sr-144528 has been researched along with Pulmonary-Edema* in 2 studies
2 other study(ies) available for sr-144528 and Pulmonary-Edema
Article | Year |
---|---|
Cannabinoid Receptor Type 2 Agonist Attenuates Acute Neurogenic Pulmonary Edema by Preventing Neutrophil Migration after Subarachnoid Hemorrhage in Rats.
We evaluated whether JWH133, a selective cannabinoid type 2 receptor (CB2R) agonist, prevented neurogenic pulmonary edema (NPE) after subarachnoid hemorrhage (SAH) by attenuating inflammation. Adult male rats were assigned to six groups: sham-operated, SAH with vehicle, SAH with JWH133 (0.3, 1.0, or 3.0 mg/kg) treatment 1 h after surgery, and SAH with JWH133 (1.0 mg/kg) at 1 h with a selective CB2R antagonist, SR144528 (3.0 mg/kg). The perforation model of SAH was performed and pulmonary wet-to-dry weight ratio was evaluated 24 and 72 h after surgery. Western blot analyses and immunohistochemistry were evaluated 24 h after surgery. JWH133 (1.0 mg/kg) significantly and most strongly improved lung edema 24 h after SAH. SR144528 administration significantly reversed the effects of JWH133 (1.0 mg/kg). SAH-induced increasing levels of myeloperoxidase (MPO) and decreasing levels of a tight junction (TJ) protein, junctional adhesion molecule (JAM)-A, were ameliorated by JWH133 (1.0 mg/kg) administration 24 h after SAH. Immunohistochemical assessment also confirmed substantial leukocyte infiltration in the outside of vessels in SAH, which were attenuated by JWH133 (1.0 mg/kg) injection. CB2R agonist ameliorated lung permeability by inhibiting leukocyte trafficking and protecting tight junction proteins in the lung of NPE after SAH. Topics: Animals; Blotting, Western; Camphanes; Cannabinoid Receptor Agonists; Cannabinoid Receptor Antagonists; Cannabinoids; Cell Movement; Disease Models, Animal; Immunohistochemistry; Junctional Adhesion Molecules; Lung; Male; Neutrophils; Organ Size; Peroxidase; Pulmonary Edema; Pyrazoles; Rats; Rats, Sprague-Dawley; Receptor, Cannabinoid, CB2; Subarachnoid Hemorrhage | 2016 |
Cannabinoid CB(2) receptor activation prevents bronchoconstriction and airway oedema in a model of gastro-oesophageal reflux.
Cannabinoids have been shown to inhibit sensory nerve activation in guinea-pigs and humans. Their effects are mediated by specific activation of two types of receptors, named CB(1) and CB(2). The purpose of this study was to investigate the effects of WIN 55,212-2, (R)-(+)-[2,3-dihydro-5methyl-3-[(4-morpholino)methyl]pyrrolo-[1,2,3-de]-1,4-benzoxazin-6-yl](1-naphthyl)methanone, a non selective agonist of cannabinoid receptors, and JWH 133, (6aR,10aR)-3-(1,1-dimethylbutyl)-6a,7,10,10a-tetrahydro-6,6,9-trimethyl-6H-dibenzo[b,d]pyran a selective cannabinoid CB(2) receptor agonist, on the sensory nerve component of intraoesophageal (i.oe.) HCl-induced airway microvascular leakage and bronchoconstriction in guinea-pigs. We also tested the effect of WIN 55,212-2 on substance P-induced plasma extravasation and bronchoconstriction. Airway microvascular leakage and bronchoconstriction induced by i.oe. HCl was inhibited by the cannabinoid CB(1)/CB(2) agonist WIN 55,212-2 (0.3-3 mg/kg i.p.) in a dose-dependent manner (maximal inhibition at the dose of 3 mg kg(-1), P<0.01). The effect of WIN 55,212-2 was inhibited by a cannabinoid CB(2) receptor antagonist SR 144528, [N-[(1S)-endo-1,3,3-trimethylbicyclo[2,2,1] heptan-2yl]-5-(-4-chloro-3-methylphenyl)-1-(4-methylbenzyl)pyrazole-3-carboxamide], but not by a CB(1) receptor antagonist, SR 141716, [N-(piperidin-1yl)-5-(-4-chlorophenyl)-1-(2,4dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide hydrochloride]. The cannabinoid CB(2) agonist JWH 133 (0.3-3 mg/kg i.p.) mimicked the inhibitory effect of WIN 55,212-2 on HCl-induced microvascular leakage. Under similar conditions, WIN 55,212-2 (1 mg kg (-1) i.p.) was unable to counteract the airway microvascular leakage and bronchoconstriction induced by substance P. These results suggest that inhibition by WIN 55,212-2 of airway plasma extravasation and bronchoconstriction induced by i.oe. HCl instillation in guinea-pigs is mediated through cannabinoid CB(2) receptor activation. Topics: Airway Obstruction; Animals; Benzoxazines; Bronchi; Bronchoconstriction; Camphanes; Cannabinoids; Capillary Permeability; Disease Models, Animal; Dose-Response Relationship, Drug; Esophagus; Extravasation of Diagnostic and Therapeutic Materials; Gastroesophageal Reflux; Guinea Pigs; Hydrochloric Acid; Male; Morpholines; Naphthalenes; Piperidines; Pulmonary Edema; Pyrazoles; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; Respiratory Function Tests; Rimonabant; Trachea | 2007 |