sq-23377 and Nasal-Polyps

sq-23377 has been researched along with Nasal-Polyps* in 3 studies

Other Studies

3 other study(ies) available for sq-23377 and Nasal-Polyps

ArticleYear
Memory T cells in the chronic inflammatory microenvironment of nasal polyposis are hyporesponsive to signaling through the T cell receptor.
    Journal of the Association for Research in Otolaryngology : JARO, 2012, Volume: 13, Issue:3

    A majority of T cells from chronic inflammatory tissues derived from patients with nasal polyposis were found to express an effector memory phenotype. We report here that these memory T cells failed to activate NF-κB in response to TCR stimulation but responded normally when the proximal TCR signaling molecules were bypassed with PMA and ionomycin. The dysfunction of these cells was associated with a decrease in the phosphorylation of several TCR proximal signaling molecules including ZAP70, Lck and SLP-76. In addition to the disruption in the TCR signaling pathway, the nasal polyp-associated T cells were shown to have a defect in their ability to translocate LAMP-1 to the cell surface. The results presented here establish that the phenotype and anergy of the T cells in the nasal polyp are similar to those which is seen in memory T cells derived from human tumors and other sites of chronic inflammation.

    Topics: Calcium Ionophores; Case-Control Studies; CD28 Antigens; CD3 Complex; Flow Cytometry; Humans; Immunologic Memory; Immunophenotyping; Ionomycin; Lymphocyte Activation; Lysosomal Membrane Proteins; Nasal Polyps; NF-kappa B; NFATC Transcription Factors; Phenotype; Phosphorylation; Receptors, Antigen, T-Cell; Signal Transduction; T-Lymphocytes

2012
Activation of an apical Cl- conductance by Ca2+ ionophores in cystic fibrosis airway epithelia.
    The American journal of physiology, 1989, Volume: 256, Issue:2 Pt 1

    Cystic fibrosis (CF) airway epithelia express a defect in adenosine 3',5'-cyclic monophosphate (cAMP)-dependent regulation of apical membrane Cl- channels. Recent patch-clamp studies have raised the possibility that Ca2+ -dependent mechanisms for the activation of Cl- secretion may be preserved in CF airway epithelia. To determine 1) whether intact normal (N1) and CF airway epithelia exhibit a Ca2+ -dependent mechanism for activation of Cl- secretion and 2) whether Ca2+ -dependent mechanism for activation of Cl- secretion and 2) whether Ca2+ -dependent mechanisms initiate Cl- secretion via activation of an apical membrane Cl- conductance (GCl-), nasal epithelia from N1 and CF subjects were cultured on collagen membranes, and responses to isoproterenol or Ca2- ionophores [A23187 10(-6) M; ionomycin (10(-5)M)] were measured with transepithelial and intracellular techniques. Isoproterenol induced activation of an apical membrane GCl- in N1 cultures but was ineffective in CF. In contrast, in both N1 and CF amiloride-pretreated cultures, A23187 induced an increase in the equivalent short-circuit current that was associated with an activation of an apical membrane Gc1- and was bumetanide inhibitable. A23187 addition during superfusion of the lumen with a low Cl- (3 mM) solution reduced intracellular Cl- activity of CF cells. A Ca2+ ionophore of different selectivity properties, ionomycin, was also an effective Cl- secretagogue in both N1 and CF cultures. We conclude that 1) the A23187 induced Cl- secretion via activation of an apical GCl- in N1 human nasal epithelium, and 2) in contrast to an isoproterenol-dependent path, a Ca2+ -dependent path for GCl- activation is preserved in CF epithelia.

    Topics: Adolescent; Adult; Amiloride; Calcimycin; Calcium; Cells, Cultured; Chloride Channels; Chlorides; Cystic Fibrosis; Electric Conductivity; Ethers; Female; Humans; Ion Channels; Ionomycin; Isoproterenol; Male; Membrane Potentials; Membrane Proteins; Nasal Polyps; Reference Values; Turbinates

1989
Persistence of abnormal chloride conductance regulation in transformed cystic fibrosis epithelia.
    Science (New York, N.Y.), 1989, Jun-23, Volume: 244, Issue:4911

    An airway epithelial cell line (CF/T43) was developed by infecting cultured airway epithelial cells from patients with cystic fibrosis (CF) with the pZIPneoSV(X)1/SV40T retrovirus and selecting for G418 resistance and ion transport properties. The distinctive chloride secretory phenotypes of the CF cell line CF/T43 and a normal cell line (NL/T4) were not perturbed by SV40T-induced cell transformation. Epithelial cell lines generated from CF cells with the SV40T gene can be used to test candidate CF genes and to evaluate the molecular mechanisms responsible for the CF phenotype.

    Topics: Amiloride; Antigens, Polyomavirus Transforming; Calcimycin; Cell Line; Cell Membrane; Chloride Channels; Chlorides; Colforsin; Cystic Fibrosis; Electric Conductivity; Epithelium; Ethers; Freeze Fracturing; Humans; Intercellular Junctions; Ion Channels; Ionomycin; Membrane Proteins; Microscopy, Electron; Nasal Polyps; Simian virus 40; Transformation, Genetic

1989