stilbenes has been researched along with Burns* in 10 studies
1 review(s) available for stilbenes and Burns
Article | Year |
---|---|
Inflammation in Fibrodysplasia Ossificans Progressiva and Other Forms of Heterotopic Ossification.
Heterotopic ossification (HO) is associated with inflammation. The goal of this review is to examine recent findings on the roles of inflammation and the immune system in HO. We examine how inflammation changes in fibrodysplasia ossificans progressiva, in traumatic HO, and in other clinical conditions of HO. We also discuss how inflammation may be a target for treating HO.. Both genetic and acquired forms of HO show similarities in their inflammatory cell types and signaling pathways. These include macrophages, mast cells, and adaptive immune cells, along with hypoxia signaling pathways, mesenchymal stem cell differentiation signaling pathways, vascular signaling pathways, and inflammatory cytokines. Because there are common inflammatory mediators across various types of HO, these mediators may serve as common targets for blocking HO. Future research may focus on identifying new inflammatory targets and testing combinatorial therapies based on these results. Topics: Adaptive Immunity; Animals; Anti-Inflammatory Agents, Non-Steroidal; Arthroplasty, Replacement, Hip; Blast Injuries; Brain Injuries, Traumatic; Burns; Cell Differentiation; Cytokines; Humans; Hypoxia; Immunosuppressive Agents; Inflammation; Janus Kinase Inhibitors; Macrophages; Mast Cells; Mesenchymal Stem Cells; Myositis Ossificans; Ossification, Heterotopic; Postoperative Complications; Pyrazoles; Receptors, Retinoic Acid; Retinoic Acid Receptor gamma; Signal Transduction; Sirolimus; Spinal Cord Injuries; Stilbenes; Wounds and Injuries | 2019 |
9 other study(ies) available for stilbenes and Burns
Article | Year |
---|---|
Topical administration of pterostilbene accelerates burn wound healing in diabetes through activation of the HIF1α signaling pathway.
Impaired wound healing is one of a variety of severe diabetic complications and involves many factors, including consistent oxidative stress, prolonged inflammation, impaired angiogenesis, and delayed re-epithelialization. Despite the severe negative impacts that impaired wound healing has on patients' lives, detailed mechanisms and effective therapies are still not fully developed. In this study, we aim to investigate the potential effects and mechanisms of topical administration of pterostilbene and resveratrol on burn wound healing in diabetes. Our in vitro experiments in human umbilical vein endothelial cells showed that long term exposure of hyperglycemia induces oxidative stress and suppression of hypoxia inducible factor1α (HIF1α) signaling pathway, and pterostilbene treatment completely, while resveratrol treatment partly, reversed this effect. Further in vivo experiments in diabetic rats showed that topical administration of pterostilbene exhibited stronger efficacy than resveratrol in normalizing oxidative stress, HIF1α activity, and accelerating burn wound healing in diabetes. We conclude that topical administration of pterostilbene accelerates burn wound healing in diabetes through activation of the HIF1α signaling pathway; thus, pterostilbene may be a potential candidate for clinical treatment of burn wound healing in diabetes. Topics: Administration, Topical; Animals; Burns; Diabetes Mellitus, Experimental; Human Umbilical Vein Endothelial Cells; Humans; Rats; Resveratrol; Signal Transduction; Stilbenes; Wound Healing | 2022 |
Resveratrol alleviates LPS-induced injury in human keratinocyte cell line HaCaT by up-regulation of miR-17.
