spl-334 and Heart-Arrest

spl-334 has been researched along with Heart-Arrest* in 1 studies

Other Studies

1 other study(ies) available for spl-334 and Heart-Arrest

ArticleYear
Improvement in Outcomes After Cardiac Arrest and Resuscitation by Inhibition of S-Nitrosoglutathione Reductase.
    Circulation, 2019, 02-05, Volume: 139, Issue:6

    The biological effects of nitric oxide are mediated via protein S-nitrosylation. Levels of S-nitrosylated protein are controlled in part by the denitrosylase, S-nitrosoglutathione reductase (GSNOR). The objective of this study was to examine whether GSNOR inhibition improves outcomes after cardiac arrest and cardiopulmonary resuscitation (CA/CPR).. Adult wild-type C57BL/6 and GSNOR-deleted (GSNOR. GSNOR activity was increased in plasma and multiple organs of mice, including brain in particular. Levels of protein S-nitrosylation were decreased in the brain 6 hours after CA/CPR. Administration of SPL-334.1 attenuated the increase in GSNOR activity in brain, heart, liver, spleen, and plasma, and restored S-nitrosylated protein levels in the brain. Inhibition of GSNOR attenuated ischemic brain injury and improved survival in wild-type mice after CA/CPR (81.8% in SPL-334.1 versus 36.4% in placebo; log rank P=0.031). Similarly, GSNOR deletion prevented the reduction in the number of S-nitrosylated proteins in the brain, mitigated brain injury, and improved neurological recovery and survival after CA/CPR. Both GSNOR inhibition and deletion attenuated CA/CPR-induced disruption of blood brain barrier. Post-CA patients had higher plasma GSNOR activity than did preoperative cardiac surgery patients or healthy volunteers ( P<0.0001). Plasma GSNOR activity was positively correlated with initial lactate levels in postarrest patients (Spearman correlation coefficient=0.48; P=0.045).. CA and CPR activated GSNOR and reduced the number of S-nitrosylated proteins in the brain. Pharmacological inhibition or genetic deletion of GSNOR prevented ischemic brain injury and improved survival rates by restoring S-nitrosylated protein levels in the brain after CA/CPR in mice. Our observations suggest that GSNOR is a novel biomarker of postarrest brain injury as well as a molecular target to improve outcomes after CA.

    Topics: Aldehyde Oxidoreductases; Animals; Benzoates; Disease Models, Animal; Heart; Heart Arrest; Humans; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Nitric Oxide; Oxidation-Reduction; Pyrimidinones; Resuscitation; Treatment Outcome

2019