sr-144528 and Glioma

sr-144528 has been researched along with Glioma* in 2 studies

Other Studies

2 other study(ies) available for sr-144528 and Glioma

ArticleYear
The endocannabinoid system protects rat glioma cells against HIV-1 Tat protein-induced cytotoxicity. Mechanism and regulation.
    The Journal of biological chemistry, 2002, Dec-27, Volume: 277, Issue:52

    Cannabinoids modulate nitric oxide (NO) levels in cells of the central nervous system. Here we studied the effect of cannabinoid CB(1) and CB(2) receptor agonists on the release of NO and cell toxicity induced by the human immuno-deficiency virus-1 Tat protein (HIV-1 Tat) in rat glioma C6 cells. The CB(1) and CB(2) agonist WIN 55,212-2 inhibited the expression of inducible NO synthase (iNOS) and NO release caused by treatment of C6 cells with HIV-1 Tat and interferon-gamma (IFN-gamma). The effect of WIN 55,212-2 was uniquely due to CB(1) receptors, as shown by experiments carried out with selective CB(1) and CB(2) receptor agonists and antagonists. CB(1) receptor stimulation also inhibited HIV-1 Tat + IFN-gamma-induced and NO-mediated cell toxicity. Moreover, cell treatment with HIV-1 Tat + IFN-gamma induced a significant inhibition of CB(1), but not CB(2), receptor expression. This effect was mimicked by the NO donor GSNO, suggesting that the inhibition of CB(1) expression was due to HIV-1 Tat + IFN-gamma-induced NO overexpression. HIV-1 Tat + IFN-gamma treatment also induced a significant inhibition of the uptake of the endocannabinoid anandamide by C6 cells with no effect on anandamide hydrolysis. These findings show that the endocannabinoid system, through the modulation of the l-arginine/NO pathway, reduces HIV-1 Tat-induced cytotoxicity, and is itself regulated by HIV-1 Tat.

    Topics: Animals; Benzoxazines; Camphanes; Cannabinoid Receptor Modulators; Cannabinoids; Cell Survival; Endocannabinoids; Gene Expression Regulation, Enzymologic; Gene Expression Regulation, Neoplastic; Gene Products, tat; Glioma; HIV-1; Morpholines; Naphthalenes; Nitric Oxide; Nitric Oxide Donors; Nitric Oxide Synthase; Nitric Oxide Synthase Type II; Peptide Fragments; Pyrazoles; Rats; Receptor, Cannabinoid, CB2; Receptors, Cannabinoid; Receptors, Drug; Reverse Transcriptase Polymerase Chain Reaction; tat Gene Products, Human Immunodeficiency Virus; Tumor Cells, Cultured

2002
Inhibition of glioma growth in vivo by selective activation of the CB(2) cannabinoid receptor.
    Cancer research, 2001, Aug-01, Volume: 61, Issue:15

    The development of new therapeutic strategies is essential for the management of gliomas, one of the most malignant forms of cancer. We have shown previously that the growth of the rat glioma C6 cell line is inhibited by psychoactive cannabinoids (I. Galve-Roperh et al., Nat. Med., 6: 313-319, 2000). These compounds act on the brain and some other organs through the widely expressed CB(1) receptor. By contrast, the other cannabinoid receptor subtype, the CB(2) receptor, shows a much more restricted distribution and is absent from normal brain. Here we show that local administration of the selective CB(2) agonist JWH-133 at 50 microg/day to Rag-2(-/-) mice induced a considerable regression of malignant tumors generated by inoculation of C6 glioma cells. The selective involvement of the CB(2) receptor in this action was evidenced by: (a) the prevention by the CB(2) antagonist SR144528 but not the CB(1) antagonist SR141716; (b) the down-regulation of the CB(2) receptor but not the CB(1) receptor in the tumors; and (c) the absence of typical CB(1)-mediated psychotropic side effects. Cannabinoid receptor expression was subsequently examined in biopsies from human astrocytomas. A full 70% (26 of 37) of the human astrocytomas analyzed expressed significant levels of cannabinoid receptors. Of interest, the extent of CB(2) receptor expression was directly related with tumor malignancy. In addition, the growth of grade IV human astrocytoma cells in Rag-2(-/-) mice was completely blocked by JWH-133 administration at 50 microg/day. Experiments carried out with C6 glioma cells in culture evidenced the internalization of the CB(2) but not the CB(1) receptor upon JWH-133 challenge and showed that selective activation of the CB(2) receptor signaled apoptosis via enhanced ceramide synthesis de novo. These results support a therapeutic approach for the treatment of malignant gliomas devoid of psychotropic side effects.

    Topics: Animals; Antineoplastic Agents; Apoptosis; Astrocytoma; Benzoxazines; Brain Neoplasms; Camphanes; Cannabinoids; Cell Division; Ceramides; Glioma; Growth Inhibitors; Humans; Mice; Morpholines; Naphthalenes; Piperidines; Pyrazoles; Rats; Receptor, Cannabinoid, CB2; Receptors, Cannabinoid; Receptors, Drug; Rimonabant; Signal Transduction; Tumor Cells, Cultured; Xenograft Model Antitumor Assays

2001