Resveratrol (RSV), an edible polyphenolic phytoalexin, plays an important role in ameliorating inflammation, including skin inflammation after burn injury. However, the specific molecular mechanism underlying its anti-inflammation effect is still unclear. Herein, the effect and the mechanism underlying the protection of HaCaT cells by RSV against inflammation were examined.. Lipopolysaccharide (LPS)-induced inflammation and the cytoprotection of RSV were evaluated by detecting viability, apoptosis, expressions of apoptosis-associated proteins and the productions of pro-inflammatory factors by CCK-8 assay, flow cytometer, Western blot, and qRT-PCR. miR-17 expression in RSV-treated HaCaT cells was determined by qRT-PCR. The role of miR-17 in protective effect of RSV was investigated after altering its expression using transfection assay. The main ingredients in PTEN/PI3K/AKT and mTOR pathways were quantified by Western blot.. LPS-induced HaCaT cell injury was inhibited by RSV administration. RSV promoted viability, inhibited apoptotic cell rate, increased Bcl-2 expression, decreased Bax, cleaved-Caspase-3, and cleaved-Caspase-9 expressions. RSV also inhibited inflammation injury of HaCaT cells by reducing productions of IL-6, IL-8, and TNF-α. miR-17 was up-regulated in LPS and RSV-co-treated cells. The protective effect of RSV might contribute to overexpression of miR-17. In the mechanism study, RSV-miR-17 axis was found to activate PTEN/PI3K/AKT and mTOR pathways in LPS-treated cells.. RSV alleviated LPS-induced injury in human keratinocyte cell line HaCaT through activations of PTEN/PI3K/AKT and mTOR pathways, which were modulated by miR-17. Topics: Anti-Inflammatory Agents, Non-Steroidal; Apoptosis; Burns; Cell Line; Cell Survival; Humans; Keratinocytes; Lipopolysaccharides; MicroRNAs; Phosphatidylinositol 3-Kinases; Proto-Oncogene Proteins c-akt; PTEN Phosphohydrolase; Resveratrol; Signal Transduction; Stilbenes; TOR Serine-Threonine Kinases; Up-Regulation | 2018 |
Aloe vera and Vitis vinifera improve wound healing in an in vivo rat burn wound model.
Aloe vera and Vitis vinifera have been traditionally used as wound healing agents. The present study aimed to investigate the effects of aloe emodin and resveratrol in the burn wound healing procedure. Burn wounds are common in developed and developing countries, however, in developing countries, the incidence of severe complications is higher and financial resources are limited. The results of the present study demonstrated that neither aloe emodin or resveratrol were cytotoxic to THP-1 macrophages at concentrations of 1, 100 and 500 ng/ml. A significant increase in wound-healing activity was observed in mice treated with the aloe emodin and resveratrol, compared with those which received control treatments. The levels of IL-1β in the exudates of the burn wound area of the treated mice increased in a time-dependent manner over 7 days following burn wound injury. At 10 days post-injury, steady and progressive wound healing was observed in the control animals. The present study confirmed that increased wound healing occurs following treatment with aloe emodin,, compared with resveratrol, providing support for the use of Aloe vera plants to improve burn wound healing. Topics: Aloe; Animals; Anthraquinones; Burns; Cell Line; Cell Proliferation; Cytokines; Disease Models, Animal; Humans; Interleukin-1beta; Male; Mice, Inbred BALB C; Resveratrol; Stilbenes; Vascular Endothelial Growth Factor A; Vitis; Wound Healing | 2016 |
Effects of resveratrol on the treatment of inflammatory response induced by severe burn.
The aim of this study was to preliminarily investigate the effects of resveratrol on the treatment of systemic inflammatory response induced by severe burn wounding. Through the simulation experiment in vivo on burned mice and simulative experiment in vitro on mice macrophage respectively, differences of the related pro-inflammatory cytokines and SIRT1 expression levels between the resveratrol-treated group and the untreated control group were detected and analyzed. The results of the simulation experiment in vivo on burned mice manifested that the survival rate of the mice in the resveratrol-treated group was markedly higher than that of controls (p<0.05). Resveratrol could significantly reduce the levels of pro-inflammatory factors TNF-α, IL-1β, and IL-6 in serum (p<0.01) and greatly elevate the expression level of SIRT1 (p<0.01). The results of the simulative experiment in vitro on mice macrophage showed no significant difference in TNF-α, IL-1β, or IL-6 contents among three groups (C, mice macrophage control group; R, resveratrol-treated macrophage group; I, SIRT1-inhibitor-treated macrophage group). Whereas, after lipopolysaccharide (LPS) activation (L group), macrophage TNF-α, IL-1β, and IL-6 levels were significantly increased in L group, dramatically higher than those in L+R group (LPS and resveratrol treatment group) (p<0.01). After adding SITR1 inhibitor, three pro-inflammatory cytokines in L+R+I group all showed significant increases compared with those in L+R group (p<0.01). LPS activated macrophages were able to promote the expression of pro-inflammatory cytokines. By upregulating the expression levels of SIRT1, resveratrol could effectively inhibit the inflammation cascade reaction and increase the survival rate of severe burn with bacterial infections in a large extent. Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Burns; Cells, Cultured; Female; Inflammation; Interleukin-1beta; Interleukin-6; Lipopolysaccharides; Macrophage Activation; Macrophages; Male; Mice; Mice, Inbred C57BL; Pseudomonas aeruginosa; Pseudomonas Infections; Resveratrol; Sirtuin 1; Stilbenes; Survival Rate; Tumor Necrosis Factor-alpha | 2015 |
SIRT1 protects rat lung tissue against severe burn-induced remote ALI by attenuating the apoptosis of PMVECs via p38 MAPK signaling.
