-CA patients.. Pharmacokinetic analysis based on a 2TC model allows cardiac amyloidosis characterization from dynamic [18F]Florbetaben PET images. Estimated model parameters allows to not only distinguish between Control subjects and patients, but also between AL- and ATTR-amyloid patients.

    Topics: Amyloid Neuropathies, Familial; Aniline Compounds; Cardiomyopathies; Humans; Positron Emission Tomography Computed Tomography; Stilbenes

2022
Misconceptions and Facts About Cardiac Amyloidosis.
    The American journal of cardiology, 2021, 12-01, Volume: 160

    Cardiac amyloidosis is an important clinical entity associated with significant morbidity and mortality. Although the signs and symptoms can be apparent early in the disease course, diagnoses are often made late because of inadequate recognition. A diagnosis of cardiac amyloidosis requires careful scrutiny of a patient's symptoms, an electrocardiogram, and imaging studies, including echocardiography and magnetic resonance imaging. Further evaluation is required through the measurement of serum and urine light chains and the use of bone scintigraphy imaging to differentiate transthyretin amyloidosis from light-chain cardiac amyloidosis. The available treatments have expanded tremendously in recent years and have improved outcomes in the population with this disorder. Thus, it has become increasingly important to diagnose cardiac amyloidosis and provide timely therapies. This article will clarify the various misconceptions about cardiac amyloidosis and provide a framework for primary care providers to better identify this disease in their practice.

    Topics: Amyloid Neuropathies, Familial; Amyloidosis; Aniline Compounds; Assisted Circulation; Atrial Fibrillation; Cardiac Imaging Techniques; Cardiomyopathies; Diagnosis, Differential; Echocardiography; Electrocardiography; Ethylene Glycols; Humans; Immunoglobulin Light-chain Amyloidosis; Magnetic Resonance Imaging; Positron-Emission Tomography; Radiopharmaceuticals; Stilbenes

2021
Piceatannol protects against sepsis-induced myocardial dysfunction via direct inhibition of JAK2.
    International immunopharmacology, 2021, Volume: 96

    Sepsis-induced myocardial dysfunction (SIMD) represents one of the serious complications secondary to sepsis, which is a leading cause of the high mortality rate among septic cases. Subsequent cardiomyocyte apoptosis, together with the uncontrolled inflammatory response, has been suggested to be closely related to SIMD. Piceatannol (PIC) is verified with potent anti-apoptotic and anti-inflammatory effects, but its function and molecular mechanism in SIMD remain unknown so far. This study aimed to explore the potential role and mechanism of action of PIC in resisting SIMD. The interaction of PIC with JAK2 proteins was evaluated by molecular docking, molecular dynamics (MD) simulation and surface plasmon resonance imaging (SPRi). The cecal ligation and puncture-induced septicemia mice and the LPS-stimulated H9C2 cardiomyocytes were prepared as the models in vivo and in vitro, separately. Molecular docking showed that JAK2-PIC complex had the -8.279 kcal/mol binding energy. MD simulations showed that JAK2-PIC binding was stable. SPRi analysis also showed that PIC has a strong binding affinity to JAK2. PIC treatment significantly ameliorated the cardiac function, attenuated the sepsis-induced myocardial loss, and suppressed the myocardial inflammatory responses both in vivo and in vitro. Further detection revealed that PIC inhibited the activation of the JAK2/STAT3 signaling, which was tightly associated with apoptosis and inflammation. Importantly, pre-incubation with a JAK2 inhibitor (AG490) partially blocked the cardioprotective effects of PIC. Collectively, the findings demonstrated that PIC restored the impaired cardiac function by attenuating the sepsis-induced apoptosis and inflammation via suppressing the JAK2/STAT3 pathway both in septic mice and H9C2 cardiomyocytes.

    Topics: Animals; Apoptosis; Cardiomyopathies; Cardiotonic Agents; Cell Line; Disease Models, Animal; Inflammation; Janus Kinase 2; Male; Mice, Inbred C57BL; Molecular Docking Simulation; Molecular Dynamics Simulation; Myocytes, Cardiac; Rats; Sepsis; Signal Transduction; STAT3 Transcription Factor; Stilbenes; Tyrphostins

2021
Polydatin Alleviates Septic Myocardial Injury by Promoting SIRT6-Mediated Autophagy.
    Inflammation, 2020, Volume: 43, Issue:3

