stevioside and Obesity

stevioside has been researched along with Obesity* in 5 studies

Reviews

1 review(s) available for stevioside and Obesity

ArticleYear
[Study of physiological and toxic effects of a sweetening agent stevioside (review of the literature)].
    Voprosy pitaniia, 2001, Volume: 70, Issue:4

    The review consist of modern data of physiologic and toxic effects on organism of sweetening stevioside with low energy value. His sweetening is considered by the most of investigators as not toxic, not mutadenic and not cardinogenic one.

    Topics: Animals; Carcinogenicity Tests; Diterpenes; Diterpenes, Kaurane; Female; Fetus; Glucosides; Humans; Male; Mutagenicity Tests; Obesity; Pregnancy; Rats; Rats, Wistar; Sweetening Agents; Terpenes; Time Factors

2001

Other Studies

4 other study(ies) available for stevioside and Obesity

ArticleYear
Pharmacological Approaches to Attenuate Inflammation and Obesity with Natural Products Formulations by Regulating the Associated Promoting Molecular Signaling Pathways.
    BioMed research international, 2021, Volume: 2021

    Obesity is a public health problem characterized by increased body weight due to abnormal adipose tissue expansion. Bioactive compound consumption from the diet or intake of dietary supplements is one of the possible ways to control obesity. Natural products with adipogenesis-regulating potential act as obesity treatments. We evaluated the synergistic antiangiogenesis, antiadipogenic and antilipogenic efficacy of standardized rebaudioside A, sativoside, and theasaponin E1 formulations (RASE1)

    Topics: 3T3-L1 Cells; Adipocytes; Adipogenesis; Angiogenesis Inhibitors; Animals; Biological Products; Disease Models, Animal; Diterpenes, Kaurane; Drug Compounding; Drug Synergism; Female; Glucosides; Human Umbilical Vein Endothelial Cells; Humans; Inflammation; Lipid Metabolism; Lipogenesis; Lipolysis; Mice; Mice, Inbred ICR; Obesity; Oleanolic Acid; Phytotherapy; RNA, Messenger; Saponins; Signal Transduction; Stevia; Tea

2021
Stevia-derived compounds attenuate the toxic effects of ectopic lipid accumulation in the liver of obese mice: a transcriptomic and metabolomic study.
    Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association, 2015, Volume: 77

    There is a close interaction between Type 2 Diabetes, obesity and liver disease. We have studied the effects of the two most abundant Stevia-derived steviol glycosides, stevioside and rebaudioside A, and their aglycol derivative steviol on liver steatosis and the hepatic effects of lipotoxicity using a mouse model of obesity and insulin resistance. We treated ob/ob and LDLR-double deficient mice with stevioside (10 mg⋅kg(-1)⋅day-1 p.o., n = 8), rebaudioside A (12 mg⋅kg(-1)⋅day-1 p.o., n = 8), or steviol (5 mg⋅kg(-1)⋅day(-1) p.o., n = 8). We determined their effects on liver steatosis and on the metabolic effects of lipotoxicity by histological analysis, and by combined gene-expression and metabolomic analyses. All compounds attenuated hepatic steatosis. This could be explained by improved glucose metabolism, fat catabolism, bile acid metabolism, and lipid storage and transport. We identified PPARs as important regulators and observed differences in effects on insulin resistance, inflammation and oxidative stress between Stevia-derived compounds. We conclude that Stevia-derived compounds reduce hepatic steatosis to a similar extent, despite differences in effects on glucose and lipid metabolism, and inflammation and oxidative stress. Thus our data show that liver toxicity can be reduced through several pathophysiological changes. Further identification of active metabolites and underlying mechanisms are warranted.

    Topics: Amino Acids; Animals; Bile Acids and Salts; Disease Models, Animal; Diterpenes, Kaurane; Fatty Liver; Glucose; Glucosides; Glutathione; Insulin Resistance; Lipid Metabolism; Liver; Male; Metabolomics; Mice; Mice, Obese; Obesity; Oxidative Stress; Peroxisome Proliferator-Activated Receptors; Plant Preparations; Stevia; Transcriptome

2015
Stevioside inhibits atherosclerosis by improving insulin signaling and antioxidant defense in obese insulin-resistant mice.
    International journal of obesity (2005), 2010, Volume: 34, Issue:3

    Stevioside is a non-caloric natural sweetener that does not induce a glycemic response, making it attractive as sweetener to diabetics and others on carbohydrate-controlled diets. Obesity is frequently associated with insulin resistance and increased inflammation and oxidative stress. Therefore, we investigated its effects on insulin resistance, inflammation and oxidative stress related to atherosclerosis in obese insulin-resistant mice.. Twelve-week-old mice were treated with stevioside (10 mg kg(-1), n=14) or placebo (n=20) for 12 weeks.. Stevioside had no effect on weight and triglycerides, but lowered glucose and insulin. Stevioside treatment improved adipose tissue maturation, and increased glucose transport, insulin signaling and antioxidant defense in white visceral adipose tissues. Together, these increases were associated with a twofold increase of adiponectin. In addition, stevioside reduced plaque volume in the aortic arch by decreasing the macrophage, lipid and oxidized low-density lipoprotein (ox-LDL) content of the plaque. The higher smooth muscle cell-to-macrophage ratio was indicative for a more stable plaque phenotype. The decrease in ox-LDL in the plaque was likely due to an increase in the antioxidant defense in the vascular wall, as evidenced by increased Sod1, Sod2 and Sod3. Circulating adiponectin was associated with improved insulin signaling and antioxidant defense in both the adipose tissue and the aorta of stevioside-treated mice.. Stevioside treatment was associated with improved insulin signaling and antioxidant defense in both the adipose tissue and the vascular wall, leading to inhibition of atherosclerotic plaque development and inducing plaque stabilization.

    Topics: Adiponectin; Animals; Antioxidants; Atherosclerosis; Blood Glucose; Body Weight; Diterpenes, Kaurane; Glucosides; Insulin; Insulin Resistance; Mice; Mice, Obese; Obesity; Oxidative Stress; Signal Transduction; Sweetening Agents; Triglycerides

2010
Effects of stevioside on glucose transport activity in insulin-sensitive and insulin-resistant rat skeletal muscle.
    Metabolism: clinical and experimental, 2004, Volume: 53, Issue:1

    Stevioside (SVS), a natural sweetener extracted from Stevia rebaudiana, has been used as an antihyperglycemic agent. However, little is known regarding its potential action on skeletal muscle, the major site of glucose disposal. Therefore, the purpose of the present study was to determine the effect of SVS treatment on skeletal muscle glucose transport activity in both insulin-sensitive lean (Fa/-) and insulin-resistant obese (fa/fa) Zucker rats. SVS was administered (500 mg/kg body weight by gavage) 2 hours before an oral glucose tolerance test (OGTT). Whereas the glucose incremental area under the curve (IAUC(glucose)) was not affected by SVS in lean Zucker rats, the insulin incremental area under the curve (IAUC(insulin)) and the glucose-insulin index (product of glucose and insulin IAUCs and inversely related to whole-body insulin sensitivity) were decreased (P<.05) by 42% and 45%, respectively. Interestingly, in the obese Zucker rat, SVS also reduced the IAUC(insulin) by 44%, and significantly decreased the IAUC(glucose) (30%) and the glucose-insulin index (57%). Muscle glucose transport was assessed following in vitro SVS treatment. In lean Zucker rats, basal glucose transport in type I soleus and type IIb epitrochlearis muscles was not altered by 0.01 to 0.1 mmol/L SVS. In contrast, 0.1 mmol/L SVS enhanced insulin-stimulated (2 mU/mL) glucose transport in both epitrochlearis (15%) and soleus (48%). At 0.5 mmol/L or higher, the SVS effect was reversed. Similarly, basal glucose transport in soleus and epitrochlearis muscles in obese Zucker rats was not changed by lower doses of SVS (0.01 to 0.1 mmol/L). However, these lower doses of SVS significantly increased insulin-stimulated glucose transport in both obese epitrochlearis and soleus (15% to 20%). In conclusion, acute oral SVS increased whole-body insulin sensitivity, and low concentrations of SVS (0.01 to 0.1 mmol/L) modestly improved in vitro insulin action on skeletal muscle glucose transport in both lean and obese Zucker rats. These results indicate that one potential site of action of SVS is the skeletal muscle glucose transport system.

    Topics: Animals; Biological Transport; Blood Glucose; Deoxyglucose; Diterpenes; Diterpenes, Kaurane; Fatty Acids, Nonesterified; Female; Glucose; Glucose Tolerance Test; Glucosides; Hypoglycemic Agents; Insulin; Insulin Resistance; Muscle, Skeletal; Obesity; Rats; Rats, Zucker

2004