Silent information regulator type-1 (SIRT1) has been reported to be involved in the cardiopulmonary protection. However, its role in the pathogenesis of burn-induced remote acute lung injury (ALI) is currently unknown. The present study aims to investigate the role of SIRT1 in burn-induced remote ALI and the involved signaling pathway. We observed that SIRT1 expression in rat lung tissue after burn injury appeared an increasing trend after a short period of suppression. The upregulation of SIRT1 stimulated by resveratrol exhibited remission of histopathologic changes, reduction of cell apoptosis, and downregulation of pro-inflammatory cytokines in rat pulmonary tissues suffering from severe burn. We next used primary pulmonary microvascular endothelial cells (PMVECs) challenged by burn serum (BS) to simulate in vivo rat lung tissue after burn injury, and found that BS significantly suppressed SIRT1 expression, increased cell apoptosis, and activated p38 MAPK signaling. The use of resveratrol reversed these effects, while knockdown of SIRT1 by shRNA further augmented BS-induced increase of cell apoptosis and activation of p38 MAPK. Taken together, these results indicate that SIRT1 might protect lung tissue against burn-induced remote ALI by attenuating PMVEC apoptosis via p38 MAPK signaling, suggesting its potential therapeutic effects on the treatment of ALI. Topics: Acute Lung Injury; Animals; Apoptosis; Burns; Caspase 3; Cells, Cultured; Cytokines; Disease Models, Animal; Endothelial Cells; Lung; Male; MAP Kinase Signaling System; p38 Mitogen-Activated Protein Kinases; Permeability; Rats; Rats, Sprague-Dawley; Resveratrol; RNA Interference; RNA, Messenger; RNA, Small Interfering; Sirtuin 1; Stilbenes | 2015 |
Protective effect of polydatin against burn-induced lung injury in rats.
Polydatin (PD) has anti-inflammatory and anti-apoptotic effects in ischemic-reperfusion injury. Moreover, inflammatory responses and apoptosis play a role in the development of burn-induced lung injuries. Based on these findings, in this study we investigated the hypothesis that PD can ameliorate lung injury induced by extensive burns via reduction of inflammation and apoptosis.. Rats were subjected to 30% total body surface area burn injury followed by resuscitation. The treatment group received 45 mg/kg PD, and the burn group received the same amount of normal saline solution. No burn injury was inflicted in the sham group. Microvascular permeability, interstitial edema, neutrophil recruitment, and histopathological changes were detected by measuring Evans blue concentration, wet-to-dry lung weight ratio (W/D), myeloperoxidase (MPO) activity, and hematoxylin and eosin staining, respectively. To investigate the mechanism of action of PD, enzyme-linked immunosorbent assay, cell counting, terminal deoxyribonucleotidyl transferase-mediated deoxyuridine 5-triphosphate-digoxigenin nick end labeling (TUNEL) staining, fluorometric assay, and Western blot were used for assessing levels of inflammatory cytokines (tumor necrosis factor alpha, interleukin [IL]-1β, and IL-6), total number of cells, and concentration of polymorphonuclear leukocytes (PMNs) in bronchoalveolar lavage fluid (BALF), the number of apoptotic cells, caspase-3 activity, and apoptosis-related proteins including Bax and Bcl-xl, respectively.. Burn-injury rats exhibited significant lung injury characterized by the deterioration of histopathological characteristics, pulmonary microvascular hyperpermeability, and a high W/D, which were attenuated by PD (P = .007 for permeability, P = .004 for W/D). PD inhibited the burn-induced inflammatory response, as evidenced by the down-regulation of lung MPO activity (P = .008), total number of cells, PMN concentration in BALF, and the local and systemic levels of the pro-inflammatory cytokines examined. Moreover, PD treatment dramatically prevented burn-induced pulmonary cell apoptosis in lungs, as reflected by the decrease in the number of TUNEL-positive cells (P = .002) and changes in Bax, Bcl-xl, and caspase-3 activity (P = .03).. PD ameliorates burn-induced lung injury via its anti-inflammatory and anti-apoptotic effects, and PD treatment may therefore serve as a potential therapeutic target for the treatment of critical burn injuries. Topics: Acute Lung Injury; Animals; Anti-Inflammatory Agents, Non-Steroidal; Apoptosis; bcl-2-Associated X Protein; bcl-X Protein; Bronchoalveolar Lavage Fluid; Burns; Capillary Permeability; Caspase 3; Down-Regulation; Glucosides; Interleukin-1beta; Interleukin-6; Leukocyte Count; Lung; Male; Neutrophils; Organ Size; Peroxidase; Pulmonary Edema; Rats; Rats, Sprague-Dawley; Stilbenes; Survival Rate; Tumor Necrosis Factor-alpha | 2014 |
[Effects of activating silent information regulator 1 on early myocardial damage in severely burned rats].