    Sepsis is a life-threatening condition. Polydatin (PD), a small natural compound from Polygonum cuspidatum, possesses antioxidant and anti-inflammatory properties. However, the protective mechanism of PD on sepsis-induced acute myocardial damage is still unclear. The aim of this study was to investigate the effect and mechanism of action of PD on lipopolysaccharide (LPS)-induced H9c2 cells and in a rat model of sepsis, and explored the role of PD-upregulated sirtuin (SIRT)6. LPS-induced H9c2 cells were used to simulate sepsis. Cecal ligation and puncture (CLP)-induced sepsis in rats were used to verify the protective effect of PD. ELISA, western blotting, immunofluorescence, immunohistochemistry, and flow cytometry were used to study the protective mechanism of PD against septic myocardial injury. PD pretreatment suppressed LPS-induced H9c2 cell apoptosis by promotion of SIRT6-mediated autophagy. Downregulation of SIRT6 or inhibition of autophagy reversed the protective effect of PD on LPS-induced apoptosis. PD pretreatment also suppressed LPS-induced inflammatory factor expression. CLP-induced sepsis in rats showed that PD pretreatment decreased CLP-induced myocardial apoptosis and serum tumor necrosis factor-α, interleukin (IL)-1β, and IL-6 expression. 3-Methyladenine (autophagy inhibitor) pretreatment prevented the protective effect of PD on septic cardiomyopathy. SIRT6 expression was increased with PD treatment, which confirmed that PD attenuates septic cardiomyopathy by promotion of SIRT6-mediated autophagy. All these results indicate that PD has potential therapeutic effects that alleviate septic myocardial injury by promotion of SIRT6-mediated autophagy.

    Topics: Animals; Autophagy; Cardiomyopathies; Cell Line; Glucosides; Lipopolysaccharides; Male; Myocardium; Rats; Rats, Sprague-Dawley; Sepsis; Sirtuins; Stilbenes

2020
Cardioprotective effects of polydatin against myocardial injury in diabetic rats via inhibition of NADPH oxidase and NF-κB activities.
    BMC complementary medicine and therapies, 2020, Dec-11, Volume: 20, Issue:1

    Diabetic cardiomyopathy is a main cause of the increased morbidity in diabetic patients, no effective treatment is available so far. Polydatin, a resveratrol glucoside isolated from the Polygonum cuspidatum, was found by our and others have antioxidant and cardioprotective activities. Therapeutic effects of polydatin on diabetic cardiomyopathy and the possible mechanisms remains unclear. This study aimed to investigate the cardioprotective effects and underlying mechanisms of polydatin on myocardial injury induced by hyperglycemia.. Diabetes in rats was made by high-fat diet combined with multiple low doses of streptozotocin, and then treated with polydatin (100 mg·kg-1·day-1, by gavage) for 8 weeks. Cardiac function was examined by echocardiography. Myocardial tissue and blood samples were collected for histology, protein and metabolic characteristics analysis. In cultured H9c2 cells with 30 mM of glucose, the direct effects of polydatin on myocyte injury were also observed.. In diabetic rats, polydatin administration significantly improved myocardial dysfunction and attenuated histological abnormalities, as evidenced by elevating left ventricular shortening fraction and ejection fraction, as well as reducing cardiac hypertrophy and interstitial fibrosis. In cultured H9c2 cells, pretreatment of polydatin dose-dependently inhibited high glucose-induced cardiomyocyte injury. Further observation evidenced that polydatin suppressed the increase in the reactive oxygen species levels, NADPH oxidase activity and inflammatory cytokines production induced by hyperglycemia in vivo and in vitro. Polydatin also prevented the increase expression of NOX4, NOX2 and NF-κB in the high glucose -stimulated H9c2 cells and diabetic hearts.. Our results demonstrate that the cardioprotective effect of polydatin against hyperglycemia-induced myocardial injury is mediated by inhibition of NADPH oxidase and NF-κB activity. The findings may provide a novel understanding the mechanisms of the polydatin to be a potential treatment of diabetic cardiomyopathy.

    Topics: Animals; Cardiomyopathies; Cell Line; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 2; Drug Evaluation, Preclinical; Drugs, Chinese Herbal; Fallopia japonica; Glucosides; Heart; Male; Myocardium; NADPH Oxidases; NF-kappa B; Oxidative Stress; Rats, Sprague-Dawley; Stilbenes

2020
Advanced iron-overload cardiomyopathy in a genetic murine model is rescued by resveratrol therapy.
    Bioscience reports, 2018, 02-28, Volume: 38, Issue:1

