stilbenes and Arterial-Occlusive-Diseases

stilbenes has been researched along with Arterial-Occlusive-Diseases* in 2 studies

Other Studies

2 other study(ies) available for stilbenes and Arterial-Occlusive-Diseases

ArticleYear
Preventive Effects of Resveratrol on Endocannabinoid System and Synaptic Protein Modifications in Rat Cerebral Cortex Challenged by Bilateral Common Carotid Artery Occlusion and Reperfusion.
    International journal of molecular sciences, 2018, Jan-31, Volume: 19, Issue:2

    This study aims to evaluate the putative roles of a single acute dose of resveratrol (RVT) in preventing cerebral oxidative stress induced by bilateral common carotid artery occlusion, followed by reperfusion (BCCAO/R) and to investigate RVT's ability to preserve the neuronal structural integrity. Frontal and temporal-occipital cortices were examined in two groups of adult Wistar rats, sham-operated and submitted to BCCAO/R. In both groups, 6 h before surgery, half the rats were gavage-fed with a single dose of RVT (40 mg/per rat in 300 µL of sunflower oil as the vehicle), while the second half received the vehicle alone. In the frontal cortex, RVT pre-treatment prevented the BCCAO/R-induced increase of lipoperoxides, augmented concentrations of palmitoylethanolamide and docosahexaenoic acid, increased relative levels of the cannabinoid receptors type 1 (CB1) and 2 (CB2), and peroxisome-proliferator-activated-receptor (PPAR)-α proteins. Increased expression of CB1/CB2 receptors mirrored that of synaptophysin and post-synaptic density-95 protein. No BCCAO/R-induced changes occurred in the temporal-occipital cortex. Collectively, our results demonstrate that, in the frontal cortex, RVT pre-treatment prevents the BCCAO/R-induced oxidative stress and modulates the endocannabinoid and PPAR-α systems. The increased expression of synaptic structural proteins further suggests the possible efficacy of RVT as a dietary supplement to preserve the nervous tissue metabolism and control the physiological response to the hypoperfusion/reperfusion challenge.

    Topics: Animals; Arterial Occlusive Diseases; Carotid Artery Diseases; Frontal Lobe; Gene Expression Regulation; Male; Oxidative Stress; Rats; Rats, Wistar; Receptors, Cannabinoid; Reperfusion Injury; Resveratrol; Stilbenes

2018
Inhibition of neointimal formation by trans-resveratrol: role of phosphatidyl inositol 3-kinase-dependent Nrf2 activation in heme oxygenase-1 induction.
    Molecular nutrition & food research, 2010, Volume: 54, Issue:10

    Neointima, defined as abnormal growth of the intimal layer of blood vessels, is believed to be a critical event in the development of vascular occlusive disease. Although resveratrol's inhibitory effects on proliferation and migration of vascular smooth muscle cells has been reported, its activity on neointimal formation is still unclear. Oral administration of trans-resveratrol significantly suppressed intimal hyperplasia in a wire-injured femoral artery mouse model. In cultured vascular smooth muscle cells, trans-resveratrol inhibited platelet-derived growth factor-stimulated DNA synthesis and cell proliferation with down-regulation of cyclin D and pRB. Moreover, platelet-derived growth factor-induced production of reactive oxygen species was inhibited by trans-resveratrol and the compound induced heme oxygenase-1 (HO-1). The anti-proliferative activity of trans-resveratrol was reversed by an HO-1 inhibitor, ZnPPIX. Subcellular fractionation and reporter gene analyses revealed that trans-resveratrol increased the level of nuclear Nrf2 and antioxidant response element reporter activity, and that these were essential for the induction of HO-1. Trans-resveratrol also enhanced the activities of phosphatidyl inositol 3-kinase and extracellular signal regulated kinase, and phosphatidyl inositol 3-kinase was required for Nrf2/antioxidant response element-dependent HO-1 induction. These data have significant implications for the elucidation of the pharmacological mechanism by which trans-resveratrol prevents vascular occlusive diseases.

    Topics: Animals; Aorta, Thoracic; Arterial Occlusive Diseases; Cell Line; Cell Nucleus; Cell Proliferation; Cells, Cultured; Cyclin D; Enzyme Inhibitors; Extracellular Signal-Regulated MAP Kinases; Femoral Artery; Heme Oxygenase-1; Hyperplasia; Membrane Proteins; Mice; Muscle, Smooth, Vascular; Neointima; NF-E2-Related Factor 2; Phosphoinositide-3 Kinase Inhibitors; Protein Transport; Rats; Reactive Oxygen Species; Resveratrol; Retinoblastoma Protein; Stilbenes

2010