stevioside and Disease-Models--Animal

stevioside has been researched along with Disease-Models--Animal* in 7 studies

Reviews

1 review(s) available for stevioside and Disease-Models--Animal

ArticleYear
Anti-Cancer Properties of
    Molecules (Basel, Switzerland), 2022, Feb-17, Volume: 27, Issue:4

    Topics: Animals; Antineoplastic Agents, Phytogenic; Clinical Studies as Topic; Disease Models, Animal; Diterpenes, Kaurane; Drug Evaluation, Preclinical; Glucosides; Humans; Inhibitory Concentration 50; Metabolic Networks and Pathways; Molecular Structure; Stevia; Structure-Activity Relationship; Sweetening Agents

2022

Other Studies

6 other study(ies) available for stevioside and Disease-Models--Animal

ArticleYear
Stevioside reduces inflammation in periodontitis by changing the oral bacterial composition and inhibiting P. gingivalis in mice.
    BMC oral health, 2023, Aug-10, Volume: 23, Issue:1

    Excessive sugar intake has become a major challenge in modern societies. Stevioside is a promising non-calorie sweetener with anti-inflammatory effects; however, its effects on the oral environment and periodontitis remain unclear. Therefore, this study explores the effect of stevioside on periodontitis in mice.. Mice were divided into four groups, namely, control, treated with water, and periodontitis models, established using 5 - 0 silk sutures ligation around the second molar then infected the oral cavity with Porphyromonas gingivalis (P. gingivalis) viscous suspension, divided into three groups treated with 0.1% stevioside (P + S), 10% glucose (P + G), or water (P). Micro-CT scanning was used to assess alveolar bone resorption, while RT-PCR was used to evaluate the inflammatory factors expression and P. gingivalis invasion in the gingiva. The composition of the oral bacteria was analysed using 16 S rRNA sequence in the saliva. In addition, P. gingivalis was co-cultured with stevioside at different concentrations in vitro, and bacterial activity was detected via optical density values and live/dead staining. The virulence was detected using RT-PCR, while biofilm formation was detected using scanning electron microscopy.. Compared with 10% glucose, treatment with 0.1% stevioside reduced alveolar bone absorption and osteoclasts while decreasing IL-6, TNF-α, IL-1β, and P. gingivalis in the gingiva of periodontitis mice. The CEJ-ABC distance in the P + S group was significantly lower than that in the P and P + G groups (P < 0.05). Moreover, the composition of the oral bacteria in the P + S group was similar to that of the control. In vitro stevioside treatment also reduced the bacterial activity and toxicity of P. gingivalis in a dose-dependent manner and affected its biofilm composition.. Our results indicate that, compared with 10% glucose, 0.1% stevioside intake can reduce alveolar bone resorption and inflammation in periodontal tissues in mice; the bacterial composition following 0.1% stevioside intake was similar to that of a healthy environment. In vitro, high concentrations of stevioside reduced P. gingivalis activity, biofilm formation, and virulence expression. Therefore, stevioside is a potential alternative to glucose for patients with periodontitis.

    Topics: Alveolar Bone Loss; Animals; Bacteria; Disease Models, Animal; Glucose; Humans; Inflammation; Mice; Periodontitis; Porphyromonas gingivalis; Water

2023
Pharmacological Approaches to Attenuate Inflammation and Obesity with Natural Products Formulations by Regulating the Associated Promoting Molecular Signaling Pathways.
    BioMed research international, 2021, Volume: 2021

    Obesity is a public health problem characterized by increased body weight due to abnormal adipose tissue expansion. Bioactive compound consumption from the diet or intake of dietary supplements is one of the possible ways to control obesity. Natural products with adipogenesis-regulating potential act as obesity treatments. We evaluated the synergistic antiangiogenesis, antiadipogenic and antilipogenic efficacy of standardized rebaudioside A, sativoside, and theasaponin E1 formulations (RASE1)

    Topics: 3T3-L1 Cells; Adipocytes; Adipogenesis; Angiogenesis Inhibitors; Animals; Biological Products; Disease Models, Animal; Diterpenes, Kaurane; Drug Compounding; Drug Synergism; Female; Glucosides; Human Umbilical Vein Endothelial Cells; Humans; Inflammation; Lipid Metabolism; Lipogenesis; Lipolysis; Mice; Mice, Inbred ICR; Obesity; Oleanolic Acid; Phytotherapy; RNA, Messenger; Saponins; Signal Transduction; Stevia; Tea

2021
Anti-inflammatory effect of stevioside abates Freund's complete adjuvant (FCA)-induced adjuvant arthritis in rats.
    Inflammopharmacology, 2020, Volume: 28, Issue:6

