sr1001 has been researched along with Disease-Models--Animal* in 5 studies
5 other study(ies) available for sr1001 and Disease-Models--Animal
Article | Year |
---|---|
Blockade of T helper 17 cell function ameliorates recurrent Clostridioides difficile infection in mice.
Clostridioides difficile infection (CDI) is a common infection of the gastrointestinal tract. Typically, 20%-30% of CDI patients experience recurrent C.difficile infection (RCDI). Although the role of Th17 in infectious and inflammatory diseases including CDI has gained attention, reports on the correlation between Th17 and RCDI are scarce. In this study, CDI and RCDI mice models were challenged with C. difficile. Serum lactic acid dehydrogenase, inflammatory factor levels, reverse transcriptase-polymerase chain reaction, western blot analysis, hematoxylin and eosin staining, immunohistochemistry, flow cytometry analysis, and enzyme-linked immunosorbent assay were performed on the CDI, RCDI, and control group mice. The results showed more serious clinical manifestations in the RCDI group compared with those in the CDI group. More severe gut barrier disruption and higher degree of microbiota translocation were observed in the RCDI group compared with those in the CDI group. Moreover, extremely severe apoptosis was observed in HCT-116 cells incubated with the serum from RCDI mice model. In addition, higher levels of Th17 and IL-17 were detected in the blood or serum from the RCDI mouse model. Treatment with RORγt small molecule inhibitor SR1001 increased the expression of occludin, decreased the apoptotic rate of HCT-116 cells, and decreased the concentrations of Th17 and IL-17. Concisely, Th17 and IL-17 are potential indicators of RCDI and may serve as therapeutic targets for RCDI treatment. This study lays the foundation for future research on RCDI diagnosis and treatment. Topics: Animals; Apoptosis; Cell Line, Tumor; Clostridium Infections; Colon; Disease Models, Animal; Intestinal Mucosa; Janus Kinase 2; Male; Mice, Inbred C57BL; Nuclear Receptor Subfamily 1, Group F, Member 3; Recurrence; STAT3 Transcription Factor; Sulfonamides; Th17 Cells; Thiazoles | 2021 |
RORγt inhibitor SR1001 alleviates acute pancreatitis by suppressing pancreatic IL-17-producing Th17 and γδ-T cells in mice with ceruletide-induced pancreatitis.
The management of acute pancreatitis (AP) remains a challenge to clinicians worldwide for limited effective interventions. Retinoid orphan receptor gamma t (RORγt) is a therapeutic target for several diseases; however, it is unclear whether inhibiting RORγt can ameliorate AP. The relative expression of RORγt, IL-17 and IL-23 in the peripheral blood mononuclear cells of AP patients was measured by RT-PCR. An AP mouse model was induced by ceruletide, and SR1001 was injected before ceruletide administration. RORγt+ cells, T helper 17 cells (Th17), regulatory T cells (Tregs) and γδ T cells were assessed in the pancreas and spleen by flow cytometry. Higher RORγt expression in patients indicated the potential role of RORγt in AP progression. Analyses of the IL-17/IL-23 axis confirmed its role. SR1001 significantly alleviated AP histologically in the mouse model. Serum levels of amylase, IL-6, TNFalpha, IL-17 and IL-23 decreased upon SR1001 treatment. SR1001 selectively decreased the number of RORγt+, Th17, Tregs and γδ T cells in the pancreas but not the spleen. Collectively, these results showed that SR1001 exerted therapeutic effects on AP by suppressing IL-17-secreting Th17 and γδ T cells in the pancreas. Thus, SR1001 may be a promising drug for the treatment of AP in the clinic. Topics: Acute Disease; Adult; Aged; Animals; Case-Control Studies; Ceruletide; Disease Models, Animal; Disease Progression; Female; Humans; Interleukin-17; Intraepithelial Lymphocytes; Leukocytes, Mononuclear; Male; Mice; Mice, Inbred C57BL; Middle Aged; Nuclear Receptor Subfamily 1, Group F, Member 3; Pancreatitis; Sulfonamides; Th17 Cells; Thiazoles | 2021 |
Topical ROR Inverse Agonists Suppress Inflammation in Mouse Models of Atopic Dermatitis and Acute Irritant Dermatitis.
The retinoic acid receptor-related orphan receptors RORα and RORγ are critical for the functions of specific subsets of T cells and innate lymphoid cells, which are key drivers of inflammatory disease in barrier tissues. Here, we investigate the anti-inflammatory potential of SR1001, a synthetic RORα/γ inverse agonist, in mouse models of atopic dermatitis and acute irritant dermatitis. Topical treatment with SR1001 reduces epidermal and dermal features of MC903-induced atopic dermatitis-like disease and suppresses the production of type 2 cytokines and other inflammatory mediators in lesional skin. In the epidermis, SR1001 treatment blocks MC903-induced expression of TSLP and reverses impaired keratinocyte differentiation. SR1001 is also effective in alleviating acute dermatitis triggered by 12-O-tetradecanoylphorbol-13-acetate. Overall, our results suggest that RORα/γ are important therapeutic targets for cutaneous inflammation and suggest topical usage of inhibitory ligands as an approach to treating skin diseases of inflammatory etiology. Topics: Animals; Cell Differentiation; Cytokines; Dermatitis, Atopic; Dermatitis, Irritant; Disease Models, Animal; Eczema; Epidermis; Female; Inflammation; Keratinocytes; Ligands; Mice; Mice, Inbred C57BL; Nuclear Receptor Subfamily 1, Group F, Member 1; Skin; Sulfonamides; Thiazoles | 2017 |
Targeting Th17-IL-17 Pathway in Prevention of Micro-Invasive Prostate Cancer in a Mouse Model.
