stigmasterol and Mouth-Neoplasms

stigmasterol has been researched along with Mouth-Neoplasms* in 1 studies

Other Studies

1 other study(ies) available for stigmasterol and Mouth-Neoplasms

ArticleYear
Cytotoxicity Activity and Druggability Studies of Sigmasterol Isolated from Marine Sponge Dysidea avara Against Oral Epithelial Cancer Cell (KB/C152) and T-Lymphocytic Leukemia Cell Line (Jurkat/ E6-1).
    Asian Pacific journal of cancer prevention : APJCP, 2020, Apr-01, Volume: 21, Issue:4

    Marine sponge is a rich natural resource of many pharmacological compounds and various bioactive anticancer agents are derived from marine organisms like sponges.. studying the anticancer activity and Drug ability of marine sponge Dysidea avara using Cell lines oral epithelial cancer cell (KB/C152) and T-lymphocytic leukemia cell line (Jurkat/ E6-1). Marine sponge was collected from Persian Gulf. Several analytical techniques have been used to obtain and recognize stigmasterol, including column chromatography, thin layer chromatography, and gas chromatography-mass spectrometry. The PASS Prediction Activity was used to investigate the apoptosis-inducing effect of stigmasterol. The cytotoxic activity of stigmasterol was examined using yellow tetrazolium salt XTT (sodium 2, 3,-bis (2methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino) carbonyl]-2H-tetrazolium) assay. The stigmasterol were docked within the protein tyrosine kinase (PTKs) (PDB code: 1t46) and epidermal growth factor receptor (EGFRK) (PDB code: 1M17). Also, the pharmacological characteristics of stigmasterol were predicted using PerADME, SwissADME, and Molinspi ration tools. Apoptosis-inducing effect of stigmasterol indicate the stigmasterol in terms of the possibility of apoptosis in cells.. The apoptosis inducement results of known stigmasterol were determined by PASS on-line prediction. The compound exhibit potent cytotoxic properties against KB/C152 cell compared to Jurkat/ E6-1 cell. The stigmasterol showed the cytotoxicity effects on KB/C152 and HUT78 with IC50 ranges of 81.18 and 103.03 μg/ml, respectively. Molecular docking showed that, stigmasterol bound stably to the active sites of the protein tyrosine kinase (PTKs) (PDB code: 1t46) and epidermal growth factor receptor (EGFRK) (PDB code: 1M17).. The compound showed desirable pharmacokinetic properties (ADME). This provided direct evidence of how a prospective anti-cancer agent can be stigmasterol. The preclinical studies paved the way for a potential new compound of anti-cancer.

    Topics: Animals; Antineoplastic Agents; Apoptosis; Cell Survival; Dysidea; Humans; Leukemia, T-Cell; Mouth Neoplasms; Neoplasms, Glandular and Epithelial; Sterols; Stigmasterol; Tumor Cells, Cultured

2020