sr-144528 and Fever

sr-144528 has been researched along with Fever* in 2 studies

Other Studies

2 other study(ies) available for sr-144528 and Fever

ArticleYear
A novel role of cannabinoids: implication in the fever induced by bacterial lipopolysaccharide.
    The Journal of pharmacology and experimental therapeutics, 2007, Volume: 320, Issue:3

    There is continuing interest in elucidating the actions of drugs of abuse on the immune system and on infection. The present study investigated the effects of the cannabinoid (CB) receptor agonist aminoalkylindole, (+)-WIN 55,212-2 [(4,5-dihydro-2-methyl-4(4-morpholinylmethyl)-1-(1-naphthalenyl-carbonyl)-6H-pyrrolo[3,2,1ij]quinolin-6-one], on fever produced after injection of lipopolysaccharide (LPS), a component of the outer membrane of Gram-negative bacteria, the best known and most frequently used experimental model. Intraperitoneal injection of LPS (50 mug/kg) induced a biphasic fever, with the first peak at 180 min and the second at 300 min postinjection. Pretreatment with a nonhypothermic dose of the cannabinoid receptor agonist WIN 55,212-2 (0.5-1.5 mg/kg i.p.) antagonized the LPS-induced fever. However, pretreatment with the inactive enantiomer WIN 55,212-3 [1.5 mg/kg i.p.; S-(-)-[2,3-dihydro-5-methyl-3-[(morpholinyl)methyl]pyrrolo[1,2,3-de]-1,4-benzoxazinyl]-(1-naphthanlenyl)methanone mesylate] did not. The inhibitory effect of WIN 55,212-2 on LPS-induced fever was reversed by SR141716 [N-(piperdin-1-yl)-5-(4-chloropheny)-1-(2,4-dichloropheny)-4-methyl-1H-pyrazole-3-carboxamide hydrochloride], a selective CB1 receptor antagonist, but not by SR144528 (N-[(1S)-endo-1,3,3-trimethylbicyclo[2.2.1]heptan-2-yl]5-(4-choro-3-methylphenyl)-1-(4-methylbenzyl)pyrazole-3-carboxamide), a selective antagonist at the CB2 receptor. The present results show that cannabinoids interact with systemic bacterial LPS injection and indicate a role of the CB1 receptor subtype in the pathogenesis of LPS fever.

    Topics: Animals; Benzoxazines; Binding, Competitive; Body Temperature; Camphanes; Cannabinoid Receptor Agonists; Cannabinoid Receptor Antagonists; Disease Models, Animal; Dronabinol; Fever; Interleukin-6; Lipopolysaccharides; Male; Morpholines; Naphthalenes; Piperidines; Pyrazoles; Rats; Rats, Sprague-Dawley; Rimonabant

2007
Endocannabinoids are implicated in the infarct size-reducing effect conferred by heat stress preconditioning in isolated rat hearts.
    Cardiovascular research, 2002, Aug-15, Volume: 55, Issue:3

    We have investigated the involvement of the endocannabinoid system in the delayed cardioprotection conferred by heat stress preconditioning in the isolated rat heart.. Rats were divided into eight groups (n=7 in each group), subjected to either heat stress (42 degrees C for 15 min, HS groups) or sham anaesthesia (Sham groups). Twenty-four hours later, their hearts were isolated, retrogradely perfused, and subjected to a 30-min occlusion of the left coronary artery followed by 120 min of reperfusion. Some hearts were perfused with either SR 141716 (a cannabinoid CB(1) receptor antagonist, 1 microM), SR 144528 (a CB(2) receptor antagonist, 1 microM) or L-NAME (a NOS inhibitor, 3 microM) 5 min before ischaemia and during the ischaemic period.. The infarct size-reducing effect conferred by heat stress (35.7+/-1.8% in Sham to 14.1+/-0.6% in HS groups) was not altered by the perfusion of SR 141716 (11.2+/-1.5%) but was abolished by both SR 144528 (36.6+/-1.6%) and L-NAME (32.0+/-4.4%). In hearts from non-heat-stressed rats, perfusion with SR 141716 (32.8+/-1.6%), SR 144528 (33.4+/-2.2%) and L-NAME (31.6+/-2.9%) had no effect on infarct size.. These results suggest an involvement of endocannabinoids, acting through CB(2) receptors, and NO in the cardioprotection conferred by heat stress against myocardial ischaemia. The possible interaction between both mediators of the heat stress response remains to be determined.

    Topics: Analysis of Variance; Animals; Camphanes; Cannabinoid Receptor Modulators; Cannabinoids; Endocannabinoids; Fever; Ischemic Preconditioning, Myocardial; Male; Myocardial Infarction; Myocardium; NG-Nitroarginine Methyl Ester; Nitric Oxide Synthase; Perfusion; Piperidines; Pyrazoles; Rats; Rats, Wistar; Receptor, Cannabinoid, CB2; Receptors, Cannabinoid; Receptors, Drug; Rimonabant; Time Factors

2002