    Iron-overload cardiomyopathy is prevalent on a worldwide basis and is a major comorbidity in patients with genetic hemochromatosis and secondary iron overload. Therapies are limited in part due to lack of a valid preclinical model, which recapitulates advanced iron-overload cardiomyopathy. Male hemojuvelin (HJV) knockout (HJVKO) mice, which lack HJV, a bone morphogenetic co-receptor protein required for hepcidin expression and systemic iron homeostasis, were fed a high-iron diet starting at 4 weeks of age for a duration of 1 year. Aged HJVKO mice in response to iron overload showed increased myocardial iron deposition and mortality coupled with oxidative stress and myocardial fibrosis culminating in advanced iron-overload cardiomyopathy. In a parallel group, iron-overloaded HJVKO mice received resveratrol (240 mg/day) at 9 months of age until 1 year of age. Echocardiography and invasive pressure-volume (PV) loop analyses revealed a complete normalization of iron-overload mediated diastolic and systolic dysfunction in response to resveratrol therapy. In addition, myocardial sarcoplasmic reticulum Ca

    Topics: AMP-Activated Protein Kinase Kinases; Animals; Cardiomyopathies; Disease Models, Animal; GPI-Linked Proteins; Heart; Hemochromatosis Protein; Hepcidins; Humans; Iron; Iron Overload; Membrane Proteins; Mice; Myocardium; Oxidative Stress; Protein Kinases; Resveratrol; Sarcoplasmic Reticulum Calcium-Transporting ATPases; Sodium-Calcium Exchanger; Stilbenes

2018
PET-CT evaluation of amyloid systemic involvement with [
    Journal of nuclear cardiology : official publication of the American Society of Nuclear Cardiology, 2017, Volume: 24, Issue:6

    One of the most frequent disorders which lead to cardiac amyloidosis is transthyretin-related amyloidosis (ATTR). Some PET radio-pharmaceuticals for the detection of beta-amyloid deposits within the brain have shown to be able to detect also cardiac amyloid deposits. We present a case of a man with ATTR studied with [. Total-body scan showed a moderate uptake in the bone marrow, especially in correspondence of the vertebral column, while no significant myocardial uptake was present. Cardiac-focused scans showed low mean cardiac SUV values confirming the absence of significant myocardial uptake. Brain scan showed a significant cortical brain uptake of the radio-pharmaceutical more evident in correspondence of frontal and temporal lobes.. Distinct subtypes of amyloidosis show different uptake of the radiotracer. Brain amyloid deposition in the presence of a systemic disease could not be caused by the same amyloid precursor.

    Topics: Aged, 80 and over; Amyloid Neuropathies, Familial; Aniline Compounds; Cardiomyopathies; Fluorine Radioisotopes; Humans; Male; Positron Emission Tomography Computed Tomography; Radiopharmaceuticals; Stilbenes

2017
SIRT1 activation attenuates diastolic dysfunction by reducing cardiac fibrosis in a model of anthracycline cardiomyopathy.
    International journal of cardiology, 2016, Feb-15, Volume: 205

    Doxorubicin (DOXO) is an effective anti-neoplastic drug but its clinical benefits are hampered by cardiotoxicity. Oxidative stress, apoptosis and myocardial fibrosis mediate the anthracycline cardiomyopathy. ROS trigger TGF-β pathway that activates cardiac fibroblasts promoting fibrosis. Myocardial stiffness contributes to diastolic dysfunction, less studied aspect of anthracycline cardiomyopathy. Considering the role of SIRT1 in the inhibition of the TGF-β/SMAD3 pathway, resveratrol (RES), a SIRT1 activator, might improve cardiac function by interfering with the development of cardiac fibrosis in a model of DOXO-induced cardiomyopathy.. F344 rats received a cumulative dose of 15 mg/kg of DOXO in 2 weeks or DOXO+RES (DOXO and RES, 2.5mg/kg/day, concomitantly for 2 weeks and then RES alone for 1 more week). The effects of RES on cardiac fibroblasts were also tested in vitro.. Along with systolic dysfunction, DOXO was also responsible of diastolic abnormalities. Myocardial stiffness correlated with fibroblast activation and collagen deposition. DOXO+RES co-treatment significantly improved ± dP/dt and, more interestingly, ameliorated end-diastolic pressure/volume relationship. Treatment with RES resulted in reduced fibrosis and fibroblast activation and, most importantly, the mortality rate was significantly reduced in DOXO+RES group. Fibroblasts isolated from DOXO+RES-treated rats, in which SIRT1 was upregulated, showed decreased levels of TGF-β and pSMAD3/SMAD3 when compared to cells isolated from DOXO-exposed hearts.. Our findings reveal a key role of SIRT1 in supporting animal survival and functional parameters of the heart. SIRT1 activation by interfering with fibrogenesis can improve relaxation properties of myocardium and attenuate myocardial remodeling related to chemotherapy.

