sq-23377 has been researched along with Adenoma* in 2 studies
2 other study(ies) available for sq-23377 and Adenoma
Article | Year |
---|---|
Characterization of action potential waveform-evoked L-type calcium currents in pituitary GH3 cells.
The response of the L-type Ca2+ current (ICa,L) in pituitary GH3 cells to variations in the action potential (AP) waveform was examined using the whole-cell configuration of the patch-clamp technique. ICa,L evoked during an AP waveform exhibited an early and a late component. The early component occurred on the rising phase of the AP; the late component coincided with the falling phase. Prolonging the falling phase of the AP increased the Ca2+ charge carried by ICa,L, although the amplitude of the late ICa,L was reduced. Prolonging the peak voltage of the AP waveform, however, increased the amplitude of the late component. ICa,L inactivated during a train of AP waveforms. When Ba2+ was used as the charge carrier, current inactivation during a train of APs decreased. Likewise, ICa,L evoked by the AP templates with irregular bursting pattern was inactivated. When the repetitive firing of APs with depolarizing potentials was replayed to cells, Ca2+ entry was not only spread over the entire AP, but also occurred during the interspike voltage trajectory. After application of thyrotropin releasing hormone (TRH; 10 microM), ICa,L in response to rectangular pulses was increased and the current/voltage relation shifted slightly to more negative values. TRH (10 microM), thapsigargin (10 microM) or cyclopiazonic acid (30 microM) enhanced the late component of the AP-evoked ICa,L. TRH also attenuated the inactivation of ICa,L during a train of APs. These results indicate that in pituitary GH3 cells, the time course and kinetics of ICa,L during the AP waveforms is distinct from that evoked by rectangular voltage clamp. Changes in the shape and firing pattern of APs in GH3 cells can modulate Ca2+ influx through L-type Ca2+ channels. Ca2+ release from internal stores may affect the magnitude of AP-evoked ICa,L in these cells. Topics: Action Potentials; Adenoma; Animals; Calcium; Calcium Channel Blockers; Calcium Channels, L-Type; Dantrolene; Enzyme Inhibitors; Indoles; Ionomycin; Ionophores; Muscle Relaxants, Central; Nifedipine; Patch-Clamp Techniques; Pituitary Neoplasms; Rats; Thapsigargin; Thyrotropin; Tumor Cells, Cultured | 2001 |
Calcium blood level modulates endogenous nitric oxide action: effects of parathroidectomy in patients with hyperparathyroidism.
Platelet cyclic guanosine monophosphate (cGMP) is produced by soluble guanylate cyclase (sGC), the activity of which is modulated by the activity of nitric oxide (NO) constitutive synthase (cNOS) which, in turn, is activated by a calcium/calmodulin complex. In primary hyperparathyroidism (H-PTH) an increase in platelet free calcium levels is present. In this study we evaluate the platelet cGMP levels, as an expression of NO production, in the presence of 3-isobutyl-1-methylxanthine (IBMX) alone (IBMXcGMP) and after stimulation by ionomycine (IONO; IONOcGMP) and sodium nitroprusside (SNP; SNPcGMP), in eight subjects affected by H-PTH before and after removal of adenoma. Platelet cGMP levels were also measured in seven normal subjects. IBMXcGMP and IONOcGMP were elevated in H-PTH patients compared with normal subjects (1.9 +/- 0.3 vs 0.8 +/- 0.2 fmol/10(6) platelets and 2.7 +/- 0.4 vs 1.4 +/- 0.3; P < 0.02 and P < 0.05 respectively) but SNPcGMP was unaffected (3.9 +/- 0.6 vs 2.5 +/- 0.5). After parathyroidectomy, blood levels of intact parathyroid hormone (i-PTH), total calcium (t-Ca), IBMXcGMP and IONOcGMP all decreased (177.5 +/- 23.9 vs 45.0 +/- 8.8 pg/ml, P < 0.005; 6.5 +/- 0.5 vs 4.6 +/- 0.1 mEq/1, P < 0.005; 1.9 +/- 0.3 vs 0.8 +/- 0.2, P < 0.005; 2.7 +/- 0.4 vs 1.8 +/ 0.3, P < 0.05 respectively), while SNPcGMP was not modified (3.9 +/- 0.6 vs 4.3 +/- 0.9). t-Ca and i-PTH were directly correlated with IBMXcGMP (P < 0.02, rs = 0.613; P < 0.02, rs = 0.576 respectively) and i-PTH was also correlated with t-Ca (P < 0.001), rs = 0.840).. (1) levels of IBMXcGMP and IONOcGMP are high in subjects with H-PTH; (2) after surgery both IBMXcGMP and IONOcGMP decrease to normal values. As IBMXcGMP expresses basal cGMP and IONOcGMP expresses the cGMP after cNOS stimulation, it can be speculated that the increase in NO production could be a mechanism to downregulate the vasoconstriction which may be caused by the high calcium levels in smooth muscle cells. After surgery, together with the normalization of calcium levels, NO production also returned to normal values. Topics: 1-Methyl-3-isobutylxanthine; Adenoma; Blood Platelets; Calcium; Cyclic GMP; Female; Humans; Hyperparathyroidism; In Vitro Techniques; Ionomycin; Ionophores; Male; Middle Aged; Nitric Oxide; Nitroprusside; Parathyroid Neoplasms; Parathyroidectomy; Phosphodiesterase Inhibitors; Postoperative Period; Stimulation, Chemical; Vasodilator Agents | 1998 |