sq-29548 has been researched along with Pulmonary-Edema* in 4 studies
4 other study(ies) available for sq-29548 and Pulmonary-Edema
Article | Year |
---|---|
Quinolines attenuate PAF-induced pulmonary pressor responses and edema formation.
In the present study we have investigated the mechanisms of pulmonary edema caused by platelet-activating factor (PAF) in isolated rat lungs as well as in mice in vivo. In blood-free perfused and ventilated rat lungs, PAF increased lung weight by 0.59 +/- 0.18 g. The cyclooxygenase inhibitor aspirin (500 microM) blocked this response by one-third, and the quinolines quinine (330 microM), quinidine (100 microM), and chloroquine (100 microM) by two-thirds. Lipoxygenase inhibition (10 microM AA861) alone or in combination with thromboxane receptor antagonism (10 microM SQ29548) had no effect on PAF-induced weight gain. In combination with aspirin, quinine or quinidine completely prevented PAF-induced weight gain and the concomitant increase of the capillary filtration coefficient (K(f,c)). Pretreatment with quinine in vivo prevented not only PAF-, but also endotoxin-induced edema formation as assessed by Evans Blue extravasation. In addition, in vivo quinine prevented the endotoxin-induced release of tumor neurosis factor (TNF). Furthermore, in perfused lungs quinine reduced the PAF-induced increases in airway and vascular resistance, as well as thromboxane release. These findings demonstrate the following anti-inflammatory properties of quinolines: reduction of thromboxane and TNF formation; reduction of PAF-induced vasoconstriction and bronchoconstriction; and attenuation of PAF- and lipopolysaccharide (LPS)-induced edema formation. We conclude that the PAF- induced edema consists of two separate mechanisms, one dependent on an unknown cyclooxygenase metabolite, the other one sensitive to quinolines. Topics: Airway Resistance; Animals; Aspirin; Benzoquinones; Bridged Bicyclo Compounds, Heterocyclic; Capillary Permeability; Chloroquine; Cyclooxygenase Inhibitors; Fatty Acids, Unsaturated; Female; Hydrazines; In Vitro Techniques; Interleukin-6; Lipoxygenase Inhibitors; Lung; Male; Mice; Mice, Inbred BALB C; Platelet Activating Factor; Pulmonary Circulation; Pulmonary Edema; Quinidine; Quinine; Quinolines; Rats; Rats, Wistar; Receptors, Thromboxane; Tumor Necrosis Factor-alpha; Vascular Resistance; Vasoconstriction | 1999 |
Thromboxane contributes to pulmonary hypertension in ischemia-reperfusion lung injury.
Exposure of isolated perfused rabbit lungs (IPL) to ischemia-reperfusion causes a transient increase in pulmonary arterial (PA) pressure at the onset of reperfusion. Because thromboxane A2 (TxA2) is a potent vasoconstrictor, we hypothesized that it may contribute to the ischemia-reperfusion-induced pressor response. To evaluate this hypothesis, we exposed IPL perfused with a cell-free solution to 40 min of warm ischemia followed by reperfusion and measured perfusate immunoreactive thromboxane B2 (iTxB2) and 6-ketoprostaglandin F1 alpha (i6-keto-PGF1 alpha). We observed that ischemia-reperfusion IPL compared with controls had an increase in PA pressure (40.2 +/- 4.8 vs. 9.3 +/- 0.3 mmHg, P < 0.05), lung edema (29.3 +/- 6.3 vs. -0.2 +/- 0.2 g, P < 0.05), iTxB2 perfusate levels (155 +/- 22 vs. < 50 pg/ml, P < 0.05), and i6-keto-PGF1 alpha (436 +/- 33 vs. 61 +/- 16 pg/ml, P < 0.05). In ischemia-reperfusion IPL, infusion of SQ 29548 (10(-6) M), a specific TxA2/prostaglandin H2 receptor antagonist, attenuated the PA pressor response and the degree of edema. We conclude that pulmonary hypertension associated with ischemia-reperfusion results in part from pulmonary release of TxA2. Furthermore, TxA2 directly through membrane effects or indirectly through hydrostatic mechanisms increases the severity of ischemia-reperfusion-induced lung edema. Topics: 6-Ketoprostaglandin F1 alpha; Animals; Blood Pressure; Bridged Bicyclo Compounds, Heterocyclic; Fatty Acids, Unsaturated; Hydrazines; Hypertension, Pulmonary; In Vitro Techniques; Ischemia; Lung; Organ Size; Pulmonary Circulation; Pulmonary Edema; Rabbits; Radioimmunoassay; Receptors, Thromboxane; Reperfusion Injury; Thromboxane A2; Thromboxane B2; Thromboxanes; Vasoconstriction | 1993 |
Primed stimulation of isolated perfused rabbit lung by endotoxin and platelet activating factor induces enhanced production of thromboxane and lung injury.
Bacterial sepsis often precedes the development of the adult respiratory distress syndrome (ARDS) and bacterial endotoxin (LPS) produces a syndrome similar to ARDS when infused into experimental animals. We determined in isolated, buffer-perfused rabbit lungs, free of plasma and circulating blood cells that LPS synergized with platelet activating factor (PAF) to injure the lung. In lungs perfused for 2 h with LPS-free buffer (less than 100 pg/ml), stimulation with 1, 10, or 100 nM PAF produced transient pulmonary hypertension and minimal edema. Lungs perfused for 2 h with buffer containing 100 ng/ml of Escherichia coli 0111:B4 LPS had slight elevation of pulmonary artery pressure (PAP) and did not develop edema. In contrast, lungs exposed to 100 ng/ml of LPS for 2 h had marked increases in PAP and developed significant edema when stimulated with PAF. LPS treatment increased capillary filtration coefficient, suggesting that capillary leak contributed to pulmonary edema. LPS-primed, PAF-stimulated lungs had enhanced production of thromboxane B2 (TXB) and 6-keto-prostaglandin F1 alpha (6KPF). Indomethacin completely inhibited PAF-stimulated production of TXB and 6KPF in control and LPS-primed preparations, did not inhibit the rise in PAP produced by PAF in control lungs, but blocked the exaggerated rise in PAP and edema seen in LPS-primed, PAF-stimulated lungs. The thromboxane synthetase inhibitor dazoxiben, and the thromboxane receptor antagonist, SQ 29,548, similarly inhibited LPS-primed pulmonary hypertension and edema after PAF-stimulation. These studies indicate that LPS primes the lung for enhanced injury in response to the physiologic mediator PAF by amplifying the synthesis and release of thromboxane in lung tissue. Topics: Animals; Blood Pressure; Bridged Bicyclo Compounds, Heterocyclic; Capillary Permeability; Drug Synergism; Endotoxins; Fatty Acids, Unsaturated; Hydrazines; Imidazoles; In Vitro Techniques; Indomethacin; Lipopolysaccharides; Lung; Perfusion; Platelet Activating Factor; Pulmonary Edema; Rabbits; Thromboxanes; Tumor Necrosis Factor-alpha | 1990 |
Human platelets modulate edema formation in isolated rabbit lungs.
The role of platelet glucose-6-phosphate dehydrogenase (G-6-PD) in mediating the effects of human platelets on oxidant-induced edema in the isolated perfused rabbit lung was investigated using dehydroepiandrosterone, a specific steroidal inhibitor of G-6-PD. Xanthine oxidase (0.003 and 0.012 U/ml) caused lung edema that was attenuated by coinfusion of washed human platelets. Platelets that were incubated with DEA to inhibit G-6-PD activity augmented xanthine oxidase-induced lung edema and pulmonary hypertension at both doses of xanthine oxidase. Infusion of papaverine to maintain stable pulmonary artery (PA) pressures, incubation of G-6-PD-inhibited platelets with acetylsalicylate, or infusion of a thromboxane-prostaglandin endoperoxide receptor site antagonist, SQ 29548, into the lung perfusate prevented augmentation of lung edema and the PA pressor response by G-6-PD-inhibited platelets. It was concluded that antioxidant-intact platelets attenuate oxidant-induced lung edema by preventing increased membrane permeability, and that G-6-PD-inhibited platelets augment lung edema through hydrostatic mechanisms mediated by release of platelet cyclooxygenase products. Topics: Animals; Aspirin; Blood Platelets; Bridged Bicyclo Compounds, Heterocyclic; Dehydroepiandrosterone; Fatty Acids, Unsaturated; Female; Glucosephosphate Dehydrogenase; Humans; Hydrazines; Male; Papaverine; Perfusion; Pulmonary Edema; Pulmonary Wedge Pressure; Purines; Rabbits; Thromboxane B2; Xanthine Oxidase | 1989 |