stilbenes and Bone-Diseases--Metabolic

stilbenes has been researched along with Bone-Diseases--Metabolic* in 2 studies

Other Studies

2 other study(ies) available for stilbenes and Bone-Diseases--Metabolic

ArticleYear
Resveratrol supplementation influences bone properties in the tibia of hindlimb-suspended mature Fisher 344 × Brown Norway male rats.
    Applied physiology, nutrition, and metabolism = Physiologie appliquee, nutrition et metabolisme, 2012, Volume: 37, Issue:6

    The deleterious bone effects of mechanical unloading have been suggested to be due to oxidative stress and (or) inflammation. Resveratrol has both antioxidant and anti-inflammatory properties; therefore, the study's objective was to determine whether providing resveratrol in the low supplementation range for a short duration prevents bone loss during mechanical unloading. Mature (6 months old) Fischer 344 × Brown Norway male rats were hindlimb-suspended (HLS) or kept ambulatory for 14 days. Rats were provided either trans-resveratrol (RES; 12.5 mg/kg body mass per day) or deionized distilled water by oral gavage for 21 days (7 days prior to and during the 14 days of HLS). Bone mass was measured by dual energy X-ray absorptiometry. Bone microstructure was determined by microcomputed tomography. HLS of rats resulted in femur trabecular bone deterioration. Resveratrol supplementation did not attenuate trabecular bone deterioration in HLS rats. Unexpectedly, HLS-RES rats had the lowest tibial bone mineral content (P < 0.05), calcium content and lower cortical thickness (P < 0.05), and increased porosity compared with HLS/control rats. Plasma osteocalcin was also lower (P < 0.04) in HLS/resveratrol rats. There were no significant effects on plasma C-reactive protein, a marker of systemic inflammation, or total antioxidant capacity. However, HLS-RES rats showed a negative relationship (r(2) = 0.69, P = 0.02) between plasma osteocalcin and thiobarbituric acid reactive substances, a marker of lipid peroxidation. Based on the results, resveratrol supplementation of 6-month-old HLS male rats had no bone protective effects and possibly even detrimental bone effects.

    Topics: Absorptiometry, Photon; Animals; Biomechanical Phenomena; Bone and Bones; Bone Density; Bone Diseases, Metabolic; Calcium; Dietary Supplements; Hindlimb; Hindlimb Suspension; Male; Osteocalcin; Osteoporosis; Rats; Rats, Inbred BN; Rats, Inbred F344; Resveratrol; Stilbenes; Tibia

2012
Preventing bone loss and weight gain with combinations of vitamin D and phytochemicals.
    Journal of medicinal food, 2011, Volume: 14, Issue:11

    Vitamin D and certain natural compounds have been shown to regulate both lipid metabolism and bone formation. Treatments that prevent or reverse age-related increase in bone marrow adiposity could both increase new bone formation and inhibit bone destruction. We tested the hypothesis that dietary supplementation with combinations of vitamin D and phytochemicals inhibits bone loss and decreases adiposity to a greater extent than control or vitamin D-alone diets. Aged ovariectomized female rats (12 months old, n=50, initial body weight=240 g) were given control (AIN-93M diet), vitamin D (2,400 IU/kg), or vitamin D plus resveratrol (16, 80, or 400 mg/kg of diet [low, medium, and high dose, respectively]), quercetin (80, 400, or 2,000 mg/kg of diet), and genistein (64, 256, or 1,040 mg/kg of diet) for 8 weeks. The high-dose treatment (vitamin D+400 mg/kg resveratrol+2,000 mg/kg quercetin+1,040 mg/kg genistein) reduced body weight gain (P<.05) and the fat pad weights (P<.05). This treatment also increased the serum concentration of insulin-like growth factor-1 (P<.05) and the bone mineral content of the femur. Micro-computed tomography and histomorphometric analyses indicated that the high-dose treatment prevented loss of trabecular bone (P<.05) and reduced marrow adipocytes (P<.001) and osteoclasts (P<.05) compared with the control and vitamin D alone (P<.05). We conclude that aged ovariectomized female rats supplemented with vitamin D combined with genistein, quercetin, and resveratrol had improved bone mineral density and reduced body weight gain and a significant decrease in bone marrow adipocytes. The synergistic effects of a combination of phytochemicals with vitamin D may be effective in reducing bone loss and weight gain after menopause.

    Topics: Adipose Tissue; Adiposity; Animals; Bone Density; Bone Diseases, Metabolic; Diet; Dietary Supplements; Drug Combinations; Female; Femur; Genistein; Ovariectomy; Phytotherapy; Quercetin; Rats; Rats, Inbred F344; Resveratrol; Stilbenes; Vitamin D; Weight Gain

2011