Chronic inflammation has been associated with the development and progression of human cancers including prostate cancer. The exact role of the inflammatory Th17-IL-17 pathway in prostate cancer remains unknown. In this study, we aimed to determine the importance of Th17 cells and IL-17 in a Pten-null prostate cancer mouse model.. The Pten-null mice were treated by Th17 inhibitor SR1001 or anti-mouse IL-17 monoclonal antibody from 6 weeks of age up to 12 weeks of age. For SR1001 treatment, the mice were injected intraperitoneally (i.p.) twice a day with vehicle or SR1001, which was dissolved in a dimethylsulfoxide (DMSO) solution. All mice were euthanized for necropsy at 12 weeks of age. For IL-17 antibody treatment, the mice were injected intravenously (i.v.) once every two weeks with control IgG or rat anti-mouse IL-17 monoclonal antibody, which was dissolved in PBS. The injection time points were at 6, 8, and 10 weeks old. All mice were analyzed for the prostate phenotypes at 12 weeks of age.. We found that either SR1001 or anti-IL-17 antibody treatment decreased the formation of micro-invasive prostate cancer in Pten-null mice. The SR1001 or anti-IL-17 antibody treated mouse prostates had reduced proliferation, increased apoptosis, and reduced angiogenesis, as well as reduced inflammatory cell infiltration. By assessing the epithelial-to-mesenchymal transition (EMT) markers, we found that SR1001 or anti-IL-17 antibody treated prostate tissues had weaker EMT phenotype compared to the control treated prostates.. These results demonstrated that Th17-IL-17 pathway plays a key role in prostate cancer progression in Pten-null mice. Targeting Th17-IL-17 pathway could prevent micro-invasive prostate cancer formation in mice. Prostate 77:888-899, 2017. © 2017 Wiley Periodicals, Inc. Topics: Animals; Antibodies, Monoclonal; Disease Models, Animal; Drug Monitoring; Immunologic Factors; Inflammation; Injections, Intraperitoneal; Interleukin-17; Male; Mice; Molecular Targeted Therapy; Neoplasm Invasiveness; Prostate; Prostatic Neoplasms; Sulfonamides; Th17 Cells; Thiazoles; Treatment Outcome | 2017 |
Inhibition of the Nuclear Receptor RORγ and Interleukin-17A Suppresses Neovascular Retinopathy: Involvement of Immunocompetent Microglia.
Although inhibitors of vascular endothelial growth factor (VEGF) provide benefit for the management of neovascular retinopathies, their use is limited to end-stage disease and some eyes are resistant. We hypothesized that retinoic acid-related orphan nuclear receptor γ (RORγ) and its downstream effector, interleukin (IL)-17A, upregulate VEGF and hence are important treatment targets for neovascular retinopathies.. Utilizing a model of oxygen-induced retinopathy, confocal microscopy and flow cytometry, we identified that retinal immunocompetent cells, microglia, express IL-17A. This was confirmed in primary cultures of rat retinal microglia, where hypoxia increased IL-17A protein as well as IL-17A, RORγ, and tumor necrosis factor-α mRNA, which were reduced by the RORγ inhibitor, digoxin, and the RORα/RORγ inverse agonist, SR1001. By contrast, retinal macroglial Müller cells and ganglion cells, key sources of VEGF in oxygen-induced retinopathy, did not produce IL-17A when exposed to hypoxia and IL-1β. However, they expressed IL-17 receptors, and in response to IL-17A, secreted VEGF. This suggested that RORγ and IL-17A inhibition might attenuate neovascular retinopathy. Indeed, digoxin and SR1001 reduced retinal vaso-obliteration, neovascularization, and vascular leakage as well as VEGF and VEGF-related placental growth factor. Digoxin and SR1001 reduced microglial-derived IL-17A and Müller cell and ganglion cell damage. The importance of IL-17A in oxygen-induced retinopathy was confirmed by IL-17A neutralization reducing vasculopathy, VEGF, placental growth factor, tumor necrosis factor-α, microglial density and Müller cell, and ganglion cell injury.. Our findings indicate that an RORγ/IL-17A axis influences VEGF production and neovascular retinopathy by mechanisms involving neuroglia. Inhibition of RORγ and IL-17A may have potential for the improved treatment of neovascular retinopathies. Topics: Angiogenesis Inhibitors; Animals; Antibodies, Monoclonal; Cells, Cultured; Digoxin; Disease Models, Animal; Ependymoglial Cells; Hyperoxia; Interleukin-17; Mice, Inbred C57BL; Microglia; Nuclear Receptor Subfamily 1, Group F, Member 3; Placenta Growth Factor; Rats, Sprague-Dawley; Retina; Retinal Ganglion Cells; Retinal Neovascularization; Retinopathy of Prematurity; Signal Transduction; Sulfonamides; Thiazoles; Tumor Necrosis Factor-alpha; Vascular Endothelial Growth Factor A | 2016 |