    Topics: Animals; Anthracyclines; Antibiotics, Antineoplastic; Cardiomyopathies; Cells, Cultured; Diastole; Disease Models, Animal; Doxorubicin; Female; Fibrosis; Rats; Rats, Inbred F344; Resveratrol; Sirtuin 1; Stilbenes

2016
Resveratrol alleviates sepsis‑induced myocardial injury in rats by suppressing neutrophil accumulation, the induction of TNF‑α and myocardial apoptosis via activation of Sirt1.
    Molecular medicine reports, 2016, Volume: 14, Issue:6

    Sepsis is a severe inflammatory response to systemic infection that frequently affects the myocardium. Previous studies have suggested that resveratrol (RESV) is protective in sepsis. The present study aimed to investigate the role of sirtuin 1 (Sirt1) signaling in the protective effect of intraperitoneally administered RESV against sepsis‑induced myocardial injury. Cecal ligation and puncture, or a sham operation, were performed in male Sprague‑Dawley rats, and the levels of tumor necrosis factor (TNF)‑α and myeloperoxidase (MPO) were assessed by ELISA and an MPO activity kit, respectively. The extent of myocardial apoptosis was assessed by TUNEL staining. The protein expression levels of Sirt1, acetylated (Ac)‑Forkhead box O1 (FoxO1), B cell lymphoma 2 apoptosis regulator (Bcl‑2) and Bcl‑2 associated protein X apoptosis regulator (Bax) were detected by western blot analysis. RESV was demonstrated to attenuate myocardial apoptosis and decrease the production of TNF‑α and MPO. Additionally, RESV upregulated the expression of Sirt1 and Bcl‑2, and downregulated the expression of Ac‑FoxO1 and Bax. The protective effects of RESV were abolished by EX527, a Sirt1 inhibitor. RESV has therefore been demonstrated to attenuate myocardial injury in sepsis by decreasing neutrophil accumulation, TNF‑α expression, and myocardial apoptosis via activation of Sirt1 signaling. These results suggest a novel therapeutic strategy for the clinical treatment of sepsis.

    Topics: Animals; Apoptosis; Cardiomyopathies; Disease Models, Animal; Male; Neutrophil Infiltration; Neutrophils; Rats; Resveratrol; Sepsis; Sirtuin 1; Stilbenes; Tumor Necrosis Factor-alpha

2016
SIRT1 activation rescues doxorubicin-induced loss of functional competence of human cardiac progenitor cells.
    International journal of cardiology, 2015, Volume: 189

    The search for compounds able to counteract chemotherapy-induced heart failure is extremely important at the age of global cancer epidemic. The role of SIRT1 in the maintenance of progenitor cell homeostasis may contribute to its cardioprotective effects. SIRT1 activators, by preserving progenitor cells, could have a clinical relevance for the prevention of doxorubicin (DOXO)-cardiotoxicity.. To determine whether SIRT1 activator, resveratrol (RES), interferes with adverse effects of DOXO on cardiac progenitor cells (CPCs): 1) human CPCs (hCPCs) were exposed in vitro to DOXO or DOXO+RES and their regenerative potential was tested in vivo in an animal model of DOXO-induced heart failure; 2) the in vivo effects of DOXO+RES co-treatment on CPCs were studied in a rat model.. In contrast to healthy cells, DOXO-exposed hCPCs were ineffective in a model of anthracycline cardiomyopathy. The in vitro activation of SIRT1 decreased p53 acetylation, overcame suppression of the IGF-1/Akt pro-survival and anti-apoptotic signaling, enhanced oxidative stress defense and prevented senescence and growth arrest of hCPCs. Priming with RES counterbalanced the onset of dysfunctional phenotype in DOXO-exposed hCPCs, partly restoring their ability to repair the damage with improvement in cardiac function and animal survival. The in vivo co-treatment DOXO+RES prevented the anthracycline-induced alterations in CPCs, partly preserving cardiac function.. SIRT1 activation protects DOXO-exposed CPCs and re-establishes their proper function. Pharmacological intervention at the level of tissue-specific progenitor cells may provide cardiac benefits for the growing population of long-term cancer survivors that are at risk of chemotherapy-induced cardiovascular toxicity.