To explore the effects of activating silent information regulator 1 (SIRT1) on early myocardial damage in severely burned rats.. Twenty-four healthy male SD rats were divided into sham injury group (SI), scald group (S), and resveratrol (RSV) treatment group (RT) according to the random number table, with 8 rats in each group. Rats in groups S and RT were inflicted with 30% TBSA full-thickness scald on the back by immersing in 95 °C water for 18 s. Immediately after injury, rats in group S were intraperitoneally injected with 10 mL normal saline (50 mL/kg) and those in group RT with 10 mL normal saline (50 mL/kg)+10 µL RSV in the concentration of 1 g/mL (50 mg/kg). Backs of rats in group SI were immersed in 20 °C room temperature water for 18 s to simulate the scald process. Heart tissues and aorta abdominalis blood samples were collected at post injury hour (PIH) 6. The histomorphology of heart tissues was observed with HE staining. The serum contents of creatine kinase (CK) and lactate dehydrogenase (LDH) were determined with ELISA. The protein expressions of SIRT1 and caspase-3 and mRNA expressions of SIRT1, caspase-3, IL-1β, and TNF-α in heart tissue specimens were determined with Western blotting and real-time fluorescent quantitative RT-PCR (with protein level denoted as gray value). Data were processed with one-way analysis of variance and LSD- t test.. (1) In group SI, myocardial fibers were in irregularly cylindrical shape, neatly arranged, and the transverse striation were distinct. In group S, myocardial interstitial edema, disorder of myocardial fiber arrangement, and cytoplasm destruction were observed. In group RT, the degrees of myocardial interstitial edema, disorder of myocardial fiber arrangement, and cytoplasm destruction were alleviated in comparison with those of group S. (2) The serum contents of CK and LDH of rats in group S were respectively (2 385 ± 712) and (2 551 ± 196) U/L, which were significantly higher than those in the group SI [(290 ± 59) and (759 ± 60) U/L, with t values respectively 9.466 and 25.452, P values below 0.01]. The serum contents of CK and LDH of rats in group RT were respectively (1 336 ± 149) and (2 209 ± 133) U/L, which were significantly lower than those of group S (with t values respectively -4.506 and -4.860, P values below 0.01). (3) The protein expressions of SIRT1 and caspase-3 in heart tissue of rats in group S were respectively 0.47 ± 0.11 and 0.48 ± 0.12, which were significantly higher than those in group SI [0.18 ± 0.06 and 0.09 ± 0.05, with t values respectively 4.813 and 9.014, P values below 0.01]. The protein expression of SIRT1 in heart tissue of rats in group RT was 0.74 ± 0.18, which was significantly higher than that of group S (t = 4.561, P < 0.01); the protein expression of caspase-3 in heart tissue of rats in group RT was 0.21 ± 0.08, which was significantly lower than that of group S (t = -6.239, P < 0.01). (4) The mRNA expressions of SIRT1, caspase-3, IL-1β, and TNF-α in heart tissue of rats in group S were respectively 2.33 ± 0.24, 1.96 ± 0.20, 2.46 ± 0.21, 1.89 ± 0.37, which were significantly higher than those in group SI (1.00 ± 0.07, 1.00 ± 0.06, 1.00 ± 0.08, 1.00 ± 0.09, with t values respectively 14.961, 12.823, 18.559, 6.679, P values below 0.01). The mRNA expression of SIRT1 in heart tissue of rats in group RT was 2.89 ± 0.31, which was significantly higher than that of group S (t = 3.997, P < 0.01). The mRNA expressions of caspase-3, IL-1β, and TNF-α in heart tissue of rats in group RT were respectively 1.31 ± 0.08, 1.64 ± 0.09, 1.25 ± 0.08, which were significantly lower than those of group S (with t values respectively -8.264, -10.245, -4.818, P values below 0.01).. The expression of SIRT1 in heart tissue is upregulated in the early stage of severely burned rats. Activation of SIRT1 by RSV can alleviate myocardial tissue injury and reduce apoptosis of cardiac myocytes and secretion of IL-1β and TNF-α. Topics: Animals; Antioxidants; Apoptosis; Burns; Caspase 3; Edema; Interleukin-1beta; Male; Myocardium; Myocytes, Cardiac; Rats; Resveratrol; RNA, Messenger; Serum; Sirtuin 1; Stilbenes; Tumor Necrosis Factor-alpha; Up-Regulation | 2014 |
Polydatin protects cardiac function against burn injury by inhibiting sarcoplasmic reticulum Ca2+ leak by reducing oxidative modification of ryanodine receptors.
