stilbenes has been researched along with Autistic-Disorder* in 3 studies
1 review(s) available for stilbenes and Autistic-Disorder
Article | Year |
---|---|
Beneficial action of resveratrol: How and why?
Flavonoid resveratrol modulates the transcription factor NF-κB; inhibits the cytochrome P450 isoenzyme CYP1 A1; suppresses the expression and activity of cyclooxygenase enzymes; and modulates Fas/Fas-ligand-mediated apoptosis, p53, mammalian target of rapamycin, and cyclins and various phosphodiesterases. This increases the cytosolic cAMP that activates Epac1/CaMKKβ/AMPK/SIRT1/PGC-1α pathway, which in turn facilitates increased oxidation of fatty acids, mitochondrial biogenesis, mitochondrial respiration, and gluconeogenesis. Resveratrol triggers apoptosis of activated T cells and suppresses tumor necrosis factor-α, interluekin-17 (IL-17), and other proinflammatory molecules, and thus is of benefit in autoimmune diseases. In addition, resveratrol inhibits expression of hypoxia-inducible factor-1α and vascular endothelial growth factor, explaining its effective action against cancer. Brain-derived neurotrophic factor (BDNF) that is involved in the pathogenesis of obesity, type 2 diabetes mellitus, and metabolic syndrome is also altered in depression, schizophrenia, bipolar disorder, and autism. We noted that BDNF protects against cytotoxic actions of alloxan, streptozotocin, and benzo(a)pyrene. Resveratrol prevents bisphenol A-induced autism, type 2 diabetes mellitus, and metabolic syndrome, suggesting that it may augment BDNF synthesis and action. We also observed that BDNF levels are low in type 2 diabetes mellitus and that BDNF enhances production of antiinflammatory lipid, lipoxin A4, whose levels are low in diabetes mellitus. Thus, resveratrol may augment production of lipoxin A4. Resveratrol alters gut microbiota and influences stem cell proliferation and differentiation. These pleiotropic actions of resveratrol may explain the multitude of its actions and benefits. Topics: Anti-Inflammatory Agents, Non-Steroidal; Antioxidants; Apoptosis; Autistic Disorder; Brain-Derived Neurotrophic Factor; Cell Differentiation; Cell Proliferation; Cytochrome P-450 CYP1A1; Diabetes Mellitus, Type 2; Gastrointestinal Microbiome; Gastrointestinal Tract; Humans; Hypoxia-Inducible Factor 1, alpha Subunit; Interleukin-17; Lipoxins; Metabolic Syndrome; NF-kappa B; Resveratrol; Stilbenes; Transcription Factors; Tumor Necrosis Factor-alpha; Vascular Endothelial Growth Factor A | 2016 |
2 other study(ies) available for stilbenes and Autistic-Disorder
Article | Year |
---|---|
Behavioral alterations in autism model induced by valproic acid and translational analysis of circulating microRNA.
Autism spectrum disorder (ASD) is characterized by difficulties in social interaction, communication and language, and restricted repertoire of activities and interests. The etiology of ASD remains unknown and no clinical markers for diagnosis were identified. Environmental factors, including prenatal exposure to valproic acid (VPA), may contribute to increased risk of developing ASD. MicroRNA (miRNA) are small noncoding RNA that regulate gene expression and are frequently linked to biological processes affected in neurodevelopmental disorders. In this work, we analyzed the effects of resveratrol (an antioxidant and anti-inflammatory molecule) on behavioral alterations of the VPA model of autism, as well as the levels of circulating miRNA. We also evaluated the same set of miRNA in autistic patients. Rats of the VPA model of autism showed reduced total reciprocal social interaction, prevented by prenatal treatment with resveratrol (RSV). The levels of miR134-5p and miR138-5p increased in autistic patients. Interestingly, miR134-5p is also upregulated in animals of the VPA model, which is prevented by RSV. In conclusion, our findings revealed important preventive actions of RSV in the VPA model, ranging from behavior to molecular alterations. Further evaluation of preventive mechanisms of RSV can shed light in important biomarkers and etiological triggers of ASD. Topics: Adolescent; Animals; Anticonvulsants; Antioxidants; Autistic Disorder; Behavior, Animal; Child; Child, Preschool; Circulating MicroRNA; Disease Models, Animal; Female; Humans; Male; Maternal Exposure; MicroRNAs; Pregnancy; Prenatal Exposure Delayed Effects; Protein Biosynthesis; Rats, Wistar; Resveratrol; Stilbenes; Valproic Acid | 2018 |
Resveratrol prevents social deficits in animal model of autism induced by valproic acid.
Autism spectrum disorders (ASD) involve a complex interplay of both genetic and environmental risk factors, such as prenatal exposure to valproic acid (VPA). Considering the neuroprotective, antioxidant and anti-inflammatory effects of resveratrol (RSV), we investigated the influence of prenatal RSV treatment on social behaviors of a rodent model of autism induced by prenatal exposure to VPA. In the three-chambered apparatus test, the VPA group showed a reduced place preference conditioned by conspecific and no preference between exploring a wire-cage or a rat enclosed inside a wire cage, revealing sociability impairments. Prenatal administration of RSV prevented the VPA-induced social impairments evaluated in this study. A bioinformatics analysis was used to discard possible molecular interactions between VPA and RSV during administration. The interaction energy between RSV and VPA is weak and highly unstable, suggesting cellular effects instead of a single chemical process. In summary, the present study highlights a promising experimental strategy to evaluate new molecular targets possibly involved in the etiology of autism and developmental alterations implicated in neural and behavioral impairments in ASD. Topics: Animals; Anti-Inflammatory Agents; Autistic Disorder; Female; Male; Maternal Exposure; Molecular Dynamics Simulation; Pregnancy; Prenatal Exposure Delayed Effects; Rats, Wistar; Resveratrol; Social Skills; Stilbenes; Valproic Acid | 2014 |