    Topics: Analysis of Variance; Animals; Apoptosis; Blotting, Western; Cardiomyopathies; Cells, Cultured; Disease Models, Animal; Doxorubicin; Female; Humans; Immunohistochemistry; Myocytes, Cardiac; Normal Distribution; Random Allocation; Rats; Rats, Inbred F344; Resveratrol; Sirtuin 1; Statistics, Nonparametric; Stem Cells; Stilbenes

2015
Iron-overload injury and cardiomyopathy in acquired and genetic models is attenuated by resveratrol therapy.
    Scientific reports, 2015, Dec-07, Volume: 5

    Iron-overload cardiomyopathy is a prevalent cause of heart failure on a world-wide basis and is a major cause of mortality and morbidity in patients with secondary iron-overload and genetic hemochromatosis. We investigated the therapeutic effects of resveratrol in acquired and genetic models of iron-overload cardiomyopathy. Murine iron-overload models showed cardiac iron-overload, increased oxidative stress, altered Ca(2+) homeostasis and myocardial fibrosis resulting in heart disease. Iron-overload increased nuclear and acetylated levels of FOXO1 with corresponding inverse changes in SIRT1 levels in the heart corrected by resveratrol therapy. Resveratrol, reduced the pathological remodeling and improved cardiac function in murine models of acquired and genetic iron-overload at varying stages of iron-overload. Echocardiography and hemodynamic analysis revealed a complete normalization of iron-overload mediated diastolic and systolic dysfunction in response to resveratrol therapy. Myocardial SERCA2a levels were reduced in iron-overloaded hearts and resveratrol therapy restored SERCA2a levels and corrected altered Ca(2+) homeostasis. Iron-mediated pro-oxidant and pro-fibrotic effects in human and murine cardiomyocytes and cardiofibroblasts were suppressed by resveratrol which correlated with reduction in iron-induced myocardial oxidative stress and myocardial fibrosis. Resveratrol represents a clinically and economically feasible therapeutic intervention to reduce the global burden from iron-overload cardiomyopathy at early and chronic stages of iron-overload.

    Topics: Animals; Cardiomyopathies; Disease Models, Animal; Down-Regulation; Fibroblasts; Fibrosis; Forkhead Box Protein O1; Forkhead Transcription Factors; Genetic Therapy; GPI-Linked Proteins; Hemochromatosis Protein; Humans; Iron Overload; Male; Membrane Proteins; Mice, Inbred C57BL; Mice, Knockout; Models, Genetic; Myocardium; Myocytes, Cardiac; Oxidants; Oxidative Stress; Resveratrol; Sarcoplasmic Reticulum Calcium-Transporting ATPases; Signal Transduction; Sirtuin 1; Stilbenes

2015
Resveratrol improves cardiomyopathy in dystrophin-deficient mice through SIRT1 protein-mediated modulation of p300 protein.
    The Journal of biological chemistry, 2013, Feb-22, Volume: 288, Issue:8

    Cardiomyopathy is the main cause of death in Duchenne muscular dystrophy. Here, we show that oral administration of resveratrol, which leads to activation of an NAD(+)-dependent protein deacetylase SIRT1, suppresses cardiac hypertrophy and fibrosis and restores cardiac diastolic function in dystrophin-deficient mdx mice. The pro-hypertrophic co-activator p300 protein but not p300 mRNA was up-regulated in the mdx heart, and resveratrol administration down-regulated the p300 protein level. In cultured cardiomyocytes, cardiomyocyte hypertrophy induced by the α(1)-agonist phenylephrine was inhibited by the overexpression of SIRT1 as well as resveratrol, both of which down-regulated p300 protein levels but not p300 mRNA levels. In addition, activation of atrial natriuretic peptide promoter by p300 was inhibited by SIRT1. We found that SIRT1 induced p300 down-regulation via the ubiquitin-proteasome pathway by deacetylation of lysine residues for ubiquitination. These findings indicate the pathological significance of p300 up-regulation in the dystrophic heart and indicate that SIRT1 activation has therapeutic potential for dystrophic cardiomyopathy.

    Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Cardiomegaly; Cardiomyopathies; Down-Regulation; Dystrophin; E1A-Associated p300 Protein; Echocardiography; Male; Mice; Mice, Inbred C57BL; Models, Biological; Phenylephrine; Proteasome Endopeptidase Complex; Resveratrol; Sirtuin 1; Stilbenes; Ubiquitin

2013
Salutary effect of resveratrol on sepsis-induced myocardial depression.
    Critical care medicine, 2012, Volume: 40, Issue:6

