stearates has been researched along with Liver-Neoplasms* in 2 studies
2 other study(ies) available for stearates and Liver-Neoplasms
Article | Year |
---|---|
Stearate-to-palmitate ratio modulates endoplasmic reticulum stress and cell apoptosis in non-B non-C hepatoma cells.
The increased prevalence of hepatocellular carcinoma (HCC) without viral infection, namely, NHCC, is a major public health issue worldwide. NHCC is frequently derived from non-alcoholic fatty liver (NAFL) and non-alcoholic steatohepatitis, which exhibit dysregulated fatty acid (FA) metabolism. This raises the possibility that NHCC evolves intracellular machineries to adapt to dysregulated FA metabolism. We herein aim to identify NHCC-specifically altered FA and key molecules to achieve the adaptation. To analyze FA, imaging mass spectrometry (IMS) was performed on 15 HCC specimens. The composition of saturated FA (SFA) in NHCC was altered from that in typical HCC. The stearate-to-palmitate ratio (SPR) was significantly increased in NHCC. Associated with the SPR increase, the ELOVL6 protein level was upregulated in NHCC. The knockdown of ELOVL6 reduced SPR, and enhanced endoplasmic reticulum stress, inducing apoptosis of Huh7 and HepG2 cells. In conclusion, NHCC appears to adapt to an FA-rich environment by modulating SPR through ELOVL6. Topics: Aged; Apoptosis; Carcinoma, Hepatocellular; Cell Line, Tumor; Endoplasmic Reticulum Stress; Fatty Acids; Female; Hep G2 Cells; Hepatocytes; Humans; Liver; Liver Neoplasms; Male; Non-alcoholic Fatty Liver Disease; Palmitates; Signal Transduction; Stearates | 2018 |
Synthesis and application of 188Re-MN-16ET/Lipiodol in a hepatocellular carcinoma animal model.
Hepatocellular carcinoma is the most common form of primary hepatic carcinoma. A new N(2)S(2) tetradentate ligand, N-[2-(triphenylmethyl)thioethyl]-3-aza-19-ethyloxycarbonyl-3-[2-(triphenylmethyl)thioethyl]octadecanoate (H(3)MN-16ET), was introduced and labeled with (188)Re to create (188)Re-MN-16ET in the Lipiodol phase. The potential of (188)Re-MN-16ET/Lipiodol for hepatoma therapy was evaluated in a hepatocellular carcinoma animal model of Sprague-Dawley rats implanted with the N1S1 cell line.. Synthesis of H(3)MN-16ET was described, and characterization was identified by infrared, nuclear magnetic resonance and mass spectra. We compared the effects of transchelating agents (glucoheptonate or tartaric acid) and a reducing agent (stannous chloride) on the complexing of (188)Re-perrhenate and H(3)MN-16ET. Twenty-four rats implanted with hepatoma were injected with 3.7 MBq/0.1 ml of (188)Re-MN-16ET/Lipiodol or (188)Re-MN-16ET via transcatheter arterial embolization. Biodistribution experiments and single-photon emission computed tomography imaging were performed to investigate tumor accumulation.. H(3)MN-16ET was proved to easily conjugate with the Re isotope and showed good solubility in Lipiodol. The radiochemical purity of (188)Re-MN-16ET/Lipiodol with 10 mg tartaric acid and stannous chloride was shown to be more than 90%. The major distribution sites of (188)Re-MN-16ET in Sprague-Dawley rats were hepatoma and the liver. However, the radioactivity at the tumor site postadministered with (188)Re-MN-16ET was quickly decreased from 9.15±0.23 (at 1 h) to 2.71%±0.18% of injected dose/g (at 48 h). The biodistribution and micro-single-photon emission computed tomography/computed tomography image data showed that (188)Re-MN-16ET/Lipiodol was selectively retained at the tumor site, with 11.55±1.44, 13.16±1.46 and 10.67%±0.95% of injected dose/g at 1, 24 and 48 h postinjection, respectively. The radioactivity in normal liver tissue was high but significantly lower than that of the tumors.. H(3)MN-16ET is a suitable tetradentate ligand for (188)Re labeling. From the animal data, we suggest that (188)Re-MN-16ET/Lipiodol has the potential to be a therapeutic radiopharmaceutical for hepatoma treatment. Topics: Animals; Carcinoma, Hepatocellular; Cell Line, Tumor; Coordination Complexes; Disease Models, Animal; Ethiodized Oil; Glycine; Liver Neoplasms; Male; Palmitic Acids; Radiochemistry; Radioisotopes; Rats; Rhenium; Stearates; Tomography, Emission-Computed, Single-Photon | 2011 |