sq-23377 and Hypoxia-Ischemia--Brain

sq-23377 has been researched along with Hypoxia-Ischemia--Brain* in 2 studies

Other Studies

2 other study(ies) available for sq-23377 and Hypoxia-Ischemia--Brain

ArticleYear
A dual role for AMP-activated protein kinase (AMPK) during neonatal hypoxic-ischaemic brain injury in mice.
    Journal of neurochemistry, 2015, Volume: 133, Issue:2

    Perinatal hypoxic-ischaemic encephalopathy (HIE) occurs in 1-2 in every 1000 term infants and the devastating consequences range from cerebral palsy, epilepsy and neurological deficit to death. Cellular damage post insult occurs after a delay and is mediated by a secondary neural energy failure. AMP-activated protein kinase (AMPK) is a sensor of cellular stress resulting from ATP depletion and/or calcium dysregulation, hallmarks of the neuronal cell death observed after HIE. AMPK activation has been implicated in the models of adult ischaemic injury but, as yet, there have been no studies defining its role in neonatal asphyxia. Here, we find that in an in vivo model of neonatal hypoxia-ischaemic and in oxygen/glucose deprivation in neurons, there is pathological activation of the calcium/calmodulin-dependent protein kinase kinase β (CaMKKβ)-AMPKα1 signalling pathway. Pharmacological inhibition of AMPK during the insult promotes neuronal survival but, conversely, inhibiting AMPK activity prior to the insult sensitizes neurons, exacerbating cell death. Our data have pathological relevance for neonatal HIE as prior sensitization such as exposure to bacterial infection (reported to reduce AMPK activity) produces a significant increase in injury. We show that in an in vivo model of neonatal hypoxia-ischaemic and in oxygen/glucose deprivation in neurons, there is a pathological activation of the CaMKKβ-AMPKα1 signalling pathway. Inhibiting AMPK during OGD promotes neuronal survival; conversely, inhibiting AMPK prior to OGD exacerbates cell death. Our data have clinical relevance as prior sensitization (e.g. exposure to bacterial infection reducing AMPK activity) increases injury. AMPK, AMP-activated protein kinase; HI, hypoxia-ischaemia; OGD, oxygen-glucose deprivation.

    Topics: AMP-Activated Protein Kinases; Animals; Animals, Newborn; Benzimidazoles; Brain; Cell Death; Cells, Cultured; Disease Models, Animal; Enzyme Inhibitors; Gene Expression Regulation, Developmental; Glucose; Hypoxia; Hypoxia-Ischemia, Brain; Ionomycin; L-Lactate Dehydrogenase; Mice; Mice, Inbred C57BL; Naphthalimides; Neurons; Signal Transduction; Time Factors

2015
Dual inhibition of sodium-mediated proton and calcium efflux triggers non-apoptotic cell death in malignant gliomas.
    Brain research, 2010, Dec-02, Volume: 1363

    Malignant glioma cells maintain an elevated intracellular pH (pH(i)) within hypoxic-ischemic tumor microenvironments through persistent activation of sodium-proton transport (McLean et al., 2000). Amiloride has been reported to selectively kill human malignant glioma cell lines but not primary astrocytes (Hegde et al., 2004). While amiloride reduces pH(i) of malignant gliomas by inhibiting isoform 1 of sodium-proton exchange (NHE1), direct acidification was shown to be cytostatic rather than cytotoxic. At cytotoxic concentrations, amiloride has multiple drug targets including inhibition of NHE1 and sodium-calcium exchange. Amiloride's glioma cytotoxicity can be explained, at least in part, by dual inhibition of NHE1 and of Na(+)-dependent calcium efflux by isoform 1.1 of the sodium-calcium exchanger (NCX1.1), which increases [Ca(2+)](i) and initiates glioma cell demise. As a result of persistent NHE1 activity, cytosolic free levels of sodium ([Na(+)](i)) in U87 and C6 glioma cells are elevated 3-fold, as compared with normal astrocytes. Basal cytosolic free calcium levels ([Ca(2+)](i)) also are increased 5-fold. 2', 4'-dichlorobenzamil (DCB) inhibits the sodium-dependent calcium transporter (NCX1.1) much more potently than NHE1. DCB was employed in a concentration-dependent fashion in glioma cells to selectively inhibit the forward mode of NCX1.1 at ≤1μM, while dually inhibiting both NHE1 and NCX1.1 at ≥20μM. DCB (1μM) was not cytotoxic to glioma cells, while DCB (20μM) further increased basal elevated levels of [Ca(2+)](i) in glioma cells that was followed by cell demise. Cariporide and SEA0400 are more selective inhibitors of NHE1 and NCX1.1 than amiloride or DCB, respectively. Individually, Cariporide and SEA0400 are not cytotoxic, but in combination induced glioma cell death. Like amiloride, the combination of Cariporide and SEA0400 produced glioma cell death in the absence of demonstrable caspase activation.

    Topics: Amiloride; Aniline Compounds; Animals; Astrocytes; Brain Neoplasms; Calcium; Cell Death; Cell Line, Tumor; Cytosol; Glioma; Guanidines; Humans; Hypoxia-Ischemia, Brain; Ionomycin; Ionophores; Personal Space; Phenyl Ethers; Protons; Rats; Rats, Sprague-Dawley; Sodium; Sodium-Calcium Exchanger; Sodium-Hydrogen Exchanger 1; Sodium-Hydrogen Exchangers; Sulfones; Tumor Microenvironment

2010