Our recent studies demonstrate that burn trauma induces leaky sarcoplasmic reticulum (SR) in heart due to excessively active ryanodine receptor (RyR) function. SR Ca(2+) leak causes partial depletion of SR Ca(2+) content and disturbances in intracellular Ca(2+) homeostasis, resulting in the pathogenesis of burn-generated cardiac dysfunction. This study investigated the role of polydatin, a resveratrol glucoside, in preventing SR leak and its therapeutic effect against burn-generated cardiac dysfunction. We found that polydatin treatment improved cardiac function impaired by burn injury of 30% of total body surface area. Parallel to the alterations in cardiac function, polydatin significantly increased the defective systolic Ca(2+) transient and contractility in burn-traumatized cardiomyocytes. Burn injury increased the occurrence of Ca(2+) sparks. The enhancement of Ca(2+) spark-mediated SR leak caused partial depletion of SR Ca(2+) content in burn-traumatized cardiomyocytes. Furthermore, we found that the content of free thiols (the number of reduced cysteines) in RyR2 in cardiomyocytes determined by the monobromobimane fluorescence of RyR2 was decreased markedly in burn-traumatized hearts. Polydatin treatment decreased intracellular reactive oxygen species levels and restored the amount of free thiols in RyR2 in burns. Concomitantly, polydatin corrected Ca(2+) spark-mediated SR leak and restored SR Ca(2+) load. The systolic Ca(2+) transient and cellular contractility were significantly increased by polydatin treatment. Taken together, the present findings provide the first evidence demonstrating that polydatin prevents enhanced Ca(2+) spark-mediated SR leak by reducing oxidative stress in RyR2 in burn-traumatized heart, leading to protection of cardiac function against burn injury. Topics: Animals; Burns; Calcium; Glucosides; Heart Injuries; Myocytes, Cardiac; Oxidation-Reduction; Oxidative Stress; Rats; Reactive Oxygen Species; Ryanodine Receptor Calcium Release Channel; Sarcoplasmic Reticulum; Stilbenes | 2013 |
[Biological dressing with human hair keratin-collagen sponge-poly 2-hydroxyethyl methacrylate composite promotes burn wound healing in SD rats].
To develop a composite material containing human hair keratin (HHK), collagen sponge (inner layer) and poly 2-hydroxyethyl methacrylate (PHEMA) film that allows sustained release of polydatin and test its effect as a biological dressing in promoting burn wound healing in SD rats.. Three HHK materials with fast, moderate, and low degradation rates were mixed at the ratio of 4:3:3 to prepare a reticular structure, which was processed into a composite material with bovine tendon-derived collagen sponge, and further complexed with HEMA film containing PD prepared by polymerization. Degree II burn wound was induced in SD rats by scalding and within postburn day 2-5, the wounds were cleansed and covered with the composite material or with glutaraldehyde-treated porcine skin (positive control). At week 1, 2, 4, 6 and 8 following wound dressing, 6 full-thickness skin samples were harvested from the wounds for histological observation and immunohistochemical detection of collagen and elastic fibers, and the wound healing time and healing rate were recorded.. The prepared collagen sponge film was transparent and porous (50-300 microm in diameter) and allowed sustained PD release into normal saline within 48 h. Compared with the porcine skin, the composite material reduced exudation and maintained ideal moisture of the wound, and significantly shortened the wound healing time (P=0.000). On day 7, 14, and 21 following dressing, the composite material and porcine skin significantly increased the wound healing rate as compared with the negative control group (P=0.000), and on day 14, the composite achieved significantly greater healing rate than the porcine skin (P<0.05).. HHK-collagen sponge-PHEMA/PD composite as a dressing material promotes burn wound healing in rats by allowing in vivo construction of tissue engineered epidermis. PHEMA is feasible for sustained drug delivery in this composite. Topics: Animals; Biological Dressings; Burns; Cattle; Collagen; Drug Delivery Systems; Drugs, Chinese Herbal; Glucosides; Humans; Keratins; Polyhydroxyethyl Methacrylate; Rats; Rats, Sprague-Dawley; Stilbenes; Swine; Tissue Engineering; Wound Healing | 2007 |