    Adjuvant arthritis is a chronic, autoimmune and inflammatory disorder of the joints. The occurrence of disorder causes a severe damage to the connective tissue eventually leading to progressive physical disability and eventual death. The recent years of evidence suggests the anti-inflammatory properties of stevioside, a diterpene glycoside. However, the effect of stevioside against adjuvant arthritis, a chronic inflammatory disorder is not known. Hence, the present study was designed to study the effect of stevioside against Freund's complete adjuvant induced arthritis model in rats. The acute anti-inflammatory effect of stevioside also studied by employing carrageenan-induced paw oedema model in rats. The biochemical markers, haematological parameters, lipid peroxidation, myeloperoxidase activity, lipoxygenase activity, the levels of PGE2 and pro-inflammatory (TNF-α, IL-6 & IL-1β) and anti-inflammatory cytokine (IL-10) were analysed. The protein expression of NF-κB (p65) COX-2 and iNOS in paw tissues were estimated by western blotting. Stevioside treatment significantly ameliorates the adjuvant induced arthritic scoring, histological alterations, paw volume, elevation of biochemical (AST, ALT, ALP and glucose levels) and haematological (haemoglobin, differential and platelet count) parameters and restored the endogenous anti-oxidant (SOD, CAT, GSH and GST) activities. Treatment with stevioside also significantly prevented the adjuvant induced elevation of pro-inflammatory cytokines (TNF-α, IL-6 and IL-1β), pro-inflammatory protein expressions (iNOS, COX-2, NF-κB (p65) and pIκB/IκB ratio), prevented the increase in myeloperoxidase activity and significantly restored the anti-inflammatory (IL-10) cytokine level in paw tissues. Collectively, our findings suggest that stevioside may serve as anti-inflammatory agent and could serve as a potential adjunct therapeutic option in treating adjuvant arthritis.

    Topics: Animals; Anti-Inflammatory Agents; Antioxidants; Arthritis, Experimental; Biomarkers; Cytokines; Disease Models, Animal; Diterpenes, Kaurane; Freund's Adjuvant; Glucosides; Inflammation; Rats; Rats, Sprague-Dawley

2020
Stevia-derived compounds attenuate the toxic effects of ectopic lipid accumulation in the liver of obese mice: a transcriptomic and metabolomic study.
    Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association, 2015, Volume: 77

    There is a close interaction between Type 2 Diabetes, obesity and liver disease. We have studied the effects of the two most abundant Stevia-derived steviol glycosides, stevioside and rebaudioside A, and their aglycol derivative steviol on liver steatosis and the hepatic effects of lipotoxicity using a mouse model of obesity and insulin resistance. We treated ob/ob and LDLR-double deficient mice with stevioside (10 mg⋅kg(-1)⋅day-1 p.o., n = 8), rebaudioside A (12 mg⋅kg(-1)⋅day-1 p.o., n = 8), or steviol (5 mg⋅kg(-1)⋅day(-1) p.o., n = 8). We determined their effects on liver steatosis and on the metabolic effects of lipotoxicity by histological analysis, and by combined gene-expression and metabolomic analyses. All compounds attenuated hepatic steatosis. This could be explained by improved glucose metabolism, fat catabolism, bile acid metabolism, and lipid storage and transport. We identified PPARs as important regulators and observed differences in effects on insulin resistance, inflammation and oxidative stress between Stevia-derived compounds. We conclude that Stevia-derived compounds reduce hepatic steatosis to a similar extent, despite differences in effects on glucose and lipid metabolism, and inflammation and oxidative stress. Thus our data show that liver toxicity can be reduced through several pathophysiological changes. Further identification of active metabolites and underlying mechanisms are warranted.

    Topics: Amino Acids; Animals; Bile Acids and Salts; Disease Models, Animal; Diterpenes, Kaurane; Fatty Liver; Glucose; Glucosides; Glutathione; Insulin Resistance; Lipid Metabolism; Liver; Male; Metabolomics; Mice; Mice, Obese; Obesity; Oxidative Stress; Peroxisome Proliferator-Activated Receptors; Plant Preparations; Stevia; Transcriptome

2015
Hypoglycaemic action of stevioside and а barley and brewer's yeast based preparation in the experimental model on mice.
    Bosnian journal of basic medical sciences, 2011, Volume: 11, Issue:1

