stigmasterol and Atherosclerosis

stigmasterol has been researched along with Atherosclerosis* in 5 studies

Other Studies

5 other study(ies) available for stigmasterol and Atherosclerosis

ArticleYear
Saringosterol from
    Marine drugs, 2021, Aug-26, Volume: 19, Issue:9

    Dysregulation of cholesterol homeostasis is a major risk factor of atherosclerosis, which can lead to serious health problems, including heart attack and stroke. Liver X receptor (LXR) α and β are transcription factors belonging to the nuclear receptor superfamily, which play important roles in cholesterol homeostasis. Selectively activating LXRβ provides a promising strategy for the treatment of atherosclerosis. Here, we employed atherosclerotic apoE-knockout mice to evaluate the effects of saringosterol, a phytosterol with potent and selective action for LXRβ, which we identified previously in edible marine seaweed

    Topics: Animals; Atherosclerosis; Cholesterol; Cytochrome P-450 Enzyme System; Diet, High-Fat; Hypolipidemic Agents; Intestinal Mucosa; Lipid Metabolism; Liver; Macrophages; Membrane Transport Proteins; Mice, Knockout, ApoE; Sargassum; Stigmasterol

2021
Stigmasterol stimulates transintestinal cholesterol excretion independent of liver X receptor activation in the small intestine.
    The Journal of nutritional biochemistry, 2020, Volume: 76

    Despite advances in healthcare, cardiovascular disease (CVD) remains the leading cause of death in the United States. Elevated levels of plasma cholesterol are highly predictive of CVD and stroke and are the principal driver of atherosclerosis. Unfortunately, current cholesterol lowering agents, such as statins, are not known to reverse atherosclerotic disease once it has been established. In preclinical models, agonists of nuclear receptor, LXR, have been shown to reduce and reverse atherosclerosis. Phytosterols are bioactive non-cholesterol sterols that act as LXR agonists and regulate cholesterol metabolism and transport. We hypothesized that stigmasterol would act as an LXR agonist and alter intestinal cholesterol secretion to promote cholesterol elimination. Mice were fed a control diet, or a diet supplemented with stigmasterol (0.3% w/w) or T0901317 (0.015% w/w), a known LXR agonist. In this experiment we analyzed the sterol content of bile, intestinal perfusate, plasma, and feces. Additionally, the liver and small intestine were analyzed for relative levels of transcripts known to be regulated by LXR. We observed that T0901317 robustly promoted cholesterol elimination and acted as a strong LXR agonist. Stigmasterol promoted transintestinal cholesterol secretion through an LXR-independent pathway.

    Topics: Animals; Atherosclerosis; Bile; Bile Ducts; Cholesterol; Female; Hydrocarbons, Fluorinated; Intestine, Small; Liver; Liver X Receptors; Male; Mice; Mice, Inbred C57BL; Orphan Nuclear Receptors; Phytosterols; Sterols; Stigmasterol; Sulfonamides

2020
Stigmasterol accumulation causes cardiac injury and promotes mortality.
    Communications biology, 2019, Volume: 2

    Cardiovascular disease is expected to remain the leading cause of death worldwide despite the introduction of proprotein convertase subtilisin/kexin type 9 inhibitors that effectively control cholesterol. Identifying residual risk factors for cardiovascular disease remains an important step for preventing and clinically managing the disease. Here we report cardiac injury and increased mortality occurring despite a 50% reduction in plasma cholesterol in a mouse model of phytosterolemia, a disease characterized by elevated levels of dietary plant sterols in the blood. Our studies show accumulation of stigmasterol, one of phytosterol species, leads to left ventricle dysfunction, cardiac interstitial fibrosis and macrophage infiltration without atherosclerosis, and increased mortality. A pharmacological inhibitor of sterol absorption prevents cardiac fibrogenesis. We propose that the pathological mechanism linking clinical sitosterolemia to the cardiovascular outcomes primarily involves phytosterols-induced cardiac fibrosis rather than cholesterol-driven atherosclerosis. Our studies suggest stigmasterol is a potent and independent risk factor for cardiovascular disease.

    Topics: Animals; Atherosclerosis; ATP Binding Cassette Transporter, Subfamily G, Member 5; ATP Binding Cassette Transporter, Subfamily G, Member 8; Cell Survival; Dietary Supplements; Fibrosis; Human Umbilical Vein Endothelial Cells; Humans; Hypercholesterolemia; Intestinal Diseases; Lipid Metabolism, Inborn Errors; Lipoproteins; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Myocardium; Phytosterols; Stigmasterol; Ventricular Dysfunction, Left

2019
Cerebral accumulation of dietary derivable plant sterols does not interfere with memory and anxiety related behavior in Abcg5-/- mice.
    Plant foods for human nutrition (Dordrecht, Netherlands), 2011, Volume: 66, Issue:2

    Plant sterols such as sitosterol and campesterol are frequently applied as functional food in the prevention of atherosclerosis. Recently, it became clear that plasma derived plant sterols accumulate in murine brains. We questioned whether plant sterols in the brain are associated with alterations in brain cholesterol homeostasis and subsequently with brain functions. ATP binding cassette (Abc)g5-/- mice, a phytosterolemia model, were compared to Abcg5+/+ mice for serum and brain plant sterol accumulation and behavioral and cognitive performance. Serum and brain plant sterol concentrations were respectively 35-70-fold and 5-12-fold increased in Abcg5-/- mice (P<0.001). Plant sterol accumulation resulted in decreased levels of desmosterol (P<0.01) and 24(S)-hydroxycholesterol (P<0.01) in the hippocampus, the brain region important for learning and memory functions, and increased lanosterol levels (P<0.01) in the cortex. However, Abcg5-/- and Abcg5+/+ displayed no differences in memory functions or in anxiety and mood related behavior. The swimming speed of the Abcg5-/- mice was slightly higher compared to Abcg5+/+ mice (P<0.001). In conclusion, plant sterols in the brains of Abcg5-/- mice did have consequences for brain cholesterol metabolism, but did not lead to an overt phenotype of memory or anxiety related behavior. Thus, our data provide no contra-indication for nutritional intake of plant sterol enriched nutrition.

    Topics: Affect; Animals; Anxiety Disorders; Atherosclerosis; ATP-Binding Cassette Transporters; Behavior, Animal; Brain; Cholesterol; Desmosterol; Diet; Hippocampus; Homeostasis; Hydroxycholesterols; Hypercholesterolemia; Intestinal Diseases; Lanosterol; Lipid Metabolism, Inborn Errors; Male; Maze Learning; Memory; Mice; Mice, Mutant Strains; Phytosterols; Sitosterols; Stigmasterol

2011
Margarine phytosterols decrease the secretion of atherogenic lipoproteins from HepG2 liver and Caco2 intestinal cells.
    Atherosclerosis, 2005, Volume: 182, Issue:1

    Several studies in humans have demonstrated the hypocholesterolemic effect of plant sterol consumption. It is unclear whether plant sterols regulate lipoprotein metabolism in the liver and intestines, thereby decreasing the levels of circulating atherogenic lipoproteins. We investigated the effect of the three main phytosterols: stigmasterol, campesterol, and beta-sitosterol on lipoprotein production in HepG2 human liver cells and Caco2 human intestinal cells and the mechanisms involved. Cells were incubated for 24h with 50 micromol/L of the different phytosterols or 10 micromol/L of atorvastatin. Very low-density lipoprotein levels (measured by apolipoprotein (apo) B100) in HepG2 cells and chylomicron levels (measured by apoB48) in Caco2 cells were measured using western blotting. Intracellular cholesterol levels were measured using gas chromatography. Analysis was carried out using Student's t-test and ANOVA. Secretion levels of apoB100 significantly decreased by approximately 30% after incubation with all phytosterols compared to control. In addition, cholesterol ester (CE) concentrations significantly decreased when HepG2 cells were incubated with the phytosterols compared to control cells. Secretion of apoB48 from intestinal cells significantly decreased by 15% with stigmasterol, 16% with campesterol and 19% beta-sitosterol compared to control. Collectively the data suggests that plant sterols limit lipid (CE) availability in cells. Decreases in circulating levels of LDL and chylomicron remnants seen in humans with the consumption of margarine phytosterols are possibly due to their effect on lipid production in cells and would therefore reduce the risk of developing cardiovascular disease.

    Topics: Anticholesteremic Agents; Apolipoprotein B-100; Apolipoprotein B-48; Apolipoproteins B; Atherosclerosis; Atorvastatin; Caco-2 Cells; Carcinoma, Hepatocellular; Cholesterol; Drug Synergism; Enterocytes; Hepatocytes; Heptanoic Acids; Humans; Liver Neoplasms; Margarine; Phytosterols; Pyrroles; Sitosterols; Stigmasterol

2005