    We hypothesized that resveratrol administration would reverse sepsis-dependent downregulation of peroxisome proliferator activated receptor-γ coactivator 1α, preserve mitochondrial integrity, and rescue animals from sepsis-induced myocardial failure.. Teaching hospital research laboratory.. Cecal ligation and puncture in mice was performed to induce sepsis. Mice that underwent cecal ligation and puncture were randomly assigned to receive resveratrol (30 mg/kg or 60 mg/kg) or vehicle 1 mL sodium chloride 0.9% subcutaneously in the scruff of the neck directly after surgery and at 16, 24, and 40 hrs, respectively.. Forty-eight hrs after cecal ligation and puncture, cardiac performance was established using echocardiography. Mitochondrial integrity was evaluated with electron microscopy, and changes in gene expression were evaluated with microarray analysis. Survival at 48 hrs was just under 50% and comparable between groups. Myocardial contractile function significantly improved after resveratrol treatment. Resveratrol-treated mice developed focal areas of edema, whereas vehicle-treated mice developed significant, diffuse myocardial edema. Electron microscopy revealed widespread swollen mitochondria with ruptured outer membranes, autophagosomes, and vacuolation of the internal compartment, which were significantly attenuated in resveratrol-treated animals. Resveratrol treatment significantly increased cardiac expression of peroxisome proliferator-activated receptor-γ coactivator 1a. Microarray analysis revealed that resveratrol treatment resulted in upregulation of the peroxisome proliferator-activated receptor-γ coactivator gene set containing genes known to be regulated by this transcriptional coactivator. Our data strongly suggest that administration of resveratrol modulates bioenergy metabolism, substrate utilization, oxidative stress, and detoxification pathways associated with both mitochondrial and cardiac pathological conditions, but does not alter mortality from sepsis.. The salutary effects of resveratrol on cecal ligation and puncture-induced myocardial dysfunction are associated with increased peroxisome proliferator-activated receptor-γ coactivator 1a abundance and function. Preservation of myocardial energy production capacity, prevention of secondary injury, mitigation of inflammation, and reversal of sepsis-induced myocardial remodeling are likely to underlie its beneficial effects. This however, does not result in improved survival.

    Topics: Animals; Cardiomyopathies; Cecum; Down-Regulation; Edema; Gene Expression; Heart Failure; Ligation; Male; Mice; Mice, Inbred C57BL; Mitochondria, Heart; Myocardial Contraction; Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha; Random Allocation; Resveratrol; Sepsis; Stilbenes; Trans-Activators; Transcription Factors; Vasodilator Agents

2012
The effects of resveratrol on cyclooxygenase-1 and -2, nuclear factor kappa beta, matrix metalloproteinase-9, and sirtuin 1 mRNA expression in hearts of streptozotocin-induced diabetic rats.
    Genetics and molecular research : GMR, 2011, Nov-29, Volume: 10, Issue:4

    Resveratrol (RSV) has a beneficial role in the prevention of diabetes and alleviates some diabetic complications, such as cardiomyopathy. We investigated cyclooxygenase-1 (COX-1), COX-2, nuclear factor κB (NF-κB), matrix metalloproteinase-9 (MMP-9), and sirtuin 1 (SIRT1) mRNA expression levels in heart tissue after RSV treatment in streptozotocin (STZ)-induced diabetic rats. After induction of chronic diabetes with STZ, 10 mg RSV/kg per day was administered to DM and DM+RSV groups for four weeks. At the end of the experiment, all rats were sacrificed and heart tissues were stored at -80°C; mRNA expression levels of COX-1, COX-2, NF-κB, MMP-9, and SIRT1 genes were analyzed with quantitative real-time PCR. We did not find any significant effect of RSV on MMP-9, COX-1, COX-2, or NF-κB mRNA levels among the groups. However, SIRT1 mRNA levels decreased in the DM group compared to controls and increased in the DM+RSV group when compared to the DM group. SIRT1 is activated by RSV treatment in diabetic heart tissue. Activation of SIRT1 by RSV may lead to a new therapeutic approach for diabetic heart tissue. We conclude that RSV treatment can alleviate heart dysfunction by inhibiton of inflammatory gene expression such as SIRT1.

    Topics: Animals; Antioxidants; Cardiomyopathies; Cyclooxygenase 1; Cyclooxygenase 2; Diabetes Mellitus, Experimental; Disease Models, Animal; Gene Expression Regulation; Heart; Male; Matrix Metalloproteinase 9; NF-kappa B; Rats; Rats, Wistar; Real-Time Polymerase Chain Reaction; Resveratrol; RNA, Messenger; Signal Transduction; Sirtuin 1; Stilbenes

2011
Resveratrol, an activator of SIRT1, upregulates sarcoplasmic calcium ATPase and improves cardiac function in diabetic cardiomyopathy.
    American journal of physiology. Heart and circulatory physiology, 2010, Volume: 298, Issue:3

    Reduced sarcoplasmic calcium ATPase (SERCA2a) expression has been shown to play a significant role in the cardiac dysfunction in diabetic cardiomyopathy. The mechanism of SERCA2a repression is, however, not known. This study was designed to examine the effect of resveratrol (RSV), a potent activator of SIRT1, on cardiac function and SERCA2a expression in chronic type 1 diabetes. Adult male mice were injected with streptozotocin (STZ) and fed with either a regular diet or a diet enriched with RSV. STZ administration produced progressive decline in cardiac function, associated with markedly reduced SERCA2a and SIRT1 protein levels and increased collagen deposition; RSV treatment to these mice had a tremendous beneficial effect both in terms of improving SERCA2a expression and on cardiac function. In cultured cardiomyocytes, RSV restored SERCA2 promoter activity, which was otherwise highly repressed in high-glucose media. Protective effects of RSV were found to be dependent on its ability to activate Silent information regulator (SIRT) 1. In cardiomyocytes, overexpression of SIRT1 was found sufficient to activate SERCA2 promoter in a dose-dependent manner. In contrast, pretreatment of cardiomyocytes with SIRT1 antagonist, splitomycin, blocked these beneficial effects of RSV. In addition, SIRT1 knockout (+/-) mice were also found to be more sensitive to STZ-induced decline in SERCA2a mRNA. The data demonstrate that, in chronic diabetes, 1) the enzymatic activity of cardiac SIRT1 is reduced, which contributes to reduced expression of SERCA2a and 2) through activation of SIRT1, RSV enhances expression of SERCA2a and improves cardiac function.

    Topics: Animals; Antioxidants; Cardiomyopathies; Diabetes Mellitus, Experimental; Disease Models, Animal; Male; Mice; Mice, Inbred Strains; Mice, Knockout; Myocardium; Myocytes, Cardiac; Resveratrol; Sarcoplasmic Reticulum Calcium-Transporting ATPases; Sirtuin 1; Stilbenes; Streptozocin; Up-Regulation

2010
The protease inhibitor UCF-101 ameliorates streptozotocin-induced mouse cardiomyocyte contractile dysfunction in vitro: role of AMP-activated protein kinase.
    Experimental physiology, 2009, Volume: 94, Issue:9

    5-[5-(2-Nitrophenyl) furfuryliodine]-1,3-diphenyl-2-thiobarbituric acid (UCF-101) is a protease inhibitor which was reported to protect against ischaemic heart damage and apoptosis. This study evaluated the impact of UCF-101 on steptozotocin (STZ)-induced diabetic cardiomyocyte dysfunction. Adult FVB mice were made diabetic with a single injection of STZ (200 mg kg(1)). Two weeks after STZ injection, cardiomyocytes from control and STZ-treated mice were isolated and treated with UCF-101 (20 mum for 1 h). Cardiomyocyte contractile properties were analysed, including peak shortening (PS), maximal velocity of shortening/relengthening (+/-dL/dt), time to PS (TPS) and time to 90% relengthening (TR(90)). Steptozotocin-induced diabetes depressed PS and +/-dL/dt and prolonged TPS and TR(90) in cardiomyocytes, all of which were significantly alleviated by UCF-101. Immunoblotting analysis showed that UCF-101 significantly alleviated STZ-induced loss of phospholamban phosphorylation without affecting sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA2a) and phospholamban. Steptozotocin reduced AMP-activated protein kinase (AMPK) phosphorylation at Thr172 of the catalytic subunit without affecting total AMPK expression, which was restored by UCF-101. Short-term exposure to UCF-101 did not change the expression of X-linked inhibitor of apoptosis protein (XIAP) and Omi stress-regulated endoprotease, high temperature requirement protein A2 (Omi/HtrA2), favouring an apoptosis-independent mechanism. Both the AMPK activator resveratrol and the antioxidant N-acetylcysteine mimicked the UCF-101-induced beneficial effect in STZ-induced diabetic cardiomyocytes. In addition, UCF-101 promoted the phosphorylation of p38 mitogen-activated protein kinases and c-Jun N-terminal kinase (JNK) after 15 min of incubation, while it failed to affect the phosphorylation of extracellular signal-regulated kinase (ERK) and glycogen synthase kinase-3beta (GSK-3beta) within 120 min in H9C2 myoblasts. Taken together, these results indicate that UCF-101 protects against STZ-induced cardiomyocyte contractile dysfunction, possibly via an AMPK-associated mechanism.

    Topics: Acetylcysteine; AMP-Activated Protein Kinases; Animals; Antioxidants; Calcium-Binding Proteins; Cardiomyopathies; Diabetes Complications; Diabetes Mellitus, Experimental; High-Temperature Requirement A Serine Peptidase 2; In Vitro Techniques; Male; MAP Kinase Signaling System; Mice; Mitochondrial Proteins; Myocardial Contraction; Myocytes, Cardiac; Protease Inhibitors; Pyrimidinones; Resveratrol; Sarcoplasmic Reticulum Calcium-Transporting ATPases; Serine Endopeptidases; Stilbenes; Streptozocin; Thiones; X-Linked Inhibitor of Apoptosis Protein

2009
Protective effect of polydatin against lipopolysaccharide-induced myocardial injury.
    Di 1 jun yi da xue xue bao = Academic journal of the first medical college of PLA, 2003, Volume: 23, Issue:4

    To observe the effect of lipopolysaccharide (LPS) on actin cytoskeleton of rat cardiac myocytes and the intervention effect of polydatin against this effect.. Rat cardiac myocytes were isolated from newborn SD rats (3 days old) and cultured in vitro, which were then divided into control group (treated with D-Hank's solution for 30 min), polydatin group (with 0.2 mmol/L polydatin treatment for 10 min), LPS group (with 100 ng/ml LPS stimulation for 30 min), and LPS/polydatin group (with 100 ng/ml LPS stimulation for 30 min followed by incubation with 0.2 mmol/L polydatin for 10 min). When the treatments were completed, the cells were analyzed for myocardial F-actin by immunofluorescent staining.. In the control group, F-actin was localized in the cortex of cardiac myocytes and the cells were filled with F-actin organized into reticular structures. After LPS stimulation, the staining for F-actin was faint or even invisible in the cortex, with the formation of stress fibers observed in the cells, which disappeared upon the 10-min polydatin treatment and the F-actin resumed normal arrangement. No obvious difference was found between the control and polydatin groups.. LPS may directly induce stress fiber formation, therefore cause damages to rat cardiac myocytes, which can be reverted by polydatin through the mechanism of participating in the F-actin organization.

    Topics: Animals; Cardiomyopathies; Drug Interactions; Glucosides; Heart; Lipopolysaccharides; Myocytes, Cardiac; Protective Agents; Rats; Rats, Sprague-Dawley; Stilbenes; Stress Fibers

2003
Rational design of potent human transthyretin amyloid disease inhibitors.
    Nature structural biology, 2000, Volume: 7, Issue:4

    The human amyloid disorders, familial amyloid polyneuropathy, familial amyloid cardiomyopathy and senile systemic amyloidosis, are caused by insoluble transthyretin (TTR) fibrils, which deposit in the peripheral nerves and heart tissue. Several nonsteroidal anti-inflammatory drugs and structurally similar compounds have been found to strongly inhibit the formation of TTR amyloid fibrils in vitro. These include flufenamic acid, diclofenac, flurbiprofen, and resveratrol. Crystal structures of the protein-drug complexes have been determined to allow detailed analyses of the protein-drug interactions that stabilize the native tetrameric conformation of TTR and inhibit the formation of amyloidogenic TTR. Using a structure-based drug design approach ortho-trifluormethylphenyl anthranilic acid and N-(meta-trifluoromethylphenyl) phenoxazine 4, 6-dicarboxylic acid have been discovered to be very potent and specific TTR fibril formation inhibitors. This research provides a rationale for a chemotherapeutic approach for the treatment of TTR-associated amyloid diseases.

    Topics: Amino Acid Sequence; Amyloid Neuropathies; Anti-Inflammatory Agents, Non-Steroidal; Benzofurans; Binding Sites; Cardiomyopathies; Crystallography, X-Ray; Dicarboxylic Acids; Diclofenac; Drug Design; Flurbiprofen; Humans; Hydrogen Bonding; Models, Molecular; Molecular Sequence Data; ortho-Aminobenzoates; Oxazines; Prealbumin; Protein Structure, Quaternary; Resveratrol; Stilbenes; Structure-Activity Relationship; Thermodynamics

2000
[Nitroadenol therapy of arterial hypertension and especially of hypertensive myocardiosclerosis].
    Gazzetta medica italiana, 1954, Volume: 113, Issue:9

    Topics: Adenosine Triphosphate; Cardiomyopathies; Disease; Heart Diseases; Humans; Hypertension; Inositol; Myocardium; Stilbenes

1954