srpin340 and Melanoma

srpin340 has been researched along with Melanoma* in 2 studies

Other Studies

2 other study(ies) available for srpin340 and Melanoma

ArticleYear
The SRPK inhibitor N-(2-(piperidin-1-yl)-5-(trifluoromethyl)phenyl) isonicotinamide (SRPIN340) increases the immune response against metastatic melanoma in mice.
    Biochemical pharmacology, 2022, Volume: 203

    Cancers have a strong relationship with immune cells in their microenvironment, which significantly influences tumor proliferation and progression. Thus, pharmacological strategies that stimulate the immune system to combat tumor cells are promising for better therapeutic efficacy. Deregulated expression of the splicing regulatory serine arginine protein kinases (mostly SRPK1 and SRPK2) has been found in different cancer types, leading to the expression of isoforms related to tumor growth and metastasis. The microenvironment of melanoma exhibits a strong presence of immune cells, which significantly influences tumor progression, and around 50% of cutaneous melanoma patients benefit from targeted immunotherapy. Here, we analyzed human malignant melanoma single-cell gene expression data and observed that SRPK1/2 overexpression correlates with immune system pathway alterations. In further analysis, we observed an increased presence of immune cells in biopsies from mice bearing metastatic melanoma treated with SRPIN340, a well-known SRPK1/2 pharmacological inhibitor. Local treatments increased the expression of proinflammatory cytokines at the tumor lesions and the activity of the spleen, accompanied by reduced pulmonary metastasis foci, edema formation, and alveolar congestion. In in vitro assays, SRPIN340 also potentiated immunological susceptibility, by increasing the expression of the antigen presenting MHCI and MHCII molecules and by increasing the ability of B16F10 cells to attract splenic cells in transwell assays. Taken together, these results reveal that the antimetastatic effect of SRPIN340 can also involve an increased immune response, which suggests additional functional clues for SRPKs in tumor biology.

    Topics: Animals; Humans; Immunity; Melanoma; Mice; Niacinamide; Piperidines; Protein Serine-Threonine Kinases; Skin Neoplasms; Tumor Microenvironment

2022
Targeting SRPK1 to control VEGF-mediated tumour angiogenesis in metastatic melanoma.
    British journal of cancer, 2014, Jul-29, Volume: 111, Issue:3

    Current therapies for metastatic melanoma are targeted either at cancer mutations driving growth (e.g., vemurafenib) or immune-based therapies (e.g., ipilimumab). Tumour progression also requires angiogenesis, which is regulated by VEGF-A, itself alternatively spliced to form two families of isoforms, pro- and anti-angiogenic. Metastatic melanoma is associated with a splicing switch to pro-angiogenic VEGF-A, previously shown to be regulated by SRSF1 phosphorylation by SRPK1. Here, we show a novel approach to preventing angiogenesis-targeting splicing factor kinases that are highly expressed in melanomas.. We used RT-PCR, western blotting and immunohistochemistry to investigate SRPK1, SRSF1 and VEGF expression in tumour cells, and in vivo xenograft assays to investigate SRPK1 knockdown and inhibition in vivo.. In both uveal and cutaneous melanoma cell lines, SRPK1 was highly expressed, and inhibition of SRPK1 by knockdown or with pharmacological inhibitors reduced pro-angiogenic VEGF expression maintaining the production of anti-angiogenic VEGF isoforms. Both pharmacological SRPK1 inhibitors and SRPK1 knockdown reduced growth of human melanomas in vivo, but neither affected cell proliferation in vitro.. These results suggest that selective blocking of pro-angiogenic isoforms by inhibiting splice-site selection with SRPK1 inhibitors reduces melanoma growth. SRPK1 inhibitors may be used as therapeutic agents.

    Topics: Angiogenesis Inhibitors; Animals; Cell Line, Tumor; Gene Knockdown Techniques; Humans; Melanoma; Mice; Mice, Nude; Molecular Targeted Therapy; Neovascularization, Pathologic; Niacinamide; Piperidines; Protein Serine-Threonine Kinases; RNA Splicing; Skin Neoplasms; Tumor Burden; Vascular Endothelial Growth Factor A; Xenograft Model Antitumor Assays

2014