sq-23377 has been researched along with Cataract* in 2 studies
2 other study(ies) available for sq-23377 and Cataract
Article | Year |
---|---|
Characterization and expression of calpain 10. A novel ubiquitous calpain with nuclear localization.
Calpains are calcium-dependent intracellular nonlysosomal proteases that are believed to hydrolyze specific substrates important in calcium-regulated signaling pathways. Recently, an atypical member of the calpain family, calpain 10, was described, and genetic variation in this gene was associated with an increased risk of type II diabetes mellitus in humans. In the present report, a polyclonal antibody directed against rat calpain 10 was developed. This antibody was used to monitor the expression of calpain 10 protein in tissues from rats, mice, and humans. Calpain 10 protein was found to be present in all tissues examined by Western blotting including the lens, retina, brain, heart, and skeletal muscle. Although some calpain 10 was detectable in the water-soluble protein fraction of these tissues, it was preferentially found in the water-insoluble fraction. In the lens, immunohistochemistry revealed that calpain 10 was predominately located in the cytoplasm of epithelial and newly differentiating lens fibers at the transition zone. However, calpain 10 was found to be associated with the plasma membrane of differentiated lens fiber cells and the sarcolemma of skeletal muscle. In the lens epithelium-derived cell line, alphaTN4-1, the calpain 10 protein was found in a punctate distribution in the cell nucleus as well as the cytoplasm. After the elevation of intracellular calcium levels with ionomycin, calpain 10 protein levels in the nucleus of alphaTN4-1 cells increased markedly, whereas those in the cytoplasm decreased. In the lens, the elevation of intracellular calcium levels after selenite administration resulted in increased levels of calpain 10 RNA within 1 day and a loss of calpain 10 protein from the lens nucleus coincident with the onset of selenite cataract. In conclusion, calpain 10 seems to be a ubiquitous calpain, the expression level and subcellular distribution of which are dynamically influenced by calcium. Topics: Adult; Age Factors; Aged; Aged, 80 and over; Animals; Baculoviridae; Blotting, Western; Brain; Calcium; Calpain; Cataract; Cell Line; Cell Nucleus; Child; Child, Preschool; Cloning, Molecular; Cytoplasm; Disease Models, Animal; DNA, Complementary; Humans; Immunoblotting; Immunohistochemistry; Ionomycin; Ionophores; Lens, Crystalline; Mice; Microscopy, Fluorescence; Middle Aged; Muscle, Skeletal; Myocardium; Protein Structure, Tertiary; Rats; Rats, Sprague-Dawley; Recombinant Proteins; Retina; Reverse Transcriptase Polymerase Chain Reaction; RNA; RNA, Messenger; Sarcolemma; Time Factors; Tissue Distribution | 2001 |
A human lens model of cortical cataract: Ca2+-induced protein loss, vimentin cleavage and opacification.
Cortical cataract in humans is associated with Ca2+ overload and protein loss, and although animal models of cataract have implicated Ca2+-activated proteases in this process, it remains to be determined whether the human lens responds in this manner to conditions of Ca2+ overload. The purpose of these experiments was to investigate Ca2+-induced opacification and proteolysis in the organ-cultured human lens.. Donor human lenses were cultured in Eagle's minimum essential medium (EMEM) for up to 14 days. The Ca2+ ionophore ionomycin was used to induce a Ca2+ overload. Lenses were loaded with [3H]-amino acids for 48 hours. After a 24-hour control efflux period, lenses were cultured in control EMEM (Ca2+ 1.8 mM), EMEM + 5 microM ionomycin, or EMEM + 5 microM ionomycin + 5 mM EGTA (Ca2+ < 1 microM). Efflux of proteins and transparency were monitored daily. Protein distribution and cytoskeletal proteolysis were analyzed at the end of the experiment. Cytoskeletal proteins were isolated and separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Western blot analyses were probed with anti-vimentin antibody (clone V9) and detected by enhanced chemiluminescence.. Lenses cultured under control conditions remained transparent for 14 days in EMEM with no added supplements or serum. The lenses synthesized proteins and had a low rate of protein efflux throughout the experimental period. Ionomycin treatment resulted in cortical opacification, which was inhibited when external Ca2+ was chelated with EGTA. Exposure to ionomycin also led to an efflux of [3H]-labeled protein, amounting to 41% of the labeled protein over the 7-day experimental period, compared with 12% in ionomycin + EGTA-treated lenses. Efflux was accounted for by loss from the lens soluble protein (crystallin) fraction. Western blot analysis of the cytoskeletal protein vimentin (56 kDa) revealed a distinct breakdown product of 48 kDa in ionomycin-treated lenses that was not present when Ca2+ was chelated with EGTA. In addition, high-molecular-weight proteins (approximately 115 kDa and 235 kDa) that cross-reacted with the vimentin antibody were observed in ionomycin-treated lenses. The Ca2+-induced changes were not age dependent.. Human lenses can be successfully maintained in vitro, remaining transparent for extended periods. Increased intracellular Ca2+ induces cortical opacification in the human lens. Ca2+-dependent cleavage and cross-linking of vimentin supports possible roles for calpain and transglutaminase in the opacification process. This human lens calcium-induced opacification (HLCO) model enables investigation of the molecular mechanisms of opacification, and the data help to explain the loss of protein observed in human cortical cataractous lenses in vivo. Topics: Adolescent; Adult; Aged; Aged, 80 and over; Blotting, Western; Calcium; Cataract; Crystallins; Culture Media; Electrophoresis, Polyacrylamide Gel; Humans; Ionomycin; Ionophores; Lens Cortex, Crystalline; Luminescent Measurements; Middle Aged; Models, Biological; Organ Culture Techniques; Vimentin | 2000 |