    The aim of this study was to investigate influence of the preparation based on barley and brewer's yeast extracts with chromium (BBCr) and stevioside (S) on fasting glycaemia and glycaemia in mice after glucose, adrenalin and alloxan application. The animals were divided into three groups: glucose 500 mgkg(-1) (I); adrenalin 0.2 mgkg(-1)(II) and alloxan 100 mg kg(-1) (III) and into subgroups according to the substance they received: stevioside 20 mg kg(-1) (I-S, II-S, III-S); BBCr 750 mg kg(-1)(I-BBCr, II-BBCr, III-BBCr) and saline 1 ml/100g (III-placebo). Glycaemia was measured before and after 7-day treatment with stevioside or BBCr in the following conditions: fasting, 30 min after glucose load (I) or 45 min after adrenaline load (II). In group III glycaemia was measured before and after 12-day treatment with S, BBCr or placebo and alloxan application (7th, 8th and 10th days of treatment ). BBCr significantly reduced fasting glycaemia in I and II groups and glycaemia values after the glucose load (I-BBCr: 9.20 ± 0.61 vs. 7.42 ± 0.59 mmol/L, p = 0.01). Stevioside significantly reduced glycaemia after the adrenalin load (II-S: 13.45 ± 0.71 vs. 11.65 ± 1.19 mmol/L; p = 0.03). In the III-BBCr glycaemia values did not indicate the development of alloxan-induced diabetes and were significantly lower than in the III-placebo (8.6 ± 3.16 vs. 18.8 ± 5.53 mmol/L; p < 0.05). In conclusion, BBCr caused a significant decrease of fasting glycaemia, significant reduction of glycaemia after glucose load and prevented onset of alloxan-induced diabetes. Stevioside caused the decrease of adrenalin-induced hyperglycaemia.

    Topics: Alloxan; Animals; Blood Glucose; Chromium; Diabetes Mellitus, Experimental; Disease Models, Animal; Diterpenes, Kaurane; Epinephrine; Fasting; Female; Glucose; Glucosides; Hordeum; Hyperglycemia; Hypoglycemic Agents; Male; Mice; Mice, Inbred Strains; Plant Extracts; Saccharomyces cerevisiae

2011
Stevioside induces antihyperglycaemic, insulinotropic and glucagonostatic effects in vivo: studies in the diabetic Goto-Kakizaki (GK) rats.
    Phytomedicine : international journal of phytotherapy and phytopharmacology, 2002, Volume: 9, Issue:1

    Extracts of leaves from the plant Stevia rebaudiana Bertoni have been used in the traditional treatment of diabetes in Paraguay and Brazil. Recently, we demonstrated a direct insulinotropic effect in isolated mouse islets and the clonal beta cell line INS-1 of the glycoside stevioside that is present in large quantity in these leaves. Type 2 diabetes is a chronic metabolic disorder that results from defects in both insulin and glucagon secretion as well as insulin action. In the present study we wanted to unravel if stevioside in vivo exerts an antihyperglycaemic effect in a nonobese animal model of type 2 diabetes. An i.v. glucose tolerance test (IVGT) was carried out with and without stevioside in the type 2 diabetic Goto-Kakizaki (GK) rat, as well as in the normal Wistar rat. Stevioside (0.2 g/kg BW) and D-glucose (2.0 g/kg BW) were administered as i.v. bolus injections in anaesthetized rats. Stevioside significantly suppressed the glucose response to the IVGT in GK rats (incremental area under the curve (IAUC): 648 +/- 50 (stevioside) vs 958 +/- 85 mM x 120 min (control); P < 0.05) and concomitantly increased the insulin response (IAUC: 51116 +/- 10967 (stevioside) vs 21548 +/- 3101 microU x 120 min (control); P < 0.05). Interestingly, the glucagon level was suppressed by stevioside during the IVGT, (total area under the curve (TAUC): 5720 +/- 922 (stevioside) vs 8713 +/- 901 pg/ml x 120 min (control); P < 0.05). In the normal Wistar rat stevioside enhanced insulin levels above basal during the IVGT (IAUC: 79913 +/- 3107 (stevioside) vs 17347 +/- 2882 microU x 120 min (control); P < 0.001), however, without altering the blood glucose response (IAUC: 416 +/- 43 (stevioside) vs 417 +/- 47 mM x 120 min (control)) or the glucagon levels (TAUC: 5493 +/- 527 (stevioside) vs 5033 +/- 264 pg/ml x 120 min (control)). In conclusion, stevioside exerts antihyperglycaemic, insulinotropic, and glucagonostatic actions in the type 2 diabetic GK rat, and may have the potential of becoming a new antidiabetic drug for use in type 2 diabetes.

    Topics: Animals; Area Under Curve; Diabetes Mellitus, Type 2; Disease Models, Animal; Diterpenes; Diterpenes, Kaurane; Glucagon; Glucose; Glucose Tolerance Test; Glucosides; Hyperglycemia; Hypoglycemic Agents; Injections, Intravenous; Insulin; Male; Phytotherapy; Plant Extracts; Rats; Rats, Inbred Strains; Rats, Wistar; Terpenes

2002