stevioside has been researched along with Osteoarthritis* in 2 studies
2 other study(ies) available for stevioside and Osteoarthritis
Article | Year |
---|---|
Stevioside targets the NF-κB and MAPK pathways for inhibiting inflammation and apoptosis of chondrocytes and ameliorates osteoarthritis in vivo.
Osteoarthritis (OA) is a joint disease that is characterized by articular cartilage degeneration and destruction. Stevioside (SVS) is a diterpenoid glycoside extracted from Stevia rebaudiana Bertoni with some specific effects against inflammatory and apoptotic, whereas it is still unclear what function SVS has in osteoarthritis. This study focuses on the anti-inflammatory and anti-apoptosis functions of SVS on chondrocytes induced by interleukin (IL)-1beta, and the role of SVS in an osteoarthritis model for mice. We can detect the production of inflammatory factors such as nitric oxide (NO) and prostaglandin E2 (PGE2) using real-time quantitative polymerase chain reaction (RT-qPCR), the Griess reaction, and enzyme linked immunosorbent assay (ELISA). On the basis of Western blot, we have observed the protein expressions of cartilage matrix metabolism, inflammatory factors, and apoptosis of chondrocytes. Simultaneously, the pharmacological effects of SVS in mice were evaluated by hematoxylin and eosin (HE), toluidine blue, Safranin O, and immunohistochemical staining. The results show that SVS slows extracellular matrix degradation and chondrocyte apoptosis. In addition, SVS mediates its cellular effect by inhibiting the activation of mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-κB) signaling pathways. Meanwhile, molecular docking studies revealed that SVS has excellent binding capabilities to p65, extracellular signal-regulated kinase (ERK), p38, and c-Jun N-terminal kinase (JNK). The study suggests that SVS can be developed as a potential osteoarthritis treatment. Topics: Animals; Cartilage, Articular; Chondrocytes; Extracellular Signal-Regulated MAP Kinases; Inflammation; Interleukin-1beta; Mice; Molecular Docking Simulation; NF-kappa B; Osteoarthritis | 2023 |
Stevioside protects primary articular chondrocytes against IL-1β-induced inflammation and catabolism by targeting integrin.
Osteoarthritis (OA) is a common, progressive, and chronic disorder of the joints that is characterized by the inflammation and degradation of articular cartilage and is known to significantly impair quality of daily life. Stevioside (SVS) is a natural diterpenoid glycoside that has anti-inflammatory benefits. Hence, in the current research, it was hypothesized that SVS might exert anti-inflammatory effects on articular chondrocytes and alleviate cartilage degradation in mice with OA. The expression of inflammatory cytokines, like inducible nitric oxide synthase (iNOS), NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3), and cyclooxygenase-2 (COX-2) in chondrocytes after interleukin-1β (IL-1β) exposure, was inhibited by the pretreatment of SVS. As well, SVS inhibited the reduction of collagen II and sry-box transcription factor 9 (SOX9) in chondrocytes stimulated by IL-1β and suppressed the expression of MMP3 and MMP13. Further, after treatment with SVS, cell cytometry, autophagy flux, and related protein expression showed diminished cell apoptosis and reduced autophagy impairment. Moreover, SVS blocked the activation of phosphoinositide-3-kinase/Akt/nuclear factor-kappa beta (PI3K/Akt/NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways stimulated by IL-1β. This resulted in decreased cellular inflammation. In vivo experiments with intra-articular injections of SVS in mice with the DMM mouse model demonstrated a decrease in cartilage degradation and an improvement in subchondral bone remodeling. After the integrin αVβ3-related knockdown using siRNA, a reversed effect was observed on the anti-inflammatory, anabolic promoting, catabolic blocking, and NF-κB and MAPK signaling pathway inhibition of SVS on chondrocytes treated with IL-1β. The above findings highlighted that SVS blocked IL-1β, triggered an inflammatory response in mice chondrocytes, and prevented cartilage degradation in vivo through integrin αVβ3. This suggested that SVS might serve as a novel therapeutic option for OA. Topics: Animals; Anti-Inflammatory Agents; Cartilage, Articular; Cells, Cultured; Chondrocytes; Inflammation; Integrin alphaVbeta3; Interleukin-1beta; Mice; NF-kappa B; Osteoarthritis; Phosphatidylinositol 3-Kinases; Proto-Oncogene Proteins